CN111566008A - 可变几何形状垂直起降(vtol)飞行器系统 - Google Patents

可变几何形状垂直起降(vtol)飞行器系统 Download PDF

Info

Publication number
CN111566008A
CN111566008A CN201880080062.4A CN201880080062A CN111566008A CN 111566008 A CN111566008 A CN 111566008A CN 201880080062 A CN201880080062 A CN 201880080062A CN 111566008 A CN111566008 A CN 111566008A
Authority
CN
China
Prior art keywords
aircraft
thrust
aerial vehicle
wing
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880080062.4A
Other languages
English (en)
Inventor
卡梅伦·斯潘塞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ka MeilunSipansai
Original Assignee
Ka MeilunSipansai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ka MeilunSipansai filed Critical Ka MeilunSipansai
Publication of CN111566008A publication Critical patent/CN111566008A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/001Shrouded propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/02Canopy arrangement or construction
    • B64D17/025Canopy arrangement or construction for gliding chutes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/80Vertical take-off or landing, e.g. using rockets
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0858Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F5/00Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
    • B60F5/02Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C37/00Convertible aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/06Aircraft not otherwise provided for having disc- or ring-shaped wings
    • B64C39/062Aircraft not otherwise provided for having disc- or ring-shaped wings having annular wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/62Deployment
    • B64D17/72Deployment by explosive or inflatable means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/80Parachutes in association with aircraft, e.g. for braking thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • G01C23/005Flight directors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种可变几何形状垂直起降VTOL飞行器系统可经由部分或完全自主飞行操作将乘客从出发点运送到目的地。所述VTOL飞行器系统可在基于悬停的上升/下降模式、水平飞行巡航模式以及这两种模式之间的过渡模式下操作。可由相对于机身可铰接的导管式螺旋桨单元提供推力;通过铰接将推力源连接到所述机身的翼型支柱,可操纵所述推力源用于上升/下降、过渡及巡航,以便控制上升、下降及巡航。可通过环形螺旋桨导管相对于所述翼型支柱的进一步铰接实现更精确的推力控制。所述翼型支柱及螺旋桨导管可呈现翼形或可变分段的横截面以最大化可实现的升力。

Description

可变几何形状垂直起降(VTOL)飞行器系统
相关申请案的交叉参考
本申请案依据35 U.S.C.§119(e)主张2017年12月12日申请的序列号为62/597,823的临时美国专利申请案的优先权。所述美国专利申请案62/597,823的全部内容以引用的方式并入本文中。
背景技术
垂直起降(VTOL)型飞行器(不管是有人驾驶还是无人驾驶)的特征在于垂直或接近垂直的起降及“悬停”阶段(例如,飞行段)、相对水平的向前飞行或“巡航”阶段(例如,相对平行于地面)及过渡阶段或段。举例来说,已经沿大体上垂直航向起飞的飞行器可过渡到向前飞行;类似地,向前飞行的飞行器在准备降落时可过渡到大体上垂直的降落阶段。在任何情况下,飞行器在其行进时的推力向量可通过垂直升力分量及向前推力分量来特性化,两个分量之间的关系根据需要从一个阶段转换到另一个阶段,以将飞行器保持在空中或推动其向前。
此类过渡阶段可包含飞行器或其组件的重新配置,以考虑到飞行器的速度或重心的偏移。关于VTOL飞行器的核心设计问题是贯穿飞行的所有阶段或段都实现合理的操作效率(例如成本效率)。此合理有效的设计的特性可包含:
·机翼的定向,使得机翼下表面保持平行或接近平行于飞行器的前向路径或迎面而来的气流;
·推力源(例如,引擎、螺旋桨)的定向,使得其定向推力向量平行于飞行器的前向路径或迎面而来的空流;
·防止任何一个推力源的流出/排出由任何其它推力源的进气口摄入或引发跨越另一气动表面的湍流气流;
·对于具有两个或更多个推力源的飞行器,当飞行器处于“悬停”阶段时,关于飞行器的重心对称地布置所述推力源;
·对于具有多个推力源的飞行器,使每一推力源的维持在类似大小以避免跨源干扰并最小化操作噪声;
·定位推力源,使得在“巡航”阶段期间飞行器的重心与其升力中心重合,并且侧向升力(例如,由于横向向内气流而相对于飞行器的偏航或Z轴线的力)的中心充分位于重心后部足以产生稳定力;及
·不仅通过优化飞行器的形状,而且通过最小化必要的运动组件、致动器及结构元件来最小化总重量及体积。
发明内容
本文揭示的发明构思的实施例是针对可变几何形状垂直起降(VTOL)飞行器系统。所述飞行器系统可由机载飞行员或乘客部分地控制,或者可远程控制及操作(例如,仅在紧急情况下才需要乘客控制输入)。VTOL飞行器系统可在指定出发点接载乘客,并将乘坐的乘客运送到许多所需的目的地中的任何者;在任一种情况下,出发点及目的地点与指定上升及下降通道相关联,以允许安全无阻碍的垂直起飞及降落,以及在基于悬停的飞行模式及水平飞行模式之间进行过渡。VTOL飞行器系统可包含用于确定飞行器系统的位置、姿态、海拔及其它相关参数以及外部条件(例如,空气温度、风速,环境及天气条件)的外部传感器。机载控制系统可确定操作飞行阶段或段(例如,上升、水平飞行/巡航、下降、过渡),并基于针对每一飞行段的适当参数来管理飞行器操作。飞行器系统可由成对的导管式螺旋桨或其它相似推力源提供动力。推力导向可通过每一个别推力源相对于机身的铰接来控制;例如,推力源可在大体上垂直方向上定向以用于上升/下降,并且在大体上水平/对角线方向上定向以用于巡航。每一推力源可经由具有翼形横截面的可铰接翼型支柱从机身延伸以产生升力。螺旋桨导管可类似地呈现翼形横截面,其可贯穿导管的圆周分段或变化。通过相对于翼型支柱铰接推力源及其围封导管,可实现更精确的推力导向。飞行操作可通过推力产生(例如,经由螺旋桨旋翼的电动机驱动的旋转)与翼型支柱及环形导管的铰接的组合来实现。
附图说明
当考虑到下文详细描述时,可更好地理解本文揭示的发明构思的实施方案。此描述参考所包含的图式,所述图式未必按比例绘制,并且为清楚起见,其中一些特征可能被夸大并且一些特征可被省略或可被示意性地表示。图式中相似参考数字可表示并指代相同或相似元件、特征或功能。在图中:
图1说明根据本文揭示的发明构思的可变几何形状垂直起降(VTOL)飞行器在悬停配置中的示范性实施例的前透视图;
图2说明图1的VTOL飞行器的推力源及支柱组合件的详细视图;
图3及4分别说明图1的VTOL飞行器在定向飞行配置中的前透视图及后透视图;
图5说明图1的VTOL飞行器的环形机翼的前视图;
图6是图1的VTOL飞行器的飞行控制系统的示意图;
图7A到D说明根据本文揭示的发明构思的与图1的VTOL飞行器兼容的地面驱动系统的示范性实施例;
图7E说明图7A到D的地面驱动系统的前轮组合件的详细视图;
图8说明根据本文揭示的发明构思的图1的VTOL飞行器的控制轭的示范性实施例;
图9A及9B说明图8的控制轭的操作;
图10说明根据本文揭示的发明构思的与图1的VTOL飞行器兼容的机翼缓降器系统的示范性实施例;
图11A及11B说明图10的机翼缓降器系统的详细视图;
图12A说明图1的VTOL飞行器的分段环形机翼的横向透视图;
图12B说明图12A的分段环形机翼的下段的横向透视图;
图12C提供图12A的分段环形机翼的横向视图;
图13A是与图1的VTOL飞行器兼容的导航及控制接口的示意图;
图13B是图13A的导航及控制接口的操作的过程流程图;及
图14A到K说明图13A的导航及控制系统的组件及操作过程。
具体实施方式
大体上参考图1到4,在第一方面中,本文揭示的发明构思的实施例是针对可变几何形状VTOL飞行器系统100。飞行器100可由通过可铰接支柱106连接到机身104的成对的推力源102推动。举例来说,每一推力源102可包含成组的螺旋桨108(例如,每推力源两个、三个或四个旋翼),其经配置以通过围绕旋翼轴线110旋转而产生升力。推力源102可为“成对的”,因为使用具有四个推力源的飞行器100的实例,左前及右前推力源可经配置以用于经由其相应支柱106作为一对而对称铰接(类似地,左后及右后推力源可经对称配置以用于作为一对而铰接)。
每一支柱106可通过能够旋转通过多个自由度的可铰接铰链112连接到机身104。举例来说,前及后支柱106可各自经配置以用于围绕平行于飞行器的俯仰轴线的旋转轴线114a到b旋转大体上90度范围(左支柱与右支柱一致)。前支柱106(例如,左前及右前)及/或后支柱可进一步经配置以用于围绕正交于旋翼轴线110的旋转轴线116对称铰接(经由铰链112a)通过大约90度的范围。支柱106及推力源102的铰接可经由连接到机身104内的机载电力源的线性或旋转致动器来实现,所述线性或旋转致动器可由飞行员直接控制或具有一定程度的自主性;控制编程可取决于一系列的固定及环境因素(例如飞行重量、飞行器的当前速度及航向、风强度及方向、空气温度及压力及可用推力)自主地或半自主地管理推力源102的铰接。即使没有由将前支柱106连接到机身104的铰链连接致动器提供的额外自由度,在将VTOL飞行器100从由图1展示的悬停配置过渡到由图3展示的巡航配置时一致地旋转前及后支柱106可有效地引导前推力源102远离后推力源(如由图3所展示,其可旋转到前推力源上方的定向)的进气口的排出/流出。然而,此额外自由度可通过铰接环形机翼118而在VTOL飞行器100处在巡航配置中时提供快速的偏航稳定,如下文更详细地描述。
如先前指出,每一推力源102可包含均匀间隔的螺旋桨108的群组或组合件,螺旋桨108经配置用于围绕公共旋翼轴线110旋转。每一推力源102可为导管式或带罩的推力源,借此螺旋桨108由能够引导推力源的流出的环形或圆柱形结构围封。特定参考图5,此环形结构可为环形机翼118,其中所述结构的横截面是全部或部分翼型(例如,当飞行器处于巡航配置中时,环形机翼的那些区段靠近“顶部”或最高点),其能够在悬停及巡航配置两者中通过额外升力以及导管式推力源的喷嘴效应(在较低旋翼速度下的较大推力)特性。举例来说,环形机翼118可环绕推力源102,从而对旋翼及旋翼组合件(例如,螺旋桨)提供一定程度的冲击保护,以及保护附近人员免受潜在伤害。环形机翼118可通过吸收与螺旋桨108相关联的选定频率来提供一定程度的噪声消除。
每一环形机翼118可通过由线性致动器120界定的多个均匀间隔、可铰接安装点附接到其对应支柱106。举例来说,支柱106可终止于旋翼轴122及/或根部,螺旋桨108经配置以围绕旋翼轴122及/或根部旋转。支柱106可呈现类似于环形机翼118的翼型横截面的翼型横截面,以便在经定向用于在向前飞行中巡航时提供额外升力(参见例如图3及4)。环形机翼118可在相交点处安装到支柱106;额外对称翼型124可在均匀间隔点处将旋翼轴122连接到环形机翼。
举例来说,特定参考图2,推力源102a可被实施并且可类似于图1的推力源102起作用,除推力源102a可并入对称翼型124a到b之外,其终止(与翼型支杆106所做的那样)于可铰接安装点,使得n-旋翼推力源可在n个可铰接安装点(对应于图5的线性致动器120a到c)(包含翼型支柱自身及(n-1)个对称翼型)处安装(经由其罩围环形机翼118)到支柱106。举例来说,推力源102a可并入三个均匀间隔螺旋桨108a到c及两个对称翼型124a到b,其相对于翼型支柱106以及彼此成120度角。特定参考图4,VTOL飞行器100可包含后稳定器126及一或多个前背支柱128用于地面接触及降落。后稳定器126及/或背支柱128可经加强以用于在降落期间地面接触,并且配备有如下文描述的地面驱动系统。
参考图6,推力源(102a,图2)的每一可铰接安装点可包含线性致动器120a到c,其可手动或自动控制以相对于其连接翼型支柱106或连接对称翼型124a到b铰接环形机翼118。举例来说,每一线性致动器120a到c可在上端处相对于旋翼轴线110提供2度倾斜120d,且在下端处提供1度倾斜(例如,经由安装到线性致动器的顶部的球形接头,及在致动器的下端处的单个轴线铰链),同时致动平行于旋翼轴线110(120e)的环形机翼118,或使环形机翼118倾斜。以此方式,单独地或组合地起作用的线性致动器120a到c,可相对于支柱106(以及相对于旋翼轴线110)使环形机翼118倾斜用于精确地控制定向推力,而较低的1度铰链对全部3个线性致动器120a到c的总效应限制环形机翼118相对于旋翼轴线110的侧向运动并防止与螺旋桨108相交。类似地,环形机翼118可通过一致地铰接全组线性致动器120a到c整体上平行于旋翼轴线110向前及向后铰接(例如,相对于旋翼轴纵向地)。可通过旋翼后面的其它流重定向表面(未展示),或者通过附接到翼型支柱106自身的其它可移动的空气动力学表面,进一步实现精细的飞行路径调整。旋翼自身可具有任何适当的形状或节距。
广义来说,经由支柱106及环形机翼118的铰接,推力源102a可经定位使得飞行器100的推力向量将是1)在起飞、降落及其它悬停阶段期间垂直或接近垂直;及2)在向前飞行/巡航阶段期间大体上平行于飞行器的纵向轴线(允许对升力进行必要维持)。可用推力可通过改变一或多个推力源102的螺旋桨108的旋转速率来控制。飞行控制可为手动的(例如,经由通过飞行员的直接控制)或自动的(例如,其中由处理器驱动的飞行控制系统基于可用环境数据(例如,飞行器的当前重量、大气及天气条件、可用推力及燃料、适用的当地法规)来提供一定程度的飞行控制辅助,或经由远程飞行员(例如,其中飞行员使用无线电发射器及无线电接收器远程地将命令发送到处理器驱动的飞行控制系统))。用于螺旋桨108及/或线性致动器120的连杆可贯穿机翼支柱106的内部运行到飞行控制系统。
参考图6,VTOL飞行器100可并入飞行控制系统130,其包含用于飞行控制系统的操作的飞行控制处理器。飞行控制系统130可响应来自机载飞行员的控制输入,接收来自远离飞行器100定位的飞行员或操作员的远程输入,或者根据预定飞行控制算法及对应于飞行器100的当前状态(例如,重量、海拔、航向、速度、姿态)及/或飞行器周围的大气条件(例如,空气温度/密度/压力、风向/量值)的观察到的飞行数据部分或全部自主性地操作。当前观察到的飞行数据可包含由例如位置传感器(绝对的/基于卫星的或相对的)及大气传感器的机载传感器132捕获并由飞行控制系统130分析的原始数据。为进行检查,飞行控制系统130可确定当前阶段或飞行段,例如飞行器100是悬停以起飞或降落,巡航或在向前飞行中爬升/下降,还是在两者之间过渡。基于当前阶段或飞行段,飞行控制系统130可对飞行器100的操作施加不同的参数(例如,最大速度)并且以不同的方式响应控制输入。
举例来说,飞行控制系统可经由铰链连接的致动器112、112a控制翼型支柱106的定向,致动器112、112a控制支柱106相对于飞行器100的俯仰轴线的旋转以及前支柱的进一步枢转。可通过除调节翼型支柱106的定向之外,还调节螺旋桨108的旋转速度及每一推力源102的环形机翼118的定向(经由线性致动器120a到c)来控制所产生推力的量值及方向。来自每一推力源102及线性致动器120a到c的连杆可贯穿对应翼型支柱106的基础架构运行。
用于VTOL飞行器系统的地面驱动系统
大体上参考图7A到7E,在另一方面,本文揭示的发明构思的实施例可针对与图1的VTOL飞行器系统100可兼容的地面驱动系统200。可能难以设计用于此飞行器的起落架,使得飞行器能够进行短距离地面行进(例如,考虑到例如可操纵性、短期及长期制动、穿过不平坦地形的能力、抵抗由于斜坡而产生的横向力(例如风或偏航)的能力、承受冲击载荷的能力以及对气动阻力的抵抗性的因素),同时使重量及复杂度及因此成本最小化。应对这一挑战的常规方法可广义地描述为可延伸的起落架或机动拖车或手推车,与飞行器本身相异,并且可在其自己的机动动力下或在手动动力下操纵。
地面驱动系统200的示范性实施例可并入到飞行器的垂直或接近垂直的稳定结构中,例如本文揭示的稳定表面126或背支柱128。如上文指出,这些稳定结构126、128可为在垂直起飞/降落“悬停”阶段期间飞行器100最接近地面的部分,并且可用作地面接触点(例如,在如上文描述的“三脚架”布置中的三个地面接触点中的两者)。
在此类稳定结构126、128内,可并入一或多个从背端(例如,与地面接触的端)突出的涂胶轮202(实心或可充气)。取决于所需扭矩及对地速度,所述轮202可由并入后稳定器126内的机动螺旋或蜗杆变速箱204或类似的旋转致动器驱动。举例来说,驱动轮202可并入左及右稳定器126中;飞行员(或自主飞行控制系统)可通过施加不同的电压或电流以不同的组合来致动左轮及右轮202来沿地面驱动飞行器100。当没有施加电压或电流时,轮202可以驻车制动的方式将飞行器100保持在适当的位置。通过向任一轮202施加较大的电压或电流,可使飞行器100在相反方向上转弯(描述相对于相反的低功率轮的转弯半径)。特定参考图7A及7B,驱动系统200可可替代地并入不具有空气动力学功能的前或后背支柱128(固定或可延伸)中。此背支柱128可形成上文提及的三脚架的第三个点,飞行器100可在所述第三点上与地面接触并且由驱动系统200沿所述第三点驱动。
驱动组合件(轮202、齿轮电动机204)可可滑动地安装或弹簧安装在后稳定器126或背支柱128内,使得提供一定程度的冲击吸收。还参考图7E,一或多个主轮202(例如,并入固定或可延伸支柱128中的单个前轮)可包含较小辅助轮202a,较小辅助轮202a围绕主轮202的圆周或胎面均匀地间隔并且正交于主轮定向。举例来说,主轮202可经定向以具有平行于飞行器100的俯仰轴线的旋转轴线,而辅助轮202a的旋转轴线可对应于主轮202的圆周。辅助轮202a可增强主轮202在横向方向上的平滑运动的能力,否则主轮202无法经配置以在所述横向方向上行进。通过将前部安装的主轮202/辅助轮202a与上文描述的能够可变地铰接的后轮(202,图7A)组合,本文揭示的“三脚架”配置可允许飞行器100沿地面纵向及横向地行进同时抵抗侧向力及次优地形无需转向前轮、机动前轮或单独制动系统。
用于VTOL飞行器的手动控制接口
当设计如本文所揭示的VTOL飞行器系统时,可能难以设计用于飞行器的手动控制及操作的系统,所述系统允许贯穿悬停、过渡及巡航飞行段对空气动力控件及推力产生器进行直接控制及复杂管理,同时又足够简单使得经验有限的飞行员可进行可经过最少的训练的直观操作。此外,此控制接口还必须可由经验丰富的飞行员直观地操作,使得习惯或肌肉记忆将不会指示错误或不期望的控制输入。举例来说,直升机可能并入周期性摇杆、总操纵杆、反扭矩踏板及方向舵控件来管理悬停、向前飞行及自动旋转操作;倾斜旋翼飞行器可能需要额外旋翼控制及配平。此复杂的控制接口可能需要数百小时的训练时间。
特定参考图8,在另一方面,根据本文揭示的发明构思的实施例的控制接口300的示范性实施例可并入安装在飞行器100内的单个控制轭302(例如,在机身104内,在居中或偏移位置中)。控制轭302可通过四(4)个内部弹簧而位于其基座304中心,使得定心力与控制轭从其默认中心位置的移动程度成比例。控制轭302可由飞行员(例如,使用单只手)在四个自由度上或相对于四个相异轴线铰接,每一轴线经刻槽以向飞行员提供关于默认位置及从默认位置的当前位移的触觉反馈。并入控制轭302内的可变电阻器或电位计可测量其从默认位置的位移;此位移在一或多个方向上的测量值可被飞行控制系统130当作控制输入。举例来说,基于当前阶段或飞行段,控制输入可由飞行控制系统130以多种方式解译并转译为螺旋桨108(例如,以调节升力或推力的量值)及/或翼型支柱106及线性致动器120(例如,以调节所产生推力的方向,借此操纵飞行器100)的铰接。控制轭302可进一步包含下唇306,飞行员可将他的/她的手或手腕搁在下唇306上,并且下唇306还可提供从默认位置垂直(向上/向下)位移的程度的视觉指示。
举例来说,还参考图9A及9B,控制轭架302可由飞行员沿左右轴线(308;例如,大体上平行于飞行器的俯仰轴线)铰接;沿上下轴线(310;例如,沿轭的垂直轴线,其大体上平行于飞行器的偏航轴线)铰接;沿前后轴线(312;例如,大体上平行于飞行器的侧倾轴线)铰接;以及相对于垂直或偏航轴线旋转314。飞行控制系统130可取决于操作阶段或飞行段(如由飞行控制系统130基于可用飞行器及环境数据来确定)对由控制轭302的每一铰接或旋转(或其组合)产生的控制输入进行不同的解译。类似地,取决于操作阶段或段,飞行控制系统130可施加飞行包线极限(例如,基于海拔或空速),并且经由并入控制轭内的力反馈电动机来限制控制轭302的铰接或旋转。
举例来说,在起飞及降落操作或“悬停”阶段(例如,在上升或下降时的横向操纵)期间,飞行员可通过操纵控制轭302向前或向后312来控制向前或向后操纵速度(例如,高达由性能极界界定或由飞行控制系统施加的最大速度)。飞行员可通过沿控制轭302的垂直轴线上下310铰接控制轭302来控制上升或下降速度(例如,在推力源102垂直定向时调整旋翼速度)。飞行员可通过将控制轭302向左或向右308移位来控制侧向左或侧向右的速度(例如,横向或回转速度)。最后,飞行员可通过使控制轭302向左或向右旋转(314;例如,逆时针/顺时针)来控制飞行器100(例如,通过调整一或多个支柱106、支柱对或推力源102相对于其它支柱的定向)的向左偏航或向右偏航旋转(例如,在悬停时相对于偏航轴线的顺时针或逆时针旋转)。
在爬升/下降、过渡及向前飞行阶段期间,飞行员可通过向前或向后312铰接控制轭302来调整飞行器100的向前及向后加速度。可通过向左或向右308铰接控制轭302或逆时针或顺时针旋转控制轭(314;向左/向右偏航)来控制向左或向右(相对于飞行器100的当前航向)的水平操纵,其中转弯的强度(例如,转弯半径)与控制轭的位移量值成比例。与起飞及降落阶段类似,可通过向上或向下310铰接控制轭302来控制垂直速度。
如上文指出,飞行控制系统130可基于飞行器100的内部及外部两者的各种参数,连续评估及确定当前阶段或飞行段,所述参数例如:飞行器(包含乘客的体重及/或货物)的重量;飞行器的当前速度、海拔及航向;飞行器与已识别的空中或地面障碍物及/或交通的接近程度;以及大气条件,例如风速及风向或周围空气密度/压力/温度。举例来说,爬升/过渡阶段与起飞阶段之间的划界可基于飞行器100距对应于起飞点的界定原点的相对距离(在三个维度上,其包含x到y距离及海拔)。类似地,爬升阶段与巡航阶段之间的划界可基于与期望巡航海拔相比的相对海拔及/或距期望飞行路径的距离δ。基于界定阶段或段,飞行控制系统130可将通过控制轭302接收的控制输入转译为飞行控制及推力响应,从而调整推力源102及对应支柱106的旋翼速度及角度。飞行控制编程可调整反馈,允许飞行控制系统130将来自飞行员的控制输入转译为由飞行器组件执行的控制输出而无需进行独特的配平控制或使用控制表面(例如,襟翼、副翼等)。
用于VTOL飞行器的低速度/低海拔安全机翼缓降器系统
像任何飞行器一样,VTOL飞行器在低海拔(例如,500英尺以下)可能会经历引擎或控制系统故障。在低海拔处,用于保护飞行器及其乘员(以及可能遭受坠机危险的第三方)的手段的设计及实施可能特别具有挑战性。举例来说,机体吸收碰撞能量的能力(例如,与地面或其它障碍物的撞击相关联)可能受到限制(例如,受到对轻型机体的需要的限制)。然而,低海拔系统故障留出最少的时间供飞行器降低其速度或动量,借此减少其动能。一些飞行器设计可能尝试通过包含辅助或备用引擎来防止碰撞,所述辅助或备用引擎可在主引擎发生故障的情况下展开,例如能够将动力转移到驱动主螺旋桨的公共轴。然而,使用备用引擎或动力装置增加复杂性,增加初始成本(例如,设计及构造)以及操作及维护费用。直升机(及某些小型固定翼飞行器;例如,西锐机体降落伞系统或CAPS)可并入弹道缓降器系统,其可手动或自动展开,从而发射小型火箭以推进飞行器上方的一或多个降落伞以减慢其下降。然而,此缓降器系统可能要进行定期及昂贵的检验。另外,推进剂由于其挥发性或意外引爆的倾向而可能对乘员或第三方有害。
大体上参考图10、11A及11B,本文揭示的发明构思的实施例可针对与VTOL飞行器系统100兼容的低成本、轻量且机械简单的可展开机翼缓降器系统400的示范性实施例。可展开机翼缓降器系统400可进一步与各种各样的交通工具配置、姿态及速度以及广泛范围的大气条件兼容。机翼缓降器400可并入飞行器100的机身104中,并且可由飞行员手动(例如,在飞行器上或由远程操作员)手动展开,或者在检测到系统故障或即将发生的低海拔碰撞(例如,与地面或基于地面的障碍物)的情况下由飞行控制系统130自动展开。一旦展开,机翼缓降器400可通过间隔或定位的缆线402保持附接到飞行器100,以借助于加强结构或冲击吸收结构(例如,如上文描述的稳定表面126及背部安装支柱128)来最小化飞行器的紧急冲击。
可通过经由快速反应点火器(例如硝酸钡钾)对化学推进剂(例如,叠氮化钠、氧化铜(CuO)或任何适当气囊型推进剂)进行电子点火而使机翼缓降器400初始充气(例如,展开时)。机翼缓降器400可并入单一推进剂或将推进剂分布在机翼缓降器的整个段中,使得对一或多个段进行选择性或连续点火可用以控制机翼缓降器的充气速率。机翼缓降器400可包含中央自充气部分及/或一系列可充气肋404,其从机翼缓降器的中心径向地扩展(例如,如下文描述那样与冲压空气入口406交替)。
一旦展开,可通过以间隔开的关系围绕机翼缓降器的圆周安置的冲压空气入口406来辅助机翼缓降器400的充气。冲压空气入口406可打开以使相对气流容纳到机翼缓降器408中,并且向内渐缩以在机翼缓降器的相对气流流出(410;例如,从水平中心朝向外圆周)的情况下提供空气动力学轮廓。机翼缓降器400的展开形状(从相对于垂直或z轴线的俯视视角看)可为圆形或接近圆形的,例如,近似于圆形的多侧面多边形。机翼缓降器400的外部“蒙皮”412(例如,顶篷)可由缝合并密封的高强度轻质合成纤维(例如,6,6型尼龙)制成,以便于为任何自充气隔室(例如,中央或径向)提供气密密封。举例来说,冲压空气入口406可打开以允许相对气流408在外部蒙皮412的上层及下层之间进入机翼缓降器。
展开的机翼缓降器400的上部结构可呈现机翼形状,以便在相对气流的情况下提供升力。举例来说,如果飞行器相对于地面的向前(水平)速度可忽略不计,但有足够的环境风,那么机翼缓降器400的形状可提供垂直于相对气流418的提升力416。如果相对气流是垂直的(例如,在垂直风可忽略不计的情况下飞行器的垂直下降),那么机翼缓降器400可以常规降落伞的方式产生垂直阻力。前述提升力416及垂直阻力中的任一者或两者可用于个别地或组合地降低飞行器100的垂直下降速度。
经由分段的环形机翼的定向推力及升力控制
现在参考图12A到12C,环形机翼118a可经实施并且可类似于图6的环形机翼118起作用,除可将环形机翼118a分段以优化定向推力之外。举例来说,可变地引导所产生推力,例如,使飞行器系统的推力向量的定向分量在主要为垂直升力分量与部分为水平(大体上平行于地面平面)分量之间转换对于涉及大体上垂直起降、大体上水平定向飞行及两种模式或阶段之间的安全平滑过渡是至关重要的。然而,至少就节省重量、避免复杂性(例如,计算机控制的致动器)、简化控制操作以及最小化制造及操作成本来说,可能难以有效地实现定向飞行。
特定参考图12A,环形机翼118a可附接到对称结构构件124a到b及翼型支柱106(图6),对称翼型124及翼型支柱106(参见例如图1)的外部翼型“蒙皮”可能会覆盖环形机翼118a上。类似地,对称结构构件124a到b及翼型支柱106可支撑旋翼轴,每一推力源102的螺旋桨108(参见例如图1)附接到旋翼轴并围绕其驱动。
环形机翼118a可经分段为上及下段118b到c及侧段118d。举例来说,侧段118c可呈现对称翼型轮廓。可混合每一段的轮廓以在每一段的横截面118e的改变附近提供光滑的几何表面。特定参考图12B,上及下段118b到c可呈现机翼轮廓以用于在VTOL飞行器100的巡航及定向飞行阶段及配置期间最大化升力并最小化阻力,如由例如图3到4所展示。因此,在巡航阶段中的定向飞行控制可通过如上文所揭示那样使环形机翼118a相对于翼型支柱106铰接来实现(参见例如图6)。响应于环形机翼118a(例如,经由线性致动器120a到c,图6)相对于通过推力源102的气流的定向/角度的调整,上及下段118b到c(例如,大体上平行于旋翼轴线110及推力源102的纵向轴线)上方的高气流可增加上及下段118b到c两者上方的所产生提升力。
当VTOL飞行器110处于用于起飞及降落的悬停配置中时(参见例如图1及2),环形机翼118a还可经由如上文指出的翼型上及下段118b到c提供增强升力,以及通过相对于螺旋桨108及旋翼轴(旋翼轴线110)偏移定向角来改进推力导向,有利地引导推力源102的排出及流出以在垂直飞行及悬停操作期间提供一定程度的横向飞行控制。
用于VTOL飞行器的导航及控制接口
如上文指出,可能难以设计如本文所揭示的用于VTOL飞行器的控制接口,所述控制接口对于新手飞行员来说易于学习及管理,对于有经验的飞行员来说直观且具有中等复杂度、重量及成本。此外,此控制接口的导航对应物—换句话说,是VTOL飞行器确定目的地并向将乘客运送到所述目的地的途径,同时考虑空中及地面交通、天气及大气条件、燃料容量以及沿途可能发生的紧急情况。举例来说,常规空中交通需要进行大量的飞行前计划及实时交通监测以确保安全分离。
参考图13A,本文揭示的发明构思的实施例是针对与本文揭示的VTOL飞行器及其它组件(例如,控制接口300及控制轭302、可展开机翼缓降器系统400)兼容的导航及控制接口(NCI)500。举例来说,需要交通工具的驾驶员502(例如,用户、飞行员;驾驶员可能由乘客陪同)可询问附近VTOL飞行器100的位置,或者通过经由装备有适当软件及外围设备的个人移动通信装置502a(例如,智能电话、平板计算机)来联系远程飞行计算机504(RFC)请求此交通工具。RFC 504可(基于由驾驶员502接收到的位置信息)确定最近飞行器的位置,并将这些位置发送给用户,邀请用户预定对特定交通工具的使用并继续前进到其当前位置(其可包含降落地点、加油地点及/或维护地点)。
一旦驾驶员502已到达指定位置并登上VTOL飞行器100,NCI 500就可经由基于座椅的传感器506确认用户(及任何乘客)的存在。举例来说,基于座椅的传感器506可包含重量传感器,例如应变仪,其经配置以测量由在其座椅中的飞行员/乘客的重量引起的施加电压差。如果飞行员的座椅未检测到重量,那么可防止VTOL飞行器100的激活;否则,基于座椅的传感器506可估计驾驶员502及任何乘客的重量(如果VTOL飞行器100包含货舱,那么其中的额外传感器可确定任何额外有效载荷重量),并且将此信息转发到RFC 504用于飞行计划及范围计算。一旦确认驾驶员502的存在,NCI 500就可经由交互式导航显示器(IND)508(例如经由专用的开/关开关或按钮)来邀请飞行员激活VTOL飞行器100。举例来说,IND 508可用作驾驶员502与机载飞行计算机516之间的主要接口,显示OBFC的选定输出(包含由远程飞行员518转发的信息),为此,OBFC516用作接口。一旦已激活IND 508,NCI 500就可请求先前发送到用户的PMD 502a的密码或类似的安全元素,或者NCI可通过比较PMD及NCI 500上的预传输的所发送加密数字证书,通过NCI与用户的PMD 502a之间的无线电链路510来辨识用户存在。IND 508可包含基于有机LED(OLED)的显示表面,其并入电容网格,使得驱动器502可经由电容显示表面或触摸屏与经激活IND 508交互并将额外数据键入经激活IND508。举例来说,IND 508可显示字母数字键盘,例如,使得驾驶员502可键入适当密码来激活VTOL飞行器100用于暂时使用。然后,IND 508可从驾驶员502请求目的地,所述目的地也经由触摸屏键入。可以各种方式键入目的地,例如通过街道地址、纬度/经度或其它坐标系。举例来说,如果键入部分地址(例如,城市及州),那么IND 508可尝试用靠近所述部分键入内容的专用降落设施来自动完成键入。一旦用户键入内容已经与精确的位置进行交叉参考,RFC 504可确定目的地是否可能,如果可能,那么生成飞行计划。举例来说,RFC 504可考虑期望目的地,驾驶员502、乘客及货物的报告重量,以及由机载燃料传感器512确定的当前燃料容量。
燃料检查系统
VTOL飞行器100的燃料传感器512可包含机载燃料箱传感器512a、引擎燃料流量传感器512b及燃料补充流量传感器512c。还参考图13B,三重检查系统550用以避免燃料计算错误,在行业中已知所述错误偶尔会引起事故。在步骤552,机载飞行计算机516(OBFC)确定由机载燃料箱传感器512a测量的当前燃料液位。在步骤554,OBFC 516确定期望的额外燃料数量(AFQ)或在燃料补充期间期望添加的燃料量。举例来说,期望AFQ可被界定为VTOL飞行器100的满箱容量减去先前飞行剩余的燃料数量。在步骤556,当实际AFQ或在燃料补充过程期间添加的燃料流入燃料补充管道中时,通过燃料补充流量传感器512c对其进行测量。在步骤558,由OBFC 516将期望AFQ及实际AFQ进行比较,以确认两个数量确实相等;因此,在步骤558中,期望的AFQ及实际AFQ进行比较。如果期望AFQ与实际AFQ之间存在偏差,那么OBFC516可能会产生错误,从而延迟起飞直到处理并解决偏差。在步骤560,对照由引擎燃料流量传感器512b测量的消耗的燃料检查先前飞行剩余的燃料数量;如果这两个数量之间存在偏差,那么OBFC 516可类似地产生错误并抑制起飞。在额外步骤562,OBFC 516可额外地检视前一次飞行的飞行数据,将实际交通工具加速度与已知推力条件下的预期加速度进行比较;任何偏差都可同样触发抑制起飞的故障条件。RFC 504可从最近的交通控制设施514请求更新的空中交通及天气数据。
基于可用的燃料、重量、天气及交通数据,RFC 504可尝试基于用户的预期目的地来生成飞行计划。可经由VTOL飞行器100a上的收发器/路由器(510b到c)与靠近FRC的收发器/路由器(510b到c)之间的基于无线电的高完整性数据链路510a与OBFC 516通信的RFC504可在计算从当前位置到用户的所选择目的地的飞行计划时观察预定飞行计划计算指南。举例来说:
路线海拔可基于预定管制海拔以及预先选择或预先批准的地面轨迹。
路线可优先避开人口密集区域。
路线可通过尽可能遵循主要道路来最小化操作噪声及对地面人员的风险。
路线可基于设置出发时间及设置包线大小(例如,在沿路线的估计交通工具位置3英里之内的任何交通周围)计算沿路线的实际及预测交通。
路线可围绕与前向能见度<10km(~6.2mi),风的垂直改变>15kts/10,000ft或任何适用的管制准则相关联的任何实际或预报天气系统来计划。
路线可优先化最小飞行段长度,例如1海里(NM)。
基于以上因素,NCI 500可确定到期望目的地的路线、巡航海拔及估计的飞行时间。举例来说,给定出发点及目的地降落区为0英尺AGL,则可选择90磁角度的地面轨迹,3,000英尺的巡航海拔。如果可在不补充燃料的情况下到达目的地,那么可计算到达目的地的所需燃料,沿路线的替代降落区以及备用燃料。如果需要加油,那么路线可并入一或多个加油站,或者可通知并邀请飞行员选择替代交通工具或为交通工具补充燃料,如果这可在VTOL飞行器100的当前位置处完成。路线包含2个替代降落区域,例如,如果主要目的地及第一个替代目的地在到达时不可用。另外,可在飞行之前及飞行期间更新途中降落区域的可用性并将其从RFC 504周期性地发送到NCI 500。
如果成功生成飞行计划,那么RFC 504可将飞行计划提交给交通控制设施514以得到许可,同时交叉检查NCI 500的组件及VTOL飞行器100的其它组件及系统(例如,燃料系统、飞行控制系统130、致动器及微控制器、紧急缓降器系统400及其它紧急特征、更新的天气及交通数据、数据链路510a、RFC 504以及远程飞行员518的可用性及警觉性以及起飞、降落及替代降落区域的适合性。举例来说,接近度传感器520(例如,热/IR传感器)可勘测VTOL飞行器100的紧邻度,以确认在飞行器外部或紧邻其没有人员存在。驾驶员502可经由个人移动装置用摄影勘测起飞区域;这些照片以及与每一照片交叉参考以确定其视角的加速度计数据可通过PMD 502a上的软件来评估,以识别VTOL飞行器100的垂直上升通道中的任何潜在障碍物以及地面的质量/角度。(PMD502a可由驾驶员502或其它人员类似地使用以在飞行前评估下降通道及降落地点,并将此类信息发送到RFC504。)
类似地,可短暂地激活内部相机522以确认驾驶员502存在(并且替代地,确认用户的身份)。内部相机522可包含麦克风及扬声器,并且可经定向以便于允许驾驶员502与远程飞行员518实时通信(例如,在紧急情况下,其中远程飞行员可提供辅助或诊断支持)。
一旦驾驶员502承担飞行计划的控制并且引导VTOL飞行器100从出发点上升到安全过渡海拔(例如,经由控制接口300及飞行控制系统130),则用户可过渡到定向飞行及/或引导飞行控制系统130接管全部或部分自动驾驶仪524,在此期间,将由飞行控制系统管理精细飞行控制,并且有限的手动操纵是可能的。在飞行过程中,IND 508可显示例如飞行计划进度、最近的天气(例如,覆盖在动态地图上)、当前空速及海拔、剩余的燃料、到达目的地的时间以及经由OBFC 516的可用自动驾驶或手动飞行选项。举例来说,驾驶员502可经由IND 508访问OBFC 516,并从飞行计划转向以执行降落,例如,在远程飞行员518的授权下并在预先指定的替代降落区、燃料站或与VTOL飞行器100的当前位置最接近的降落区/燃料站。RFC 504将提供可用降落区域的更新列表,或者先前上传的列表上的降落区域的可用性。类似地,驾驶员502可通过键入新的目的地(可将其提交给交通控制设施514以由OBFC516或RFC 504许可)来请求对飞行计划进行修正。
如果VTOL飞行器100在飞行中经历系统故障或其它紧急情况,那么飞行员可从远程飞行员518请求(例如,经由IND 508)紧急援助。举例来说,远程飞行员518可与飞行员交谈,从OBFD 516访问诊断数据(经由RFC 504),并接管外部相机526以评估外部VTOL飞行器100的损坏或故障组件。远程飞行员518可承担对VTOL飞行器100的控制,并尝试改变飞行器的轨迹、空速、海拔或航向(例如,以便恢复控制或将飞行器引导朝向紧急降落或其中所述降落将更安全的地点)。在经引导紧急降落是不可能的或不切实际的情况下,飞行员或远程飞行员518可接管可展开缓降器系统400以最小化紧急着陆的冲击。
参考图14A,展示过程600,NCI 500(图13A)的组件通过过程600辅助驾驶员502(图13A)定位及操作VTOL飞行器100(图13A)。概括地说,驾驶员502可从RFC 504请求可用交通工具602;定位、登上并激活VTOL飞行器100以出发604;巡航飞行606;必要时寻求紧急援助608;并下降到期望目的地处的降落处610。
参考图14B,在步骤602,驾驶员502可经由经配置以在PMD 502a上执行的专用软件来请求交通工具。一旦由PMD 502a联系,RFC 504就可确定最接近由驾驶员502提供的位置的可用交通工具。RFC 504可将此位置连同用于到达预定位置的引导发送到PMD 502a。
参考图14C,在步骤604,已经到达由RFC 504指定的位置的驾驶员502可请求(经由PMD 502a)VTOL飞行器100由RFC 504解锁。一旦驾驶员502(以及任何乘客)坐在VTOL飞行器100中,座椅传感器504就可确认用户存在,并且IND 508将从用户请求密码以激活VTOL飞行器。驾驶员502(例如,在接收到到VTOL飞行器100的引导时已由RFC 504提供此密码)可经由IND 508触摸屏键入此密码;借此键入代码将由OBFC 516检查,并且如果键入代码与官方代码匹配,那么飞行器将被激活。在一些实施例中,驾驶员502可从VTOL飞行器100本身的外部的点与RFC 504联系,并且RFC 504将通过比较由RFC 504发送到OBFC 516及PMD 502a的加密代码来辨识用户的PMD 502a的存在,并且接着同时解锁并激活飞行器。
现在参考图14D,IND 508可邀请驾驶员502键入优选目的地。驾驶员502可以各种格式这样做,例如,街道地址、纬度/经度或由IND 508辨识的任何其它适当坐标系。举例来说,如果驾驶员502键入更一般的位置(例如城市或街区),那么IND 508可尝试通过查找并提示城市或街区中或附近的已知出发设施来自动完成键入。OBFC 516可使地址标准化并确认对应位置,从而识别适合降落的靠近位置或设施,并将所识别位置设置为目标目的地。确认目的地之后,座椅传感器504可评估驾驶员502以及任何乘客及货物的加总重量(大于VTOL飞行器100自身的重量)。燃料传感器512可评估VTOL飞行器100的当前燃料容量。基于此信息(连同从RFC 504检索的任何可用天气及交通信息),OBFC 516可确定VTOL飞行器100是否可能到达目标目的地,如果是,那么是在什么条件下,例如优选路线;针对优选路线的估计行进时间;是否需要补充燃料,如果需要,那么应在哪里补充燃料;以及沿路线的替代降落区。旅程的条款可由IND 508呈现给驾驶员502,并且如果用户接受,那么可将相关信息转发到RFC 504以用于生成并提交飞行计划。在一些实施例中,RFC 504可基于由OBFC 516提交的数据来执行上文飞行计划计算中的一些或全部。
参考图14E,IND 508a可被实施并且可类似于图13A的IND 508那样起作用,除IND508a可反映驾驶员502对目的地的选择以及由OBFC(516,图14D)对应生成到目的地的路线让用户接受之外。IND 508a可具有部分或完全对应于电容式触摸屏的显示表面612,其可显示对应于路线及目的地的静态及移动地图以及可选择叠加614,可选择叠加614提供预计飞行时间,对替代降落区614a的可点击访问及供驾驶者502发信号通知接收及准备好出发614b的选项。IND 508a可包含用于例如VTOL飞行器100的激活及去激活616以及来自RFC504的紧急援助请求618的专用按钮。
现在参考图14F,如果驾驶员502经由IND 508接受所提议的路线,那么可如上文描述那样提示用户经由PMD 502a评估上升通道的适合性(例如,经由来自所记录定向的一系列照片)。类似评估过程(例如,可接受/不可接受)可在关于下降通道的降落地点处发生(例如,经由在降落地点处的单独PMD),并且此信息由所述PMD转发到OBFC 516(经由RFC 504),以供驾驶员502在到达降落地点上方时交叉检查。OBFC 516可发起所有飞行系统的交叉检查(在VTOL飞行器100上以及远程定位两者),并且在交叉检查完成之后,经由接近度传感器520确认没有人员在使得所述人员可能受到大体上垂直起飞的不利影响的VTOL飞行器100的预定范围内(例如,在半径1m到3m内)。IND 508可通过发信号通知驾驶员502从降落地点上升来指示成功的交叉检查及接近性检查(例如,经由控制接口300)。一旦完成,交叉检查细节可被转发到远程飞行员518用于检视及出发批准。
现在参考14G,IND 508b可被实施并且可类似于图14E的IND 508a起作用,除IND508b可通过OBFC 516指示成功的飞行前交叉检查外。举例来说,交叉检查可验证燃料液位及容量;当前的天气及空域条件;VTOL飞行器100的机载系统及数据链路510a;远程飞行员518的存在;由RFC 504提出的飞行计划的空中交通许可;驾驶员502的就座存在;替代降落区域;以及相应起飞及降落区域处的上升及下降通道。
参考图14H,在步骤606中,一旦飞行器已经上升到安全巡航海拔或预定高度(例如,100英尺AGL),驾驶员502就可将VTOL飞行器100从起飞/悬停模式过渡到向前飞行/巡航模式(例如,经由控制接口300)。VTOL飞行器100可沿批准路线朝向目标目的地前进,OBFC516可能与远程飞行员518结合地控制飞行器的当前海拔、位置及速度(经由IND 508显示给驾驶员502)。在发生紧急情况时,例如,一或多个机载系统的故障或意外的不利大气条件,驾驶员502可(经由图14E的紧急按钮618)发信号通知远程飞行员518以得到紧急援助608。否则,取决于海拔及大气条件,OBFC 516可接管自动驾驶系统524,借此VTOL飞行器100可借助于经由控制接口300可用的受限手动可操纵性沿朝向目的地610的路线继续前进。RFC504可随着VTOL飞行器100的位置改变而继续更新天气、交通、燃料站及替代降落地点信息,从而将更新转发到OBFC 516。
现在参考图14I,IND 508c可被实施并且可类似于图14G的IND 508b那样起作用,除IND 508c可经由显示表面612指示朝向目标目的地620飞行中过程之外。IND 508c可进一步显示着陆之前的估计剩余时间622以及当前空速及剩余燃料液位624。在一些实施例中,可切换叠加空速及燃料水平624以显示额外的相关信息,例如当前海拔、空气温度或风速/方向。IND 508c可叠加具有可选择飞行中选项的额外菜单626,例如从巡航模式过渡到悬停模式(反之亦然);在最近的燃料站执行降落;在最近的可用替代降落区执行紧急降落;或转向新目的地(例如,经由RFC 504修正飞行计划)。可预期,虽然在紧急情况下可激活紧急按钮618,但如果飞行器当前在飞行中或在地平面以上,那么可将开/关按钮616锁定而无法去激活VTOL飞行器100的功能。
参考图14J,在步骤608,用户602可请求(经由IND 508上的紧急按钮618)来自远程飞行员518的紧急援助。远程飞行员518可通过与驾驶员502交谈来评估情形以确定问题的性质,或参考外部相机526来尝试评估对VTOL飞行器100的任何外部损坏。如果可能的话,紧急解决方案可优先考虑将VTOL飞行器100快速降落在安全位置(例如,远离人群、地面交通或不平坦地形)。如果必要,驾驶员502可展开机载紧急措施,例如机翼缓降器系统400。远程飞行员518可承担对VTOL飞行器100的部分控制。举例来说,远程飞行员518可远程地展开机翼缓降器系统400;操纵VTOL飞行器100朝向替代降落地点并接着展开机翼缓降器系统400;远程改变飞行器的目的地、空速、海拔或巡航轨迹;或不采取任何动作(例如,如果不存在紧迫的紧急情况)。
参考图14K,在步骤610,降落区域将由PMD 502a最近评估为适合降落。接近指定降落区域或目标目的地,VTOL飞行器100将(经由自动驾驶仪524)从巡航模式过渡到悬停模式,并在自动驾驶仪下下降到预定海拔(例如,100英尺AGL)。在或接近此海拔时,OBFC 516将提醒驾驶员502接管控制,并且驾驶员将在手动控制下(例如,经由控制接口300)继续使VTOL飞行器100下降。一旦VTOL飞行器100下降到降落(由OBFC 516确认的着陆),驾驶员502就可去激活VTOL飞行器100(例如,经由开/关专用按钮616,图14I)。
如本文所使用,跟在参考数字后的字母希望参考可与带有相同参考数字(例如,1、1a、1b)的先前描述的元件或特征的类似于但不一定等同的特征或元件的实施例。此类速记符号仅出于方便的目的而使用,并且不应被解释为以任何方式限制本文揭示的发明构思,除非明确地相反陈述。
此外,除非明确地相反陈述,否则“或”是指包含性的或而不是排他性的“或”。举例来说,条件A或B通过以下中的任一者来满足:A为真(或存在)且B为假(或不存在),A为假(或不存在)且B为真(或存在),并且A及B两者都为真(或存在)。
另外,“一”的使用用来描述本发明构思的实施例的元件及组件。这样做仅仅是为方便起见并给出本发明构思的一般含义,并且“一”希望包含一个或至少一个,并且单数也包含复数,除非其明显表示其它意思。
最后,如本文使用,对“一个实施例”或“某些实施例”的任何参考意指结合实施例描述的特定元件、特征、结构或特性包含在本文揭示的发明构思的至少一个实施例中。说明书中各个地方出现的短语“在一些实施例中”不一定都是指同一实施例,并且所揭示的发明构思的实施例可包含本文明确描述或固有存在的特征中的一或多者,或者两个或更多个此类特征的子组合的任何组合以及在本发明中可能不一定明确描述或固有地存在的任何其它特征。
从以上描述,很清楚本文揭示的发明构思非常适于实行目的并获得本文提及的优点以及本文揭示的发明构思固有的优点。尽管已经出于本发明的目的描述本文揭示的发明构思的当前优选实施例,但应理解,可进行众多改变,所述改变将容易地向所属领域的技术人员表明并且在本文揭示及主张的发明构思的广泛范围及覆盖范围内完成。

Claims (11)

1.一种可变几何形状垂直起降VTOL飞行器系统,其包括:
机身;
一或多个传感器,其耦合到所述机身并且经配置以捕获与所述飞行器系统相关联的飞行器数据及所述飞行器系统外部的环境数据中的至少一者;
飞行控制系统,其连接到所述一或多个传感器并且包含至少一个飞行控制处理器,所述飞行控制系统经配置以:
从所述一或多个传感器接收所述飞行器数据及所述环境数据中的至少一者;
基于所述飞行器数据及所述环境数据中的至少一者,确定与所述飞行器系统相关联的当前飞行阶段,所述当前飞行阶段包含悬停阶段、巡航阶段及过渡阶段中的至少一者;
至少一对推力源,其包含左舷推力源及右舷推力源,每一推力源包括:
翼型支柱,其经由通信地连接到所述飞行控制系统的一或多个支柱致动器耦合到所述机身,所述一或多个支柱致动器经配置以相对于所述机身铰接所述翼型支柱;
多个螺旋桨,其围绕转子轴均匀地间隔,所述多个螺旋桨经配置以通过连接到所述飞行控制系统的至少一个电动机围绕所述转子轴驱动;
环形导管,其能够周向环绕所述多个螺旋桨;
一或多个对称翼型,其以均匀间隔开的关系安置在所述多个螺旋桨的后面,每一对称翼型及所述翼型支柱具有大体上翼状横截面,所述翼型支柱及所述一或多个对称翼型中的每一者通过至少一个线性致动器可铰接地耦合到所述环形导管,所述一或多个线性致动器经配置以相对于所述翼型支柱铰接所述环形导管;
所述飞行控制系统进一步经配置以:
通过经由所述至少一个电动机驱动所述多个螺旋桨来产生推力;
基于所述当前飞行阶段,通过铰接所述一或多个支柱致动器及所述一或多个线性致动器中的至少一者来调整所述飞行器系统的推力向量、所述飞行器系统的航向、所述飞行器系统的姿态及所述飞行器系统的配置中的至少一者。
2.根据权利要求1所述的可变几何形状VTOL飞行器系统,其中所述至少一对推力源包含前推力源对及后推力源对。
3.根据权利要求2所述的可变几何形状VTOL飞行器系统,其进一步包括:
至少一个乘客舱,其安置在所述前推力源对与所述后推力源对之间,所述乘客舱经配置以容纳至少一个乘客,并且包含经配置以接受来自所述乘客的控制输入的控制接口。
4.根据权利要求3所述的可变几何形状VTOL飞行器系统,其进一步包括:
控制接口,其位于所述乘客舱内,所述控制接口包括:
至少一个导航显示器,其经配置以:1)显示飞行器数据及环境数据中的一或多者,及2)接受来自所述乘客的第一控制输入;
至少一个控制轭,其可铰接地耦合到默认位置中的基座,所述控制轭可由所述乘客以相对于所述默认位置的多个自由度铰接以提供第二控制输入,所述控制系统经配置以基于所述第二控制输入及所述当前飞行阶段来调整所述推力向量、所述航向、所述姿态及所述配置中的至少一者。
5.根据权利要求1所述的可变几何形状VTOL飞行器系统,其中所述环形导管具有大体上翼状圆周。
6.根据权利要求5所述的可变几何形状VTOL飞行器系统,其中所述环形导管包括:
至少一个第一段,其具有经配置以最大化升力的第一翼状横截面;
至少一个第二段,其具有第二翼状横截面。
7.根据权利要求1所述的可变几何形状VTOL飞行器系统,其中所述一或多个线性致动器经配置以相对于所述翼型支柱及所述一或多个对称翼型以个别地或共同地中的至少一者的方式铰接所述环形导管。
8.根据权利要求1所述的可变几何形状VTOL飞行器系统,其进一步包括:
燃料隔室,其耦合到所述至少一个电动机,所述燃料隔室经配置用于经由至少一个燃料补充口重新供应;
至少一个箱流量传感器,其安置在所述燃料隔室内,所述箱流量传感器通信地耦合到所述控制系统并且经配置以感测箱燃料液位;
至少一个加油流量传感器,其耦合到所述燃料补充口,所述加油流量传感器通信地耦合到所述控制系统,并且经配置以感测实际燃料补充液位;
至少一个引擎流量传感器,其可操作地耦合到所述至少一个电动机,所述引擎流量传感器通信地耦合到所述控制系统并且经配置以感测所消耗燃料液位;
所述控制系统进一步经配置以:
基于所感测箱燃料液位来确定预期燃料补充液位;
基于所述预期燃料补充液位与1)实际燃料补充液位及2)所述所消耗燃料液位中的至少一者的比较来检测燃料错误。
9.根据权利要求1所述的可变几何形状VTOL飞行器系统,其进一步包括:
可展开机翼缓降器系统,其安置在至少一个可展开面板下面的所述机身内,所述机翼缓降器系统机械地可展开并且经由一或多个缆线紧固到处于展开状态的所述机身,所述机翼缓降器系统包括:
上及下外层,其由气密性织物制成;
至少一个气密性自充气隔室,其安置在所述上外层与所述下外层之间;
至少一个推进剂系统,其经配置以在所述机翼缓降器处于所述展开状态时使所述至少一个气密性自充气隔室快速充气。
10.根据权利要求1所述的可变几何形状VTOL飞行器系统,其中所述至少一个气密性自充气隔室包含多个自充气肋,其从中央核心以间隔开关系径向地延伸,每一对邻近自充气肋界定经配置以允许空气流入所述机翼缓降器的冲压空气入口。
11.根据权利要求10所述的可变几何形状VTOL飞行器系统,其中所述机翼缓降器系统呈现大体上翼状轮廓。
CN201880080062.4A 2017-12-12 2018-12-11 可变几何形状垂直起降(vtol)飞行器系统 Pending CN111566008A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762597823P 2017-12-12 2017-12-12
US62/597,823 2017-12-12
PCT/IB2018/001569 WO2019116101A1 (en) 2017-12-12 2018-12-11 Variable-geometry vertical take-off and landing (vtol) aircraft system

Publications (1)

Publication Number Publication Date
CN111566008A true CN111566008A (zh) 2020-08-21

Family

ID=66819576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880080062.4A Pending CN111566008A (zh) 2017-12-12 2018-12-11 可变几何形状垂直起降(vtol)飞行器系统

Country Status (4)

Country Link
US (1) US11383832B2 (zh)
EP (1) EP3724071B1 (zh)
CN (1) CN111566008A (zh)
WO (1) WO2019116101A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200012524A (ko) * 2018-07-27 2020-02-05 이소민 드론

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10370118B1 (en) 2015-10-31 2019-08-06 Simon Saito Nielsen Lighting apparatus for remote controlled device
US11404056B1 (en) 2016-06-30 2022-08-02 Snap Inc. Remoteless control of drone behavior
US11753142B1 (en) 2017-09-29 2023-09-12 Snap Inc. Noise modulation for unmanned aerial vehicles
US11531357B1 (en) 2017-10-05 2022-12-20 Snap Inc. Spatial vector-based drone control
US11822346B1 (en) 2018-03-06 2023-11-21 Snap Inc. Systems and methods for estimating user intent to launch autonomous aerial vehicle
US20200277080A1 (en) * 2019-02-28 2020-09-03 Beta Air Llc Systems and methods for in-flight operational assessment
FR3103577B1 (fr) * 2019-11-27 2022-09-09 Thales Sa Systeme de pilotage d'aeronef
US11390371B2 (en) * 2019-12-31 2022-07-19 Textron Innovations Inc. Control vane orientation for ducted-rotor aircraft
JP7173060B2 (ja) * 2020-01-17 2022-11-16 トヨタ自動車株式会社 車両用操縦装置
JP2021123190A (ja) * 2020-02-04 2021-08-30 株式会社Subaru 垂直離着陸機
EP4146542A1 (en) 2020-05-07 2023-03-15 BAE SYSTEMS plc Rotorcraft
EP3907131A1 (en) * 2020-05-07 2021-11-10 BAE SYSTEMS plc Piloted rotorcraft
WO2021224594A1 (en) * 2020-05-07 2021-11-11 Bae Systems Plc Rotorcraft
KR102334195B1 (ko) * 2020-06-10 2021-12-02 한국항공우주연구원 가위날개 멀티콥터
DE102020127029B3 (de) * 2020-10-14 2021-09-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Mantelpropeller eines Luftfahrzeugs und Luftfahrzeug
US11562654B2 (en) * 2020-10-22 2023-01-24 Rockwell Collins, Inc. VTOL emergency landing system and method
US11681301B2 (en) 2021-06-29 2023-06-20 Beta Air, Llc System for a guidance interface for a vertical take-off and landing aircraft
US20230138684A1 (en) * 2021-11-03 2023-05-04 Textron Innovations Inc. Ground State Determination Systems for Aircraft
KR102410688B1 (ko) * 2021-12-09 2022-06-22 김인헌 프로펠러의 축의 이동이 가능한 드론
US11912430B2 (en) * 2022-04-28 2024-02-27 BETA Technologies, Inc. Systems and methods for displaying a pilot display for an aircraft
US11972521B2 (en) 2022-08-31 2024-04-30 Snap Inc. Multisensorial presentation of volumetric content
US11780576B1 (en) * 2022-09-01 2023-10-10 Textron Innovations Inc. Long-endurance aircraft having tiltable propulsion
KR102631514B1 (ko) * 2023-03-06 2024-01-31 (주) 세대공감 엠씨엔 드론플랫폼
KR102629636B1 (ko) * 2023-03-07 2024-01-30 (주) 세대공감 엠씨엔 무게중심선상에 각종 임무장비 장착이 가능한 드론플랫폼

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506849A (en) * 1980-03-28 1985-03-26 Textron, Inc. Helicopter rotor thrust ring
US20030136873A1 (en) * 2000-10-03 2003-07-24 Churchman Charles Gilpin V/STOL biplane aircraft
US20060016930A1 (en) * 2004-07-09 2006-01-26 Steve Pak Sky hopper
US20070034739A1 (en) * 2003-10-27 2007-02-15 Urban Aeronautics Ltd. Ducted fan VTOL vehicles
US20080105781A1 (en) * 2006-03-28 2008-05-08 Airbus France Aircraft with reduced environmental impact
CN105620735A (zh) * 2014-11-26 2016-06-01 艾克斯克拉夫特企业公司 高速多旋翼垂直起降飞行器
CN105683041A (zh) * 2013-08-29 2016-06-15 空中客车防卫和太空有限责任公司 能够垂直起动的飞行设备
US20160214710A1 (en) * 2014-05-07 2016-07-28 XTI Aircraft Company Vtol aircraft
CN106573678A (zh) * 2014-03-18 2017-04-19 杰欧比航空有限公司 具有枢转旋翼和收拢旋翼桨叶的气动高效的轻型垂直起飞和着陆飞机
WO2017063088A1 (en) * 2015-10-16 2017-04-20 4Front Robotics Ltd. Rotary wing aircraft
CN206511122U (zh) * 2017-02-13 2017-09-22 深圳市龙云创新航空科技有限公司 一种垂直起降固定翼飞行器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2510561A (en) 1944-07-22 1950-06-06 Lockheed Aircraft Corp Airplane control surface
WO2010026517A2 (en) * 2008-09-02 2010-03-11 Urban Aeronautics Ltd. Vtol vehicle with coaxially tilted or tiltable rotors
IL222053A (en) * 2012-09-23 2016-11-30 Israel Aerospace Ind Ltd A device, method, and computerized product for aircraft management
US20190291863A1 (en) * 2016-05-18 2019-09-26 A^3 By Airbus Llc Vertical takeoff and landing aircraft with tilted-wing configurations

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506849A (en) * 1980-03-28 1985-03-26 Textron, Inc. Helicopter rotor thrust ring
US20030136873A1 (en) * 2000-10-03 2003-07-24 Churchman Charles Gilpin V/STOL biplane aircraft
US20070034739A1 (en) * 2003-10-27 2007-02-15 Urban Aeronautics Ltd. Ducted fan VTOL vehicles
US20060016930A1 (en) * 2004-07-09 2006-01-26 Steve Pak Sky hopper
US20080105781A1 (en) * 2006-03-28 2008-05-08 Airbus France Aircraft with reduced environmental impact
CN105683041A (zh) * 2013-08-29 2016-06-15 空中客车防卫和太空有限责任公司 能够垂直起动的飞行设备
US20160207625A1 (en) * 2013-08-29 2016-07-21 Airbus Defence and Space GmbH Aircraft Capable of Vertical Take-Off
CN106573678A (zh) * 2014-03-18 2017-04-19 杰欧比航空有限公司 具有枢转旋翼和收拢旋翼桨叶的气动高效的轻型垂直起飞和着陆飞机
US20160214710A1 (en) * 2014-05-07 2016-07-28 XTI Aircraft Company Vtol aircraft
CN107074358A (zh) * 2014-05-07 2017-08-18 Xti飞行器公司 垂直起降的飞行器
CN105620735A (zh) * 2014-11-26 2016-06-01 艾克斯克拉夫特企业公司 高速多旋翼垂直起降飞行器
WO2017063088A1 (en) * 2015-10-16 2017-04-20 4Front Robotics Ltd. Rotary wing aircraft
CN206511122U (zh) * 2017-02-13 2017-09-22 深圳市龙云创新航空科技有限公司 一种垂直起降固定翼飞行器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200012524A (ko) * 2018-07-27 2020-02-05 이소민 드론
KR102609548B1 (ko) 2018-07-27 2023-12-05 이소민 드론

Also Published As

Publication number Publication date
US11383832B2 (en) 2022-07-12
EP3724071A4 (en) 2021-08-25
US20210362848A1 (en) 2021-11-25
EP3724071A1 (en) 2020-10-21
WO2019116101A1 (en) 2019-06-20
EP3724071B1 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
EP3724071B1 (en) Variable-geometry vertical take-off and landing (vtol) aircraft system
EP3415423B1 (en) Personal air vehicle with ducted fans
ES2911611T3 (es) Conjunto modular de aeronave para transporte aéreo y terrestre
US20170341725A1 (en) Motor-wing Gimbal Aircraft, Methods, and Applications
JP6981993B2 (ja) 垂直離着陸機及びその動作プロセス
CN111132900B (zh) 用于飞行器的基于非对称can的通信
US11292594B2 (en) System of play platform for multi-mission application spanning any one or combination of domains or environments
US9428257B2 (en) Extended endurance air vehicle
WO2019202325A1 (en) Vertical take-off and landing vehicle
KR101849934B1 (ko) 틸트식 추진 유닛을 가진 항공기 조종을 위한 시스템, 방법 및 컴퓨터 프로그램 제품
US9096314B2 (en) Electric VTOL aircraft
JP4223921B2 (ja) 垂直離着陸飛翔装置
US5915649A (en) Roadable helicopter
US6969027B2 (en) Vertical takeoff and landing apparatus
US20100294877A1 (en) VTOL lifting body flying automobile
KR20170104901A (ko) 서브 드론 모듈 설치 개수에 따라 페이로드를 조절하는 드론 조립체 및 서브 드론 모듈 중앙 비행제어 수단과 방법
KR20190040136A (ko) 승객 또는 화물 수송용 자율 조종 항공기
CN105358428B (zh) 混合动力垂直起降运载工具
EP3740427B1 (en) Multi mode safety system for vtol aircraft
EP3912910B1 (en) Tailsitting biplane aircraft having a coaxial rotor system
US20240158076A1 (en) Vertical Take-Off and Landing Aircraft
US11479353B2 (en) Distributed elevon systems for tailsitting biplane aircraft
US11650604B2 (en) Yaw control systems for tailsitting biplane aircraft
US11479354B2 (en) Thrust vectoring coaxial rotor systems for aircraft
US20230406488A1 (en) Vertical takeoff and landing (vtol) aircraft systems and methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination