CN111567331A - A grass garbage automatic cleaning machine and method based on deep convolutional neural network - Google Patents
A grass garbage automatic cleaning machine and method based on deep convolutional neural network Download PDFInfo
- Publication number
- CN111567331A CN111567331A CN202010391121.9A CN202010391121A CN111567331A CN 111567331 A CN111567331 A CN 111567331A CN 202010391121 A CN202010391121 A CN 202010391121A CN 111567331 A CN111567331 A CN 111567331A
- Authority
- CN
- China
- Prior art keywords
- garbage
- grass
- image
- neural network
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010813 municipal solid waste Substances 0.000 title claims abstract description 173
- 244000025254 Cannabis sativa Species 0.000 title claims abstract description 100
- 238000004140 cleaning Methods 0.000 title claims abstract description 96
- 238000013527 convolutional neural network Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000007613 environmental effect Effects 0.000 claims abstract description 50
- 238000012549 training Methods 0.000 claims description 34
- 244000007853 Sarothamnus scoparius Species 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 13
- 238000000605 extraction Methods 0.000 claims description 7
- 238000007781 pre-processing Methods 0.000 claims description 6
- 238000011478 gradient descent method Methods 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 4
- 238000004880 explosion Methods 0.000 claims description 4
- 230000004927 fusion Effects 0.000 claims description 4
- 238000003064 k means clustering Methods 0.000 claims description 4
- 239000000779 smoke Substances 0.000 claims description 4
- 230000008901 benefit Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000209504 Poaceae Species 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G20/00—Cultivation of turf, lawn or the like; Apparatus or methods therefor
- A01G20/40—Apparatus for cleaning the lawn or grass surface
- A01G20/43—Apparatus for cleaning the lawn or grass surface for sweeping, collecting or disintegrating lawn debris
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- Environmental Sciences (AREA)
- Image Analysis (AREA)
Abstract
本发明涉及垃圾处理设备的技术领域,具体涉及一种基于深度卷积神经网络的草地垃圾自动清理机及方法,包括机架及设置在所述机架上的行走组件,还包括:清理组件,清理组件用于清理草地上垃圾;图像采集装置,用于采集草地的环境图像;中央控制器,图像采集装置及清理组件均与中央控制器电性连接;中央控制器内设置有垃圾识别装置,与图像采集装置电性连接,用于对图像采集装置采集的草地的环境图像进行处理,并识别草地的环境图像中是否存在垃圾的图像;垃圾识别装置识别草地的环境图像中存在垃圾的图像时,中央控制器控制清理组件进行垃圾清理;图像采集装置、清理组件及中央控制器均设置在机架上。本发明具有提高垃圾清理效率的优点。
The present invention relates to the technical field of garbage disposal equipment, in particular to an automatic lawn garbage cleaning machine and method based on a deep convolutional neural network, comprising a frame and a walking assembly arranged on the frame, and further comprising: a cleaning assembly, The cleaning component is used to clean the garbage on the grass; the image acquisition device is used to collect the environmental image of the grass; the central controller, the image acquisition device and the cleaning component are all electrically connected with the central controller; the central controller is provided with a garbage identification device, It is electrically connected with the image acquisition device, and is used to process the environmental image of the grassland collected by the image acquisition device, and identify whether there is an image of garbage in the environmental image of the grassland; the garbage identification device recognizes that there is an image of garbage in the environmental image of the grassland , the central controller controls the cleaning component to clean up garbage; the image acquisition device, the cleaning component and the central controller are all arranged on the rack. The present invention has the advantage of improving the efficiency of garbage cleaning.
Description
技术领域technical field
本发明涉及垃圾处理设备的技术领域,具体涉及一种基于深度卷积神经网络的草地垃圾自动清理机及方法。The invention relates to the technical field of garbage disposal equipment, in particular to an automatic lawn garbage cleaning machine and method based on a deep convolutional neural network.
背景技术Background technique
为了能够更好的提高人们的生活质量,目前城市绿化面积正在逐年增加,学校、公园等一些公共场所都拥有草坪,城市草坪可以净化空气,吸收大气中的二氧化碳、二氧化硫、氟化氢、氨、氯等有毒有害气体。草地每小时可吸收大量二氧化碳,同时释放出大量氧气。草坪可以调节大气温度和湿度,每公顷草坪每天约蒸发大量的水分,增加空气中的相对湿度。草坪能吸尘杀菌,草地比光地的吸尘能力大70倍。草坪可以降低噪声污染,草坪较大的广场能使噪声降低。草坪还可以保水抗旱,美化环境,调节气候,但是随着人们活动的增加,草坪上也经常出现大量垃圾。In order to better improve people's quality of life, the current urban green area is increasing year by year. Some public places such as schools and parks have lawns. Urban lawns can purify the air and absorb carbon dioxide, sulfur dioxide, hydrogen fluoride, ammonia, chlorine, etc. in the atmosphere. Toxic and harmful gases. Grass can absorb a lot of carbon dioxide every hour, while releasing a lot of oxygen. The lawn can adjust the atmospheric temperature and humidity, and each hectare of lawn evaporates a lot of water every day, increasing the relative humidity in the air. The lawn can be vacuumed and sterilized, and the vacuuming capacity of the grass is 70 times greater than that of the bare field. Lawns can reduce noise pollution, and large squares with lawns can reduce noise. Lawns can also retain water and drought, beautify the environment and regulate the climate, but with the increase of people's activities, a lot of garbage often appears on the lawn.
授权公告号为CN104996175B的中国专利公开了一种高效手推式草地垃圾清理设备,包括底座、轮架、地轮、挑料杆、主壳体和控制箱,底座下部设置有4个轮架,轮架上安装有地轮,推把手之间设置有导轨,导轨上设置有垃圾箱,垃圾箱左侧焊接有第一传送带辊支架,第一传送左侧焊接有第二传送带辊支架,拾料辊上设置有挑料杆,底座上通过螺杆固定安装有主壳体,主壳体右侧通过活页安装有卸料门,卸料门与垃圾箱正相对,主壳体上部安装有控制箱。通过拾料电机带动拾料辊转动,拾料辊上的挑料杆将草地上的垃圾和树叶挑起,通过离心作用最终到达传送带上,并导入设备上自带的垃圾桶,完成捡拾垃圾的工作。The Chinese patent with the authorization announcement number CN104996175B discloses a high-efficiency hand-push lawn garbage cleaning equipment, which includes a base, a wheel frame, a ground wheel, a pick rod, a main casing and a control box. The lower part of the base is provided with four wheel frames. A ground wheel is installed on the wheel frame, a guide rail is arranged between the push handles, and a garbage bin is arranged on the guide rail. A pick-up rod is set on the roller, a main casing is fixedly installed on the base through a screw, a discharge door is installed on the right side of the main casing through a loose leaf, the discharge door is opposite to the garbage box, and a control box is installed on the upper part of the main casing. The pick-up roller is driven to rotate by the pick-up motor, and the pick-up rod on the pick-up roller picks up the garbage and leaves on the grass, and finally reaches the conveyor belt through centrifugal action, and imports it into the trash can that comes with the equipment to complete the process of picking up garbage. Work.
现有技术存在以下技术缺陷:上述清理设备仍需人工识别垃圾,识别垃圾后,人工控制控制箱进行捡拾垃圾的工作,垃圾清理效率较低。The prior art has the following technical defects: the above cleaning equipment still needs to manually identify the garbage, and after identifying the garbage, the control box is manually controlled to pick up the garbage, and the garbage cleaning efficiency is low.
发明内容SUMMARY OF THE INVENTION
本发明目的在于提供一种基于深度卷积神经网络的草地垃圾自动清理机及方法,具有提高垃圾清理效率的优点。The purpose of the present invention is to provide an automatic lawn garbage cleaning machine and method based on a deep convolutional neural network, which has the advantage of improving the efficiency of garbage cleaning.
为实现上述目的,本发明所采用的技术方案是:一种基于深度卷积神经网络的草地垃圾自动清理机,包括机架及设置在所述机架上的行走组件,还包括:In order to achieve the above purpose, the technical solution adopted in the present invention is: an automatic lawn garbage cleaning machine based on a deep convolutional neural network, comprising a frame and a walking assembly arranged on the frame, and further comprising:
清理组件,所述清理组件用于清理草地上垃圾;a cleaning component, which is used for cleaning garbage on the grass;
图像采集装置,用于采集草地的环境图像;an image acquisition device for acquiring environmental images of the grass;
中央控制器,所述图像采集装置及清理组件均与所述中央控制器电性连接;a central controller, the image acquisition device and the cleaning assembly are all electrically connected to the central controller;
所述中央控制器内设置有垃圾识别装置,与图像采集装置电性连接,用于对所述图像采集装置采集的草地的环境图像进行处理,并识别草地的环境图像中是否存在垃圾的图像;所述垃圾识别装置识别草地的环境图像中存在垃圾的图像时,所述中央控制器控制清理组件进行垃圾清理;The central controller is provided with a garbage identification device, which is electrically connected to the image acquisition device, and is used for processing the environmental image of the grassland collected by the image acquisition device, and to identify whether there is an image of garbage in the environmental image of the grassland; When the garbage identification device recognizes that there is an image of garbage in the environmental image of the grass, the central controller controls the cleaning component to clean up garbage;
所述图像采集装置、清理组件及中央控制器均设置在所述机架上。The image acquisition device, the cleaning assembly and the central controller are all arranged on the frame.
优选的,所述清理组件包括清扫扫把、收集铲及垃圾箱,所述清扫扫把包括转杆及扫把头,所述转杆的一端转动设置在所述机架上,所述机架上设置有驱动所述转杆转动的第一舵机,所述转杆的另一端连接有扫把头;Preferably, the cleaning assembly includes a cleaning broom, a collecting shovel and a garbage bin, the cleaning broom includes a rotating rod and a broom head, one end of the rotating rod is rotatably arranged on the frame, and the frame is provided with a rotating rod and a broom head. a first steering gear that drives the rotating rod to rotate, and the other end of the rotating rod is connected with a broom head;
所述垃圾箱设置在所述机架上,所述垃圾箱靠近清扫扫把的一侧转动连接有转轴,所述转轴的长度方向与所述转杆的长度方向垂直,所述转轴上连接有所述收集铲,所述垃圾箱设置有驱动所述转轴绕转轴的轴线转动的第二舵机。The garbage box is arranged on the frame, and a rotating shaft is rotatably connected to the side of the garbage box close to the cleaning broom, and the length direction of the rotating shaft is perpendicular to the length direction of the rotating rod. In the collection shovel, the trash box is provided with a second steering gear that drives the rotating shaft to rotate around the axis of the rotating shaft.
优选的,所述垃圾识别装置包括Preferably, the garbage identification device includes
训练模块,用于使用多张草地的环境图像对卷积神经网络进行训练,获得深度卷积神经网络模型;The training module is used to train the convolutional neural network using multiple grass environment images to obtain a deep convolutional neural network model;
目标检测模型,用于识别多张草地的环境图像中的垃圾的图像;A target detection model for identifying images of garbage in multiple grass environment images;
图像预处理模块,用于对草地的环境图像进行直方图均衡化处理和对数变换处理,获得处理后的草地的环境图像,并将处理后的草地的环境图像发送至训练模块及目标检测模型。The image preprocessing module is used to perform histogram equalization processing and logarithmic transformation processing on the environmental image of the grass, obtain the processed environmental image of the grass, and send the processed environmental image of the grass to the training module and the target detection model. .
优选的,所述深度卷积神经网络模型为Tiny-YOLOv3。Preferably, the deep convolutional neural network model is Tiny-YOLOv3.
通过上述技术方案,与之前的YOLO算法相比,YOLOv3采用了精度更高的DarkNet53作为特征提取网络,设计了目标多尺度检测结构,使用了logistic函数代替传统的softmax函数。DarkNet53借鉴了ResNet残差网络的思路,在一些层之间设置了快捷路径,研究表明:DarkNet53相比于ResNet-152,在精度上接近,但速度更快。Through the above technical solutions, compared with the previous YOLO algorithm, YOLOv3 adopts DarkNet53 with higher accuracy as the feature extraction network, designs the target multi-scale detection structure, and uses the logistic function to replace the traditional softmax function. DarkNet53 draws on the idea of ResNet residual network, and sets up a shortcut path between some layers. Research shows that DarkNet53 is similar in accuracy but faster than ResNet-152.
优选的,所述Tiny-YOLOv3模型使用二元交叉熵损失函数进行类别预测,Preferably, the Tiny-YOLOv3 model uses a binary cross-entropy loss function for category prediction,
其中,N是训练图片的总数量;yi取值为0或1,yi取值为1表示第i张输入的图片包含垃圾的图像,yi取值为0则表示第i张输入的图片不包含垃圾的图像;pi值为对第i张输入的图片是否包含垃圾的图像的预测的概率,pi值在0至1之间。Among them, N is the total number of training images; yi takes a value of 0 or 1, yi takes a value of 1, which means that the ith input image contains garbage images, and a yi value of 0 means that the ith input image does not contain Image of garbage; pi value is the predicted probability of whether the ith input image contains garbage image, pi value is between 0 and 1.
优选的,所述深度卷积神经网络模型包括DarkNet框架,所述DarkNet框架包括53个卷积层及22个Residual层,所述DarkNet框架中的53个卷积层用于对草地的环境图像进行特征提取,所述DarkNet框架中的22个Residual层用于解决深度卷积神经网络模型中的梯度弥散或梯度爆炸。一方面,Darknet-53网络采用全卷积结构,Yolo v3前向传播过程中,张量的尺寸变换是通过改变卷积核的步长来实现的。卷积的步长为2,每次经过卷积之后,图像边长缩小一半。另一方面,Darknet-53网络引入了Residual结构。Yolo v2中还是类似VGG那样直筒型的网络结构,层数太多训起来会有梯度问题,所以Darknet-19也就19层。得益于ResNet的residual结构,训练深层网络的难度大大减小。因此Darknet-53网络做到53层,精度提升比较明显。Preferably, the deep convolutional neural network model includes a DarkNet framework, and the DarkNet framework includes 53 convolutional layers and 22 Residual layers, and the 53 convolutional layers in the DarkNet framework are used to perform image processing on the environment image of the grass. Feature extraction, the 22 Residual layers in the DarkNet framework are used to solve gradient dispersion or gradient explosion in deep convolutional neural network models. On the one hand, the Darknet-53 network adopts a fully convolutional structure. During the forward propagation of Yolo v3, the size transformation of the tensor is achieved by changing the stride of the convolution kernel. The stride of the convolution is 2. After each convolution, the side length of the image is reduced by half. On the other hand, the Darknet-53 network introduces the Residual structure. Yolo v2 is still a straight-tube network structure like VGG. If there are too many layers, there will be gradient problems in training, so Darknet-19 also has 19 layers. Thanks to the residual structure of ResNet, the difficulty of training deep networks is greatly reduced. Therefore, the Darknet-53 network achieves 53 layers, and the accuracy improvement is relatively obvious.
优选的,所述训练模块采用随机梯度下降法优化Tiny-YOLOv3模型。随机梯度下降(Stochastic Gradient Descent,SGD)是梯度下降算法的一个扩展。随机梯度下降的核心是:梯度是期望。期望可使用小规模的样本近似估计。批量梯度下降法(Batch GradientDescent,BGD):是梯度下降法的最原始形式,每迭代一步或更新每一参数时,都要用到训练集中的所有样本数据,当样本数目很多时,训练过程会很慢。随机梯度下降法(StochasticGradient Descent,SGD):由于批量梯度下降法在更新每一个参数时,都需要所有的训练样本,所以训练过程会随着样本数量的加大而变得异常的缓慢。随机梯度下降法正是为了解决批量梯度下降法这一弊端而提出的。随机梯度下降是通过每个样本来迭代更新一次。SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着最优化方向进行。Preferably, the training module uses stochastic gradient descent to optimize the Tiny-YOLOv3 model. Stochastic Gradient Descent (SGD) is an extension of the gradient descent algorithm. The core of stochastic gradient descent is this: the gradient is the expectation. It is expected that a small sample size can be used to approximate the estimate. Batch Gradient Descent (BGD): It is the most primitive form of gradient descent. All sample data in the training set must be used for each iteration step or each parameter update. When the number of samples is large, the training process will very slow. Stochastic Gradient Descent (SGD): Since batch gradient descent requires all training samples when updating each parameter, the training process becomes abnormally slow as the number of samples increases. The stochastic gradient descent method is proposed to solve the drawback of the batch gradient descent method. Stochastic gradient descent is iteratively updated once per sample. A problem with SGD is that there is more noise than BGD, so that SGD does not proceed towards the optimization direction every iteration.
一种基于深度卷积神经网络的草地垃圾自动清理方法,包括以下步骤,An automatic cleaning method for grass garbage based on a deep convolutional neural network, comprising the following steps:
S1:使用多张草地的环境图像对卷积神经网络进行训练,获得Tiny-YOLOv3模型,执行S2;S1: Use multiple grass environment images to train the convolutional neural network, obtain the Tiny-YOLOv3 model, and execute S2;
S2:以初始位置为原点建立环境栅格地图,执行S3;S2: Build an environmental grid map with the initial position as the origin, and execute S3;
S3:获取多张实时的草地的环境图像,执行S4;S3: Acquire multiple real-time grass environment images, and execute S4;
S4:识别多张实时的草地的环境图像中是否有垃圾的图像,若是,执行S5,若不是,执行S6;S4: Identify whether there are garbage images in the multiple real-time grass environment images, if so, execute S5, if not, execute S6;
S5:获得该草地环境图像中的垃圾的图像的具体位置及其边框,进行垃圾清扫工作,执行S6;S5: Obtain the specific position and frame of the image of the garbage in the grass environment image, perform garbage cleaning, and execute S6;
S6:移动至下一栅格内,执行S3。S6: Move to the next grid, and execute S3.
优选的,所述S4还包括以下步骤,Preferably, the S4 further comprises the following steps,
S41:设置IOU阈值及置信度阈值,执行S42;S41: Set the IOU threshold and the confidence threshold, and execute S42;
S42:对输入的环境图像进行尺寸调整,执行S43;S42: adjust the size of the input environment image, and execute S43;
S43:输入至Tiny-YOLOv3模型进行特征提取,执行S44;S43: Input to the Tiny-YOLOv3 model for feature extraction, and execute S44;
S44:通过类似FPN网络对烟雾或火焰进行多尺度融合预测,将特征图划分为多个网格;使用K-means聚类方法对训练集的边界框做聚类,得到合适的anchor box,并在每个网格上产生3个anchor box数来生成预测的目标边界框,通过二元交叉熵损失函数来预测类别。S44: Perform multi-scale fusion prediction on smoke or flame through a similar FPN network, and divide the feature map into multiple grids; use the K-means clustering method to cluster the bounding boxes of the training set to obtain appropriate anchor boxes, and 3 anchor boxes are generated on each grid to generate the predicted object bounding box, and the class is predicted by a binary cross-entropy loss function.
优选的,所述S5使用一种基于深度卷积神经网络的草地垃圾自动清理机进行垃圾清扫工作,具体包括以下步骤,Preferably, the step S5 uses a deep convolutional neural network-based automatic lawn garbage cleaning machine for garbage cleaning, which specifically includes the following steps:
S51:转杆的初始状态为靠近扫把头的一端向远离收集铲的方向倾斜设置,第一舵机带动转杆以转杆的端点为圆心,以转杆为半径转动,将草地上的垃圾扫进收集铲内,第一舵机带动转杆恢复至初始状态,执行S52;S51: The initial state of the rotating rod is that the end close to the broom head is inclined in the direction away from the collecting shovel. The first steering gear drives the rotating rod to take the end of the rotating rod as the center of the circle and the rotating rod as the radius to sweep the garbage on the grass. Enter the collecting shovel, the first steering gear drives the rotating rod to return to the initial state, and executes S52;
S52:第二舵机带动收集铲转动,将收集铲内的垃圾倾倒至垃圾箱内,第二舵机再带动收集铲转动至初始位置。S52: The second steering gear drives the collection shovel to rotate, dumps the garbage in the collection shovel into the garbage bin, and the second steering gear drives the collection shovel to rotate to the initial position.
综上所述,本发明的有益效果为:To sum up, the beneficial effects of the present invention are:
1、本发明能自动识别草地上是否存在垃圾,并在识别出垃圾时,自动进行垃圾清理工作,无需操作人员控制,具有提高垃圾清理效率的优点;1. The present invention can automatically identify whether there is garbage on the grass, and when the garbage is identified, it can automatically carry out garbage cleaning without operator control, and has the advantage of improving the efficiency of garbage cleaning;
2、本发明的清理组件包括清扫扫把、收集铲及垃圾箱,清扫扫把包括转杆及扫把头,转杆的一端转动设置在机架上,机架上设置有驱动转杆转动的第一舵机,转杆的另一端连接有扫把头,垃圾箱设置在机架上,垃圾箱靠近清扫扫把的一侧转动连接有转轴,转轴的长度方向与转杆的长度方向垂直,转轴上连接有收集铲,垃圾箱设置有驱动转轴绕转轴的轴线转动的第二舵机,具有高效清理垃圾的优点。2. The cleaning assembly of the present invention includes a cleaning broom, a collecting shovel and a garbage bin. The cleaning broom includes a rotating rod and a broom head. One end of the rotating rod is rotated and arranged on the frame, and the frame is provided with a first rudder that drives the rotating rod to rotate. The other end of the rotating rod is connected with a broom head, the garbage box is set on the frame, and the side of the garbage box close to the cleaning broom is connected with a rotating shaft. The length direction of the rotating shaft is perpendicular to the length direction of the rotating rod. The shovel and the garbage bin are provided with a second steering gear that drives the rotating shaft to rotate around the axis of the rotating shaft, which has the advantage of efficiently cleaning garbage.
附图说明Description of drawings
图1为本发明的实施例1的一种基于深度卷积神经网络的草地垃圾自动清理机的结构示意图;1 is a schematic structural diagram of an automatic lawn garbage cleaning machine based on a deep convolutional neural network according to
图2为本发明的实施例1的一种基于深度卷积神经网络的草地垃圾自动清理机的系统框图;2 is a system block diagram of a deep convolutional neural network-based automatic lawn garbage cleaning machine according to
图3为本发明的一种基于深度卷积神经网络的草地垃圾自动清理方法的流程示意图;3 is a schematic flowchart of a method for automatic cleaning of grass garbage based on a deep convolutional neural network according to the present invention;
图4为本发明的实施例用于展示Tiny-YOLOv3模型识别草地的环境图像中的垃圾的图像的示意图;4 is a schematic diagram of an image used for displaying the Tiny-YOLOv3 model for identifying garbage in an environmental image of grass according to an embodiment of the present invention;
图5为本发明的实施例用于展示Tiny-YOLOv3模型识别草地的环境图像中的垃圾的图像的示意图;5 is a schematic diagram illustrating an image of the Tiny-YOLOv3 model for recognizing garbage in an environmental image of a grass field according to an embodiment of the present invention;
图6为本发明的实施例2的一种基于深度卷积神经网络的草地垃圾自动清理机的结构示意图;6 is a schematic structural diagram of an automatic lawn garbage cleaning machine based on a deep convolutional neural network according to
图7为本发明的实施例2的一种基于深度卷积神经网络的草地垃圾自动清理机的系统框图。FIG. 7 is a system block diagram of an automatic lawn garbage cleaning machine based on a deep convolutional neural network according to
图中,1、机架;2、行走组件;3、清理组件;31、清理扫把;32、收集铲;33、垃圾箱;4、图像采集装置。In the figure, 1, the frame; 2, the walking component; 3, the cleaning component; 31, the cleaning broom; 32, the collecting shovel; 33, the garbage bin; 4, the image acquisition device.
具体实施方式Detailed ways
下面结合本发明的附图1~7,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to Figures 1 to 7 of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例1Example 1
参照图1、2,一种基于深度卷积神经网络的草地垃圾自动清理机,包括机架1及设置在机架1上的行走组件2,值得说明的是,行走组件2包括前轴及后轴,前轴和后轴分别转动设置在机架1的两端,前轴和后轴的两端均同轴连接有车轮。在本实施例中,本清理机依靠操作人员推动行走。1 and 2, an automatic lawn garbage cleaning machine based on a deep convolutional neural network includes a
参照图1、2,本清理机还包括:Referring to Figures 1 and 2, the cleaning machine also includes:
清理组件3,清理组件3用于清理草地上垃圾;
图像采集装置4,用于采集草地的环境图像,值得说明的是,本实施例中,图像采集装置4为高清摄像机;The
中央控制器,图像采集装置4及清理组件3均与中央控制器电性连接,本实施例中,中央控制器采用高通的单核CPU;The central controller, the
中央控制器内设置有垃圾识别装置,与图像采集装置4电性连接,用于对图像采集装置4采集的草地的环境图像进行处理,并识别草地的环境图像中是否存在垃圾的图像;垃圾识别装置识别草地的环境图像中存在垃圾的图像时,中央控制器控制清理组件3进行垃圾清理;The central controller is provided with a garbage identification device, which is electrically connected to the
图像采集装置4、清理组件3及中央控制器均设置在机架1上。The
垃圾识别装置包括训练模块、目标检测模型及图像预处理模块。The garbage identification device includes a training module, a target detection model and an image preprocessing module.
训练模块,用于使用多张草地的环境图像对卷积神经网络进行训练,获得深度卷积神经网络模型,深度卷积神经网络模型为Tiny-YOLOv3,训练模块采用随机梯度下降法优化Tiny-YOLOv3模型。The training module is used to train the convolutional neural network using multiple grass environment images to obtain a deep convolutional neural network model. The deep convolutional neural network model is Tiny-YOLOv3. The training module uses the stochastic gradient descent method to optimize Tiny-YOLOv3 Model.
目标检测模型,包括Tiny-YOLOv3,用于识别多张草地的环境图像中的垃圾的图像;Tiny-YOLOv3模型使用二元交叉熵损失函数进行类别预测,Object detection models, including Tiny-YOLOv3, are used to identify images of garbage in environmental images of multiple grasses; the Tiny-YOLOv3 model uses a binary cross-entropy loss function for class prediction,
其中,N是训练图片的总数量;yi取值为0或1,yi取值为1表示第i张输入的图片包含垃圾的图像,yi取值为0则表示第i张输入的图片不包含垃圾的图像;pi值为对第i张输入的图片是否包含垃圾的图像的预测的概率,pi值在0至1之间。Tiny-YOLOv3模型包括Darknet框架,Darknet框架包括53个卷积层及22个Residual层,Darknet框架中的53个卷积层用于对草地的环境图像进行特征提取,Darknet框架中的22个Residual层用于解决深度卷积神经网络模型中的梯度弥散或梯度爆炸。Among them, N is the total number of training images; yi takes a value of 0 or 1, yi takes a value of 1, which means that the ith input image contains garbage images, and a yi value of 0 means that the ith input image does not contain Image of garbage; pi value is the predicted probability of whether the ith input image contains garbage image, pi value is between 0 and 1. The Tiny-YOLOv3 model includes the Darknet framework. The Darknet framework includes 53 convolutional layers and 22 Residual layers. The 53 convolutional layers in the Darknet framework are used to extract features from the environmental image of the grass. The Darknet framework includes 22 Residual layers. For solving gradient dispersion or gradient explosion in deep convolutional neural network models.
图像预处理模块,用于对草地的环境图像进行直方图均衡化处理和对数变换处理,获得处理后的草地的环境图像,并将处理后的草地的环境图像发送至训练模块及目标检测模型。The image preprocessing module is used to perform histogram equalization processing and logarithmic transformation processing on the environmental image of the grass, obtain the processed environmental image of the grass, and send the processed environmental image of the grass to the training module and the target detection model. .
参照图3,一种基于深度卷积神经网络的草地垃圾自动清理方法,包括以下步骤,Referring to Figure 3, a method for automatic cleaning of grass garbage based on a deep convolutional neural network includes the following steps:
S1:使用多张草地的环境图像对卷积神经网络进行训练,获得Tiny-YOLOv3模型,执行S2;S1: Use multiple grass environment images to train the convolutional neural network, obtain the Tiny-YOLOv3 model, and execute S2;
S2:以初始位置为原点建立环境栅格地图,执行S3;S2: Build an environmental grid map with the initial position as the origin, and execute S3;
S3:获取多张实时的草地的环境图像,执行S4;S3: Acquire multiple real-time grass environment images, and execute S4;
S4:识别多张实时的草地的环境图像中是否有垃圾的图像,若是,执行S5,若不是,执行S6;S4: Identify whether there are garbage images in the multiple real-time grass environment images, if so, execute S5, if not, execute S6;
S5:获得该草地环境图像中的垃圾的图像的具体位置及其边框,进行垃圾清扫工作,执行S6;S5: Obtain the specific position and frame of the image of the garbage in the grass environment image, perform garbage cleaning, and execute S6;
S6:移动至下一栅格内,执行S3。S6: Move to the next grid, and execute S3.
S4还包括以下步骤,S4 also includes the following steps,
S41:设置IOU阈值及置信度阈值,执行S42;S41: Set the IOU threshold and the confidence threshold, and execute S42;
S42:对输入的环境图像进行尺寸调整,执行S43;S42: adjust the size of the input environment image, and execute S43;
S43:输入至Tiny-YOLOv3模型进行特征提取,执行S44;S43: Input to the Tiny-YOLOv3 model for feature extraction, and execute S44;
S44:通过类似FPN网络对烟雾或火焰进行多尺度融合预测,将特征图划分为多个网格;使用K-means聚类方法对训练集的边界框做聚类,得到合适的anchor box,并在每个网格上产生3个anchor box数来生成预测的目标边界框,通过二元交叉熵损失函数来预测类别。S44: Perform multi-scale fusion prediction on smoke or flame through a similar FPN network, and divide the feature map into multiple grids; use the K-means clustering method to cluster the bounding boxes of the training set to obtain appropriate anchor boxes, and 3 anchor boxes are generated on each grid to generate the predicted object bounding box, and the class is predicted by a binary cross-entropy loss function.
S5使用一种基于深度卷积神经网络的草地垃圾自动清理机进行垃圾清扫工作,具体包括以下步骤,S5 uses a deep convolutional neural network-based automatic lawn garbage cleaning machine for garbage cleaning, which specifically includes the following steps:
S51:转杆的初始状态为靠近扫把头的一端向远离收集铲32的方向倾斜设置,第一舵机带动转杆以转杆的端点为圆心,以转杆为半径转动,将草地上的垃圾扫进收集铲32内,第一舵机带动转杆恢复至初始状态,执行S52;S51: The initial state of the rotating rod is that the end close to the broom head is inclined in the direction away from the collecting
S52:第二舵机带动收集铲32转动,将收集铲32内的垃圾倾倒至垃圾箱33内,第二舵机再带动收集铲32转动至初始位置。S52: The second steering gear drives the
参照图4、5,值得说明的是,本实施例对Tiny-YOLOv3模型进行训练前,将草地上经常出现的日常垃圾进行收集,然后分配到不同类型的草地上,以增强Tiny-YOLOv3模型的泛化能力,获得草地垃圾样本20000张,对垃圾样本进行数据增强,得到不同角度、不同光照及不同噪音的草地的垃圾图像样本8000张,将收集到的草地的垃圾图像样本均裁剪为416*416大小,选用labelImage工具对草地的垃圾图像进行标注。随机选用草地垃圾样本65000张进行训练,剩下的样本则作为测试集。总共训练次100000次,每训练5000次自动保存一次权重,基础学习率为0.001,批量大小为32,动量为0.9,权重衰减系数为0.0005,采用L2正则化减少过拟合。Referring to Figures 4 and 5, it is worth noting that, before training the Tiny-YOLOv3 model in this embodiment, the daily garbage that often appears on the grass is collected, and then distributed to different types of grass to enhance the performance of the Tiny-YOLOv3 model. Generalization ability, obtain 20,000 grass garbage samples, perform data enhancement on the garbage samples, and obtain 8,000 grass garbage image samples with different angles, different lighting and different noises, and crop the collected grass garbage image samples to 416* 416 size, use the labelImage tool to label the garbage image of the grass. 65,000 grass garbage samples were randomly selected for training, and the remaining samples were used as the test set. There are 100,000 training times in total, and the weights are automatically saved every 5,000 times. The basic learning rate is 0.001, the batch size is 32, the momentum is 0.9, and the weight decay coefficient is 0.0005. L2 regularization is used to reduce overfitting.
本实施例中,还对Tiny-YOLOv3模型的性能进行研究,得到了Tiny-YOLOv3模型对垃圾识别的准确率(Accuracy)和召回率(Recall),如表1所示:In this embodiment, the performance of the Tiny-YOLOv3 model is also studied, and the accuracy (Accuracy) and recall (Recall) of the Tiny-YOLOv3 model for garbage identification are obtained, as shown in Table 1:
Tiny-yolo v3目标检测模型对草地垃圾检测的准确率为94.12%,召回率为92.38%,对草地垃圾检测有较高的准确率和召回率。The Tiny-yolo v3 target detection model has an accuracy rate of 94.12% for grass litter detection and a recall rate of 92.38%, which has high accuracy and recall rate for grass litter detection.
本实施例的实施原理为:操作人员推动机架1行走至有垃圾的区域,高清摄像机拍摄多张当前草地的环境图像,并将多张当前草地的环境图像传输至中央控制器内。中央控制器内的垃圾识别装置识别多张当前草地的环境图像中是否存在垃圾的图像,若有,转杆的初始状态为靠近扫把头的一端向远离收集铲32的方向倾斜设置,第一舵机带动转杆以转杆的端点为圆心,以转杆为半径转动,将草地上的垃圾扫进收集铲32内,第一舵机带动转杆恢复至初始状态,第二舵机带动收集铲32转动,将收集铲32内的垃圾倾倒至垃圾箱33内,第二舵机再带动收集铲32转动至初始位置,完成清理工作。The implementation principle of this embodiment is as follows: the operator pushes the
实施例2Example 2
参照图6、7,一种基于深度卷积神经网络的草地垃圾自动清理机,包括机架1及设置在机架1上的行走组件2,值得说明的是,行走组件2包括行星齿轮减速机构、轮毂机构和橡胶履带传动机。行星齿轮减速机构包括前行星架、后行星架、驱动轴、太阳轮、行星轴、行星轮和离合器;太阳轮固定安装在驱动轴上,驱动轴穿过后行星架,行星轮通过轴承连接安装在行星轴上,三个行星轮与太阳轮相啮合,行星轴安装连接于前行星架和后行星架之间,离合器安装于驱动轴与后行星架之间。行星齿轮减速机构还包括制动器,制动器安装于后行星架与机体2之间。轮毂机构包括毂板、加强板和承重轴,每侧毂板通过承重轴对应连接加强板,支撑杆一端与毂板铰接、另一端与前行星架或后行星架铰接。橡胶履带传动机构包括橡胶履带、驱动轮、承重轮;驱动轮安装于行星轴并固定连接在行星轮上,行星轮左右两端各有一个驱动轮,承重轮安装在毂板与加强板之间的承重轴上,橡胶履带包裹着驱动轮和承重轮,且橡胶履带内侧与驱动轮啮合。6 and 7, an automatic lawn garbage cleaning machine based on a deep convolutional neural network includes a
本清理机还包括避障装置,避障装置与中央控制器电性连接,避障装置用于检测机体的四周是否存在障碍物。避障装置包括前方红外测距传感器、左侧红外测距传感器及右侧红外测距传感器,前方红外测距传感器、左侧红外测距传感器均与中央控制器电性连接。The cleaning machine also includes an obstacle avoidance device, the obstacle avoidance device is electrically connected with the central controller, and the obstacle avoidance device is used to detect whether there are obstacles around the body. The obstacle avoidance device includes a front infrared ranging sensor, a left infrared ranging sensor and a right infrared ranging sensor, and the front infrared ranging sensor and the left infrared ranging sensor are all electrically connected to the central controller.
参照图6、7,本清理机还包括:6, 7, this cleaning machine also includes:
清理组件3,清理组件3用于清理草地上垃圾;
图像采集装置4,用于采集草地的环境图像,值得说明的是,本实施例中,图像采集装置4为高清摄像机;The
中央控制器,图像采集装置4及清理组件3均与中央控制器电性连接,本实施例中,中央控制器采用高通的单核CPU;The central controller, the
中央控制器内设置有垃圾识别装置,与图像采集装置4电性连接,用于对图像采集装置4采集的草地的环境图像进行处理,并识别草地的环境图像中是否存在垃圾的图像;垃圾识别装置识别草地的环境图像中存在垃圾的图像时,中央控制器控制清理组件3进行垃圾清理;The central controller is provided with a garbage identification device, which is electrically connected to the
图像采集装置4、清理组件3及中央控制器均设置在机架1上。The
垃圾识别装置包括训练模块、目标检测模型及图像预处理模块。The garbage identification device includes a training module, a target detection model and an image preprocessing module.
训练模块,用于使用多张草地的环境图像对卷积神经网络进行训练,获得深度卷积神经网络模型,深度卷积神经网络模型为Tiny-YOLOv3,训练模块采用随机梯度下降法优化Tiny-YOLOv3模型。The training module is used to train the convolutional neural network using multiple grass environment images to obtain a deep convolutional neural network model. The deep convolutional neural network model is Tiny-YOLOv3. The training module uses the stochastic gradient descent method to optimize Tiny-YOLOv3 Model.
目标检测模型,包括Tiny-YOLOv3,用于识别多张草地的环境图像中的垃圾的图像;Tiny-YOLOv3模型使用二元交叉熵损失函数进行类别预测,Object detection models, including Tiny-YOLOv3, are used to identify images of garbage in environmental images of multiple grasses; the Tiny-YOLOv3 model uses a binary cross-entropy loss function for class prediction,
其中,N是训练图片的总数量;yi取值为0或1,yi取值为1表示第i张输入的图片包含垃圾的图像,yi取值为0则表示第i张输入的图片不包含垃圾的图像;pi值为对第i张输入的图片是否包含垃圾的图像的预测的概率,pi值在0至1之间。Tiny-YOLOv3模型包括Darknet框架,Darknet框架包括53个卷积层及22个Residual层,Darknet框架中的53个卷积层用于对草地的环境图像进行特征提取,Darknet框架中的22个Residual层用于解决深度卷积神经网络模型中的梯度弥散或梯度爆炸。Among them, N is the total number of training images; yi takes a value of 0 or 1, yi takes a value of 1, which means that the ith input image contains garbage images, and a yi value of 0 means that the ith input image does not contain Image of garbage; pi value is the predicted probability of whether the ith input image contains garbage image, pi value is between 0 and 1. The Tiny-YOLOv3 model includes the Darknet framework. The Darknet framework includes 53 convolutional layers and 22 Residual layers. The 53 convolutional layers in the Darknet framework are used to extract features from the environmental image of the grass. The Darknet framework includes 22 Residual layers. For solving gradient dispersion or gradient explosion in deep convolutional neural network models.
图像预处理模块,用于对草地的环境图像进行直方图均衡化处理和对数变换处理,获得处理后的草地的环境图像,并将处理后的草地的环境图像发送至训练模块及目标检测模型。The image preprocessing module is used to perform histogram equalization processing and logarithmic transformation processing on the environmental image of the grass, obtain the processed environmental image of the grass, and send the processed environmental image of the grass to the training module and the target detection model. .
参照图3,一种基于深度卷积神经网络的草地垃圾自动清理方法,包括以下步骤,Referring to Figure 3, a method for automatic cleaning of grass garbage based on a deep convolutional neural network includes the following steps:
S1:使用多张草地的环境图像对卷积神经网络进行训练,获得Tiny-YOLOv3模型,执行S2;S1: Use multiple grass environment images to train the convolutional neural network, obtain the Tiny-YOLOv3 model, and execute S2;
S2:以初始位置为原点建立环境栅格地图,值得说明的是,在建立环境栅格地图时,中央控制器以当前机架1所在的初始位置为原点O,且为一个边界点按照设定的地图长度及宽度建立栅格地图,操作人员也可以通过上位机或移动终端改变该栅格地图的长度或宽度;栅格地图中的栅格用二维数组map[][]表示,map[x][y]=0,表示该栅格没有被访问过,map[x][y]=1,表示该栅格中存在障碍物,map[x][y]=2,表示清理机已经走过,执行S3;S2: Build the environmental grid map with the initial position as the origin. It is worth noting that when establishing the environmental grid map, the central controller takes the initial position of the
S3:获取多张实时的草地的环境图像,执行S4;S3: Acquire multiple real-time grass environment images, and execute S4;
S4:识别多张实时的草地的环境图像中是否有垃圾的图像,若是,执行S5,若不是,执行S6;S4: Identify whether there are garbage images in the multiple real-time grass environment images, if so, execute S5, if not, execute S6;
S5:获得该草地环境图像中的垃圾的图像的具体位置及其边框,进行垃圾清扫工作,执行S6;S5: Obtain the specific position and frame of the image of the garbage in the grass environment image, perform garbage cleaning, and execute S6;
S6:检测机架1的四周是否存在障碍物,并按照行走规则及内螺旋算法控制行走装置带动清理机移动至下一栅格内,执行S3;内螺旋算法是指系统按一定的方向对栅格地图进行覆盖,本实施例中,系统按照顺时针的方向对栅格地图进行覆盖。系统没有经过的栅格,用map[x][y]-=0进行标识,系统经过的栅格用map[x][y]=2进行标识,系统检测到存在障碍物的栅格,用map[x][y]=1进行标识,清理机每经过一个栅格,对栅格地图的栅格标识进行更新,行走规则具体包括以下步骤,S6: Detect whether there are obstacles around the
S61:检测机架1的前方是否存在障碍物,若不存在,执行S62,若存在,执行S63;S61: Detect whether there is an obstacle in front of the
S62:检测机架1的左侧是否存在障碍物,若不存在,左转,若存在,直行;S62: Detect whether there is an obstacle on the left side of the
S63:检测机架1的左侧是否存在障碍物,若不存在,左转,若存在,右转;值得说明的是,当机体位于某一栅格,且该栅格的前方、左侧及右侧均检测存在障碍物时,中央控制器选择与该栅格距离最短且未被访问的下一个栅格,并规划路线控制机体移动至该下一个栅格;S63: Detect whether there is an obstacle on the left side of the
S4还包括以下步骤,S4 also includes the following steps,
S41:设置IOU阈值及置信度阈值,执行S42;S41: Set the IOU threshold and the confidence threshold, and execute S42;
S42:对输入的环境图像进行尺寸调整,执行S43;S42: adjust the size of the input environment image, and execute S43;
S43:输入至Tiny-YOLOv3模型进行特征提取,执行S44;S43: Input to the Tiny-YOLOv3 model for feature extraction, and execute S44;
S44:通过类似FPN网络对烟雾或火焰进行多尺度融合预测,将特征图划分为多个网格;使用K-means聚类方法对训练集的边界框做聚类,得到合适的anchor box,并在每个网格上产生3个anchor box数来生成预测的目标边界框,通过二元交叉熵损失函数来预测类别。S44: Perform multi-scale fusion prediction on smoke or flame through a similar FPN network, and divide the feature map into multiple grids; use the K-means clustering method to cluster the bounding boxes of the training set to obtain appropriate anchor boxes, and 3 anchor boxes are generated on each grid to generate the predicted object bounding box, and the class is predicted by a binary cross-entropy loss function.
S5使用一种基于深度卷积神经网络的草地垃圾自动清理机进行垃圾清扫工作,具体包括以下步骤,S5 uses a deep convolutional neural network-based automatic lawn garbage cleaning machine for garbage cleaning, which specifically includes the following steps:
S51:转杆的初始状态为靠近扫把头的一端向远离收集铲32的方向倾斜设置,第一舵机带动转杆以转杆的端点为圆心,以转杆为半径转动,将草地上的垃圾扫进收集铲32内,第一舵机带动转杆恢复至初始状态,执行S52;S51: The initial state of the rotating rod is that the end close to the broom head is inclined in the direction away from the collecting
S52:第二舵机带动收集铲32转动,将收集铲32内的垃圾倾倒至垃圾箱33内,第二舵机再带动收集铲32转动至初始位置。S52: The second steering gear drives the
参照图4、5,值得说明的是,本实施例对Tiny-YOLOv3模型进行训练前,将草地上经常出现的日常垃圾进行收集,然后分配到不同类型的草地上,以增强Tiny-YOLOv3模型的泛化能力,获得草地垃圾样本20000张,对垃圾样本进行数据增强,得到不同角度、不同光照及不同噪音的草地的垃圾图像样本8000张,将收集到的草地的垃圾图像样本均裁剪为416*416大小,选用labelImage工具对草地的垃圾图像进行标注。随机选用草地垃圾样本65000张进行训练,剩下的样本则作为测试集。总共训练次100000次,每训练5000次自动保存一次权重,基础学习率为0.001,批量大小为32,动量为0.9,权重衰减系数为0.0005,采用L2正则化减少过拟合。Referring to Figures 4 and 5, it is worth noting that, before training the Tiny-YOLOv3 model in this embodiment, the daily garbage that often appears on the grass is collected, and then distributed to different types of grass to enhance the performance of the Tiny-YOLOv3 model. Generalization ability, obtain 20,000 grass garbage samples, perform data enhancement on the garbage samples, and obtain 8,000 grass garbage image samples with different angles, different lighting and different noises, and crop the collected grass garbage image samples to 416* 416 size, use the labelImage tool to label the garbage image of the grass. 65,000 grass garbage samples were randomly selected for training, and the remaining samples were used as the test set. There are 100,000 training times in total, and the weights are automatically saved every 5,000 times. The basic learning rate is 0.001, the batch size is 32, the momentum is 0.9, and the weight decay coefficient is 0.0005. L2 regularization is used to reduce overfitting.
本实施例中,还对Tiny-YOLOv3模型的性能进行研究,得到了Tiny-YOLOv3模型对垃圾识别的准确率(Accuracy)和召回率(Recall),如表1所示:In this embodiment, the performance of the Tiny-YOLOv3 model is also studied, and the accuracy (Accuracy) and recall (Recall) of the Tiny-YOLOv3 model for garbage identification are obtained, as shown in Table 1:
Tiny-yolo v3目标检测模型对草地垃圾检测的准确率为94.12%,召回率为92.38%,对草地垃圾检测有较高的准确率和召回率。The Tiny-yolo v3 target detection model has an accuracy rate of 94.12% for grass litter detection and a recall rate of 92.38%, which has high accuracy and recall rate for grass litter detection.
本实施例的实施原理为:行走组件2带动机架1行走至有垃圾的区域,高清摄像机拍摄多张当前草地的环境图像,并将多张当前草地的环境图像传输至中央控制器内。中央控制器内的垃圾识别装置识别多张当前草地的环境图像中是否存在垃圾的图像,若有,转杆的初始状态为靠近扫把头的一端向远离收集铲32的方向倾斜设置,第一舵机带动转杆以转杆的端点为圆心,以转杆为半径转动,将草地上的垃圾扫进收集铲32内,第一舵机带动转杆恢复至初始状态,第二舵机带动收集铲32转动,将收集铲32内的垃圾倾倒至垃圾箱33内,第二舵机再带动收集铲32转动至初始位置,完成清理工作。检测机架1的四周是否存在障碍物,并按照行走规则及内螺旋算法控制行走组件2带动清理机移动至下一栅格内,进行下一次的垃圾识别及清理工作。The implementation principle of this embodiment is as follows: the walking
在本发明的描述中,需要理解的是,术语“逆时针”、“顺时针”“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the terms "counterclockwise", "clockwise", "longitudinal", "horizontal", "upper", "lower", "front", "rear", "left", The orientation or positional relationship indicated by "right", "vertical", "horizontal", "top", "bottom", "inside", "outside", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the purpose of It is convenient to describe the present invention, not to indicate or imply that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as a limitation of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010391121.9A CN111567331A (en) | 2020-05-11 | 2020-05-11 | A grass garbage automatic cleaning machine and method based on deep convolutional neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010391121.9A CN111567331A (en) | 2020-05-11 | 2020-05-11 | A grass garbage automatic cleaning machine and method based on deep convolutional neural network |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111567331A true CN111567331A (en) | 2020-08-25 |
Family
ID=72115352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010391121.9A Pending CN111567331A (en) | 2020-05-11 | 2020-05-11 | A grass garbage automatic cleaning machine and method based on deep convolutional neural network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111567331A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113420583A (en) * | 2021-01-29 | 2021-09-21 | 山东农业大学 | Color-changing wood monitoring system and method based on edge computing platform |
CN113903006A (en) * | 2021-12-09 | 2022-01-07 | 北京云迹科技有限公司 | Robot monitoring sanitation method and device, electronic equipment and storage medium |
CN114049554A (en) * | 2021-11-09 | 2022-02-15 | 江苏科技大学 | Lawn obstacle detection method based on lightweight YOLOv5s model |
CN114758258A (en) * | 2022-04-12 | 2022-07-15 | 北京零点远景网络科技有限公司 | Method for deducing garbage position based on geometric appearance characteristics |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104563028A (en) * | 2015-01-08 | 2015-04-29 | 余朝松 | Road sweeper |
CN104724426A (en) * | 2015-03-30 | 2015-06-24 | 济南大学 | Intelligent garbage collection vehicle |
CN106553196A (en) * | 2016-11-09 | 2017-04-05 | 重庆向日葵机器人有限公司 | The sanitation robot and its control method of rubbish are unloaded automatically can |
CN108086214A (en) * | 2018-01-26 | 2018-05-29 | 张伟 | A kind of outdoor sweeping robot |
CN109934121A (en) * | 2019-02-21 | 2019-06-25 | 江苏大学 | A pedestrian detection method in orchard based on YOLOv3 algorithm |
CN110222769A (en) * | 2019-06-06 | 2019-09-10 | 大连理工大学 | A kind of Further aim detection method based on YOLOV3-tiny |
KR20190128500A (en) * | 2018-05-08 | 2019-11-18 | 한국전자통신연구원 | Method and apparatus for detecting garbage dumping action in real time on video surveillance system |
CN110689118A (en) * | 2019-09-29 | 2020-01-14 | 华南理工大学 | Improved target detection method based on YOLO V3-tiny |
-
2020
- 2020-05-11 CN CN202010391121.9A patent/CN111567331A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104563028A (en) * | 2015-01-08 | 2015-04-29 | 余朝松 | Road sweeper |
CN104724426A (en) * | 2015-03-30 | 2015-06-24 | 济南大学 | Intelligent garbage collection vehicle |
CN106553196A (en) * | 2016-11-09 | 2017-04-05 | 重庆向日葵机器人有限公司 | The sanitation robot and its control method of rubbish are unloaded automatically can |
CN108086214A (en) * | 2018-01-26 | 2018-05-29 | 张伟 | A kind of outdoor sweeping robot |
KR20190128500A (en) * | 2018-05-08 | 2019-11-18 | 한국전자통신연구원 | Method and apparatus for detecting garbage dumping action in real time on video surveillance system |
CN109934121A (en) * | 2019-02-21 | 2019-06-25 | 江苏大学 | A pedestrian detection method in orchard based on YOLOv3 algorithm |
CN110222769A (en) * | 2019-06-06 | 2019-09-10 | 大连理工大学 | A kind of Further aim detection method based on YOLOV3-tiny |
CN110689118A (en) * | 2019-09-29 | 2020-01-14 | 华南理工大学 | Improved target detection method based on YOLO V3-tiny |
Non-Patent Citations (2)
Title |
---|
刘军等: "基于增强Tiny YOLOV3算法的车辆实时检测与跟踪", 《农业工程学报》 * |
焦李成等: "《人工智能前沿技术丛书 模式识别》", 30 September 2019, 西安电子科技大学出版社 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113420583A (en) * | 2021-01-29 | 2021-09-21 | 山东农业大学 | Color-changing wood monitoring system and method based on edge computing platform |
CN114049554A (en) * | 2021-11-09 | 2022-02-15 | 江苏科技大学 | Lawn obstacle detection method based on lightweight YOLOv5s model |
CN114049554B (en) * | 2021-11-09 | 2024-11-08 | 江苏科技大学 | Lawn obstacle detection method based on lightweight YOLOv5s model |
CN113903006A (en) * | 2021-12-09 | 2022-01-07 | 北京云迹科技有限公司 | Robot monitoring sanitation method and device, electronic equipment and storage medium |
CN114758258A (en) * | 2022-04-12 | 2022-07-15 | 北京零点远景网络科技有限公司 | Method for deducing garbage position based on geometric appearance characteristics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111567331A (en) | A grass garbage automatic cleaning machine and method based on deep convolutional neural network | |
CN106441442B (en) | A kind of high-throughput reciprocity monitoring device of field crop phenotypic information and monitoring method | |
CN105827195B (en) | A kind of photovoltaic module cleaning method | |
CN110210635A (en) | A kind of intelligent classification recovery system that can identify waste | |
WO2021250444A1 (en) | Insect monitoring system and method | |
CN111582234B (en) | Large-scale oil tea tree forest fruit intelligent detection and counting method based on UAV and deep learning | |
CN109101029A (en) | Inspection evil intelligent carriage and its working method are gone on patrol in a kind of orchard automatically | |
CN113110513A (en) | ROS-based household arrangement mobile robot | |
CN109622390A (en) | A kind of intelligent garbage recovery system and its method | |
CN115481987B (en) | Smart city street management method, internet of things system, device and storage medium | |
CN110693396A (en) | Obstacle avoidance processing mode of sweeper based on free move technology | |
CN116786477A (en) | Photovoltaic panel frame deposition cleaning system based on visual feedback | |
CN113111950A (en) | Wheat rust classification method based on ensemble learning | |
CN108575296A (en) | A kind of apple-picking device and its picking method | |
CN107178146A (en) | A kind of city planting ductwork dredging robot and method of work based on BP neural network | |
CN207318965U (en) | A kind of robot for material handling | |
CN114302116A (en) | A device and method for automatic inspection of water conservancy projects | |
CN117456395B (en) | Sea and land two-domain garbage recycling planning method based on machine vision | |
CN112580513A (en) | Intelligent identification method for crop diseases and insect pests | |
CN117732826A (en) | Unmanned plane-based photovoltaic cleaning method, device, equipment and medium | |
CN112215071A (en) | Multi-target coupled recognition and tracking method for autonomous vehicles under heterogeneous traffic flow | |
CN115571337A (en) | Agricultural soil parameter information acquisition unmanned aerial vehicle | |
CN206542450U (en) | A kind of driving condition acquisition analysis system with machine learning ability | |
CN109159106A (en) | Twin-stage round brush based on Mecanum wheel picks up shape fruit robot | |
Xu et al. | Research on garbage detection and classification based on YOLOv8 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200825 |