CN111565558B - 根据田地的杂交种子选择和种子投资组合优化 - Google Patents
根据田地的杂交种子选择和种子投资组合优化 Download PDFInfo
- Publication number
- CN111565558B CN111565558B CN201880085904.5A CN201880085904A CN111565558B CN 111565558 B CN111565558 B CN 111565558B CN 201880085904 A CN201880085904 A CN 201880085904A CN 111565558 B CN111565558 B CN 111565558B
- Authority
- CN
- China
- Prior art keywords
- yield
- hybrid seeds
- hybrid
- data
- seed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005457 optimization Methods 0.000 title claims description 26
- 238000000034 method Methods 0.000 claims abstract description 59
- 230000007613 environmental effect Effects 0.000 claims abstract description 34
- 238000004891 communication Methods 0.000 claims description 30
- 238000003306 harvesting Methods 0.000 claims description 25
- 230000012010 growth Effects 0.000 claims description 24
- 238000010606 normalization Methods 0.000 claims description 10
- 238000007477 logistic regression Methods 0.000 claims description 7
- 238000012706 support-vector machine Methods 0.000 claims description 6
- 238000007637 random forest analysis Methods 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 106
- 229910052757 nitrogen Inorganic materials 0.000 description 53
- 239000002689 soil Substances 0.000 description 43
- 230000009418 agronomic effect Effects 0.000 description 27
- 238000003860 storage Methods 0.000 description 25
- 238000013515 script Methods 0.000 description 20
- 240000008042 Zea mays Species 0.000 description 18
- 230000006870 function Effects 0.000 description 18
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 17
- 241000196324 Embryophyta Species 0.000 description 16
- 239000003337 fertilizer Substances 0.000 description 13
- 238000009313 farming Methods 0.000 description 12
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 11
- 238000010801 machine learning Methods 0.000 description 11
- 235000009973 maize Nutrition 0.000 description 11
- 238000007726 management method Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 238000004883 computer application Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 10
- 239000012615 aggregate Substances 0.000 description 9
- 238000003973 irrigation Methods 0.000 description 9
- 230000002262 irrigation Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 238000013479 data entry Methods 0.000 description 8
- 239000000575 pesticide Substances 0.000 description 8
- 235000013339 cereals Nutrition 0.000 description 7
- 238000003967 crop rotation Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 6
- 235000005822 corn Nutrition 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000005416 organic matter Substances 0.000 description 6
- 230000008520 organization Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 230000037406 food intake Effects 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000013480 data collection Methods 0.000 description 3
- 238000013523 data management Methods 0.000 description 3
- 238000013499 data model Methods 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 238000003066 decision tree Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000035558 fertility Effects 0.000 description 3
- 239000000417 fungicide Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000004162 soil erosion Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 241001124569 Lycaenidae Species 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 238000013079 data visualisation Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 230000000855 fungicidal effect Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000013439 planning Methods 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000012356 Product development Methods 0.000 description 1
- 238000012896 Statistical algorithm Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010224 classification analysis Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011157 data evaluation Methods 0.000 description 1
- 239000002837 defoliant Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002986 genetic algorithm method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 235000021232 nutrient availability Nutrition 0.000 description 1
- 238000009406 nutrient management Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 230000035040 seed growth Effects 0.000 description 1
- -1 silt Substances 0.000 description 1
- 239000002688 soil aggregate Substances 0.000 description 1
- 238000005527 soil sampling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06313—Resource planning in a project environment
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C21/00—Methods of fertilising, sowing or planting
- A01C21/005—Following a specific plan, e.g. pattern
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B79/00—Methods for working soil
- A01B79/005—Precision agriculture
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Entrepreneurship & Innovation (AREA)
- Theoretical Computer Science (AREA)
- Marketing (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Soil Sciences (AREA)
- Quality & Reliability (AREA)
- Marine Sciences & Fisheries (AREA)
- Biodiversity & Conservation Biology (AREA)
- Operations Research (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Environmental Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Animal Husbandry (AREA)
- Educational Administration (AREA)
- Mining & Mineral Resources (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Mechanical Engineering (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Pretreatment Of Seeds And Plants (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
被提供用于生成针对目标田地的目标成功杂交种子组的技术包括服务器接收农业数据记录,这些农业数据记录表示表示描述杂交种子的种子和产量特性的作物种子数据以及这些杂交种子被种植的位置处的农业田地的第一田地地理位置数据。服务器接收要种植杂交种子的目标田地的第二地理位置数据。服务器生成杂交种子特性的数据集,该杂交种子属性的数据集包括杂交种子的产量值和环境分类,并且随后基于杂交种子属性的数据集和第二地理位置数据生成成功概率分数的数据集,该成功概率分数的数据集描述目标田地上的成功产量的概率。服务器基于成功概率分数和产量阈值,生成包括杂交种子和成功概率值的目标成功产量组。服务器显示该目标成功产量组。
Description
版权声明
本专利文件的公开内容的一部分包含受版权保护的材料。版权所有者对专利和商标局专利文件或记录中原样出现的任何专利文件或专利公开的复制均无异议,但在其他方面保留所有版权或权利。2015-2018 The Climate Corporation。
技术领域
本公开涉及在农业中有用的计算机系统。本公开更具体地涉及一种计算机系统,该计算机系统被编程为使用与杂交种子和一个或多个目标田地相关的农业数据,以提供被识别为产生超过一个或多个目标田地的平均产量值的成功产量值的一组推荐的杂交种子。
背景技术
在本章节中描述的方法是可以实行的方法,但不一定是先前已经构想或实行的方法。因此,除非另外指出,否则不应仅由于本章节中描述的任何方法被包括在本章节中就将它们设想成现有技术。
成功的收获取决于许多因素,包括杂交选择、土壤施肥、灌溉和害虫控制,这些因素都有助于玉米植物的生长。选择哪些杂交种子在目标田地上种植是最重要的农业管理因素之一。杂交种子的种类包括适合短生长季节到长生长季节、较热或较冷温度、较干燥或较潮湿气候的杂交种、以及适合特定土壤成分的不同杂交种。对于特定杂交种子,获得最佳表现取决于田地条件是否与针对特定杂交种子的最优生长条件一致。例如,特定的玉米杂交种可以被评级为为种植者生产特定量的产量,但是,如果田地条件与用于对该特定玉米杂交种进行评级的最优条件不匹配,则玉米杂交种不太可能满足种植者的产量预期。
一旦选择了一组杂交种子进行种植,则种植者必须确定种植策略。种植策略包括确定每个所选杂交种子的量和位置。确定量和位置的策略可能决定收获产量是否满足预期。例如,种植具有类似优势和脆弱性的杂交种子,如果条件有利,可能会产生良好的产量。然而,如果条件发生波动,例如降雨量低于预期或气温高于正常水平,则类似杂交种子的总产量可能会降低。为了克服不可预见的环境波动,最好采用多样化的种植策略。
本文所述的技术有助于缓解其中一些问题,并帮助种植者确定在哪个田地上种植什么种子。
发明内容
所附权利要求书可以用作本公开的发明内容。
附图说明
在附图中:
图1示出了被配置为执行本文描述的功能的示例计算机系统,该计算机系统与其他装置一起被示出在田地环境中,该系统可以与其他装置交互操作。
图2示出了当示例移动应用被加载以用于执行时,主存储器中的指令集的示例逻辑组织的两个视图。
图3示出了编程的过程,通过该过程,农业智能计算机系统使用由一个或多个数据源提供的农艺数据生成一个或多个预配置的农艺模型。
图4是示出了可以在其上实现本发明的实施例的计算机系统的框图。
图5描绘了用于数据条目的时间线视图的示例实施例。
图6描绘了用于数据条目的电子表格视图的示例实施例。
图7描绘了基于杂交种子的农业数据记录和与目标田地相关联的地理位置数据来生成杂交种子的目标成功产量组的示例流程图,该杂交种子的目标成功产量组被识别以用于获得目标田地上的最优产量表现。
图8描绘了州内不同区域的示例,这些不同区域具有基于生长季节持续时间的不同的指定相对成熟度。
图9描绘了描述在所分类的相对成熟度中的杂交种子的标准化产量值的范围的图形。
图10描绘了基于杂交种子的农业数据记录和与目标田相关的地理位置数据来生成一组目标杂交种子的示例流程图,该组目标杂交种子被识别以用于获得目标田地上的最优产量表现以及经管理的风险。
图11描绘了一种或多种杂交种子的产量值相对于风险值的示例图形。
具体实施方式
在以下描述中,出于解释的目的,阐述了许多具体细节以便提供对本公开的透彻理解。然而,将显而易见的是,可以在没有这些具体细节的情况下实践实施例。在其他实例中,以框图形式示出了公知的结构和设备,以避免不必要地使本公开难以理解。在根据以下概览的多个章节中公开了实施例:
1.总体概览
2.示例农业智能计算机系统
2.1.结构概览
2.2.应用程序概览
2.3.对计算机系统的数据摄取
2.4.过程概览——农艺模型训练
2.5.杂交种子分类子系统
2.6.杂交种子推荐子系统
2.7.实现方式示例——硬件概述
3.功能概述——生成并显示杂交种子的目标成功产量组
3.1.数据输入
3.2.农业数据处理
3.3.呈现目标成功产量组
4.功能概述——生成并显示用于种植的目标杂交种子
4.1.数据输入
4.2.杂交种子选择
4.3.生成杂交种子的风险值
4.4.生成目标杂交种子的数据集
4.5.种子投资组合分析
4.6.呈现目标杂交种子组
1.概述
本文公开了一种计算机系统和计算机实现方法,用于生成具有在一个或多个目标田地上的高成功概率的杂交种子的一组目标成功产量组。在实施例中,可以使用服务器计算机系统来生成杂交种子的目标成功产量组,该服务器计算机系统被配置为通过数字数据通信网络接收一个或多个农业数据记录,这些农业数据记录表示描述一种或多种杂交种子的种子和产量特性的作物种子数据以及种植一种或多种杂交种子的一个或多个农业田地的第一田地地理位置数据。然后,服务器计算机系统接收要种植杂交种子的一个或多个目标田地的第二地理位置数据。
服务器计算机系统包括杂交种子标准化指令,杂交种子标准化指令被配置为用于生成杂交种子特性的数据集,该数据集描述来自一个或多个农业数据记录的每种杂交种子的代表性产量值和环境分类。服务器计算机系统上的成功概率生成指令被配置为然后生成成功概率分数的数据集,该数据集描述一个或多个目标田地上的成功产量的概率。成功产量可以被定义为针对环境分类的特定杂交种子的估计产量值,该估计产量值超过针对同一环境分类的平均产量特定产量的量。每种杂交种子的成功概率值基于杂交种子特性的数据集和一个或多个目标田地的第二地理位置数据。
服务器计算机系统包括产量分类指令,产量分类指令被配置为生成由一种或多种杂交种子的子集以及与一种或多种杂交种子的每个子集相关联的成功概率值构成的目标成功产量组。目标成功产量组的生成是基于每种杂交种子的成功概率分数的数据集和所配置的成功产量阈值的,其中,如果杂交种子的成功概率值超过成功产量阈值,则将该杂交种子添加到目标成功产量组中。
服务器计算机系统被配置为使得在与服务器计算机系统通信地耦合的显示设备上显示目标成功产量组和与目标成功产量组中的每种杂交种子相关联的产量值。
在实施例中,目标成功产量组(或另一组种子和田地)可用于生成一组目标杂交种子,这组目标杂交种子被选择用于在一个或多个目标田地上种植。服务器计算机系统被配置为接收候选杂交种子的目标成功产量组,这些候选杂交种子可为在一个或多个目标田地上种植的候选项。目标成功产量组包括一种或多种杂交种子、与一种或多种杂交种子中的每一个相关联的成功概率值(其描述成功产量概率)、以及与一种或多种杂交种子中的每种杂交种子相关联的历史农业数据。然后,服务器计算机接收与一个或多个目标田地相关的特性信息。
服务器计算机系统内的杂交种子过滤指令被配置为选择成功概率值大于目标概率过滤阈值的杂交种子的子集。服务器计算机系统包括杂交种子标准化指令,该指令用于基于历史农业数据来生成一种或多种杂交种子的子集中的杂交种子的代表性产量值。
服务器计算机系统包括风险生成指令,风险生成指令被配置用于针对一种或多种杂交种子的子集生成风险值的数据集。风险值的数据集描述基于历史农业数据的每种杂交种子的风险。所述服务器计算机系统包括优化分类指令,优化分类指令被配置为基于风险值的数据集、一种或多种杂交种子的子集的代表性产量值以及一个或多个目标田地的一个或多个属性,来生成用于在一个或多个目标田地上种植的目标杂交种子的数据集。目标杂交种子的数据集具有跨所述一个或多个目标田地满足针对一定范围的风险值的特定目标阈值的代表性产量值,该一定范围的风险值来自风险值的数据集。
服务器计算机系统被配置为在与服务器计算机系统通信地耦合的显示设备上显示目标杂交种子的数据集,包括与目标杂交种子的数据集中的每种目标杂交种子以及一个或多个目标田地相关联的代表性产量值和来自风险值的数据集中的风险值。
2.示例农业智能计算机系统
2.1.结构概览
图1示出了被配置为执行本文描述的功能的示例计算机系统,该计算机系统与其他装置一起被示出在在田地环境中,该系统可以与其他装置交互操作。在一个实施例中,用户102拥有、操作或占有位于田地位置中的或与田地位置相关联的田地管理者计算设备104,该田地位置为例如旨在用于农业活动的田地或针对一个或多个农业田地的管理位置。田地管理器计算机设备104被编程为或配置为经由一个或多个网络109向农业智能计算机系统130提供田地数据106。
田地数据106的示例包括:(a)标识数据(例如,英亩数、田地名称、田地标识符、地理标识符、边界标识符、作物标识符、以及可用于标识农田的任何其他合适数据,例如普通土地单元(CLU)、批号和块号、地号、地理坐标和边界、农场序列号(FSN)、农场号、大片土地号(tract number)、田地号、地区、镇、和/或范围);(b)收获数据(例如,作物类型、作物品种、轮作(crop rotation)、作物是否有机生长、收获日期、实际生产历史(APH)、预期产量、产量、作物价格、作物收入、谷物湿度、耕种实践、以及先前生长季节信息);(c)土壤数据(例如,类型、组成、pH、有机质(OM)、阳离子交换能力(CEC));(d)种植数据(例如,种植日期,(一个或多个)种子类型、所种植的种子的相对成熟度(RM)、种子总数);(e)肥料数据(例如,营养物类型(氮、磷、钾)、施用日期、量、来源、方法);(f)化学应用数据(例如,农药、除草剂、杀真菌剂、旨在用作植物调节剂、落叶剂或干燥剂的其他物质或物质的混合物、施用日期、量、来源、方法);(g)灌溉数据(例如,施用日期、量、来源、方法);(h)天气数据(例如,降水量、降雨率、预测降水量、水流率区域、温度、风、预报、压力、能见度、云、热指数、露点、湿度、雪深度、空气质量、日出、日落);(i)图像数据(例如,来自农业装置传感器、照相机、计算机、智能电话、平板电脑、无人飞行器、飞机或卫星的图像和光谱信息);(j)侦察观察(照片、视频、自由形式注释、录音、天气条件(温度、(当前和随时间的)降水量、土壤湿度、作物生长阶段、风速、相对湿度、露点、黑层);以及(k)土壤、种子、作物物候信息、害虫和病害预测以及来源和数据库。
数据服务器计算机108通信地耦合到农业智能计算机系统130,并且被编程或被配置为经由(一个或多个)网络109将外部数据110发送到农业智能计算机系统130。外部数据服务器计算机108可以由与农业智能计算机系统130相同的法人或实体拥有或操作,或者由诸如政府机构、非政府组织(NGO)、和/或私人数据服务提供商的不同人或实体拥有或操作。外部数据的示例包括天气数据、图像数据、土壤数据、或与作物产量相关的统计数据等。外部数据110可以包括与田地数据106相同类型的信息。在一些实施例中,外部数据110由外部数据服务器108提供,该外部数据服务器108由拥有和/或操作农业智能计算机系统130的同一实体所拥有。例如,农业智能计算机系统130可以包括数据服务器,该数据服务器专门关注于可能以其他方式从第三方来源获得的数据类型,例如天气数据。在一些实施例中,外部数据服务器108可以实际上被并入系统130中。
农业装置111可以具有固定在其上的一个或多个远程传感器112,这些传感器直接或间接地经由农业装置111通信地耦合到农业智能计算机系统130,并且被编程或被配置为将传感器数据发送到农业智能计算机系统130。农业装置111的示例包括拖拉机、联合收割机(combines)、收割机、播种机、卡车、肥料设备、包括无人驾驶飞行器的飞行器、以及任何其他物理机械或硬件物品(通常是移动机械,并且其可以用于与农业相关联的任务)。在一些实施例中,装置111的单个单元可以包括多个传感器112,所述多个传感器112本地耦合在该装置上的网络中;控制器区域网(CAN)是可以安装在联合收割机、收割机、喷雾器和耕耘机中的这样的网络的示例。施用控制器114经由(一个或多个)网络109通信地耦合到农业智能计算机系统130,并且被编程或被配置为从农业智能计算机系统130接收用于控制农业车辆或器具的操作参数的一个或多个脚本。例如,控制器区域网(CAN)总线接口可以用于实现从农业智能计算机系统130到农业装置111的通信,诸如如何使用可从加利福尼亚州旧金山的克莱米特公司获得的CLIMATE FIELDVIEW DRIVE。传感器数据可以包括与田地数据106相同类型的信息。在一些实施例中,远程传感器112可以不固定到农业装置111,而是可以远程地位于田地中并且可以与网络109通信。
装置111可以包括编程有驾驶室应用的驾驶室计算机115,该驾驶室应用可以包括在本文的其他部分中进一步描述的用于设备104的移动应用的版本或变体。在实施例中,驾驶室计算机115包括紧凑型计算机,通常是平板大小的计算机或智能电话,其具有安装在装置111的操作者驾驶室内的图形屏幕显示器,例如彩色显示器。驾驶室计算机115可以实现本文针对移动计算机设备104进一步描述的操作和功能中的一部分或全部。
(一个或多个)网络109广义地代表使用任何有线或无线链路(包括地面或卫星链路)的一个或多个数据通信网络(包括局域网、广域网、互联网络或互联网)的任何组合。所述(一个或多个)网络可以由提供图1的各种元件之间的数据交换的任何介质或机构实现。图1的各种元件还可以具有直接(有线或无线)通信链路。传感器112、控制器114、外部数据服务器计算机108、以及系统的其他元件各自包括与(一个或多个)网络109兼容的接口,并且被编程或被配置为使用标准化协议(例如,TCP/IP、蓝牙、CAN协议和更高层协议(例如HTTP、TLS等))以进行跨网络通信。
农业智能计算机系统130被编程或被配置为从田地管理者计算设备104接收田地数据106、从外部数据服务器计算机108接收外部数据110、以及从远程传感器112接收传感器数据。农业智能计算机系统130还可以被配置为以在本公开的其他章节中进一步描述的方式,托管、使用或执行一个或多个计算机程序、其他软件元素、诸如FPGA或ASIC之类的数字编程逻辑、或其任意组合,以执行:转换(translation)和存储数据值、构建一个或多个田地上的一种或多种作物的数字模型、生成建议和通知、以及生成脚本并将其发送到施用控制器114。
在实施例中,农业智能计算机系统130被编程有或包括通信层132、表现层(presentation layer)134、数据管理层140、硬件/虚拟化层150、以及模型和田地数据储存库160。在此上下文中,“层”是指电子数字接口电路、微控制器、诸如驱动器之类的固件、和/或计算机程序或其他软件元件的任何组合。
通信层132可以被编程或被配置为执行输入/输出接口功能,包括分别向田地管理者计算设备104、外部数据服务器计算机108、以及远程传感器112发送针对田地数据、外部数据、以及传感器数据的请求。通信层132可以被编程或被配置为将接收到的数据发送到模型和田地数据储存库160以存储为田地数据106。
表现层134可以被编程或被配置为生成要在田地管理者计算设备104、驾驶室计算机115、或通过网络109耦合到系统130的其他计算机上显示的图形用户界面(GUI)。GUI可以包括用于输入要发送到农业智能计算机系统130的数据、生成对模型和/或建议的请求、和/或显示建议、通知、模型、以及其他田地数据的控件。
数据管理层140可以被编程或配置为管理涉及储存库160和系统的其他功能元件的读操作和写操作,包括在系统的功能元件和储存库之间传送的查询和结果集。数据管理层140的示例包括JDBC、SQL服务器接口代码和/或HADOOP接口代码等。储存库160可以包括数据库。如本文所使用的,术语“数据库”可以指数据体、关系数据库管理系统(RDBMS)、或这两者。如本文所使用的,数据库可以包括任何数据集合,包括分层数据库、关系数据库、平面文件数据库、对象关系数据库、面向对象的数据库、分布式数据库、以及存储在计算机系统中的记录或数据的任何其他结构化集合。RDBMS的示例包括但不限于包括MYSQL、DB2、SQL SERVER、以及POSTGRESQL数据库。然而,可以使用实现本文描述的系统和方法的任何数据库。
当不经由与农业智能计算机系统交互的一个或多个农业机器或农业机器设备将田地数据106直接提供给农业智能计算机系统时,可以经由用户设备(由农业智能计算机系统服务)上的一个或多个用户界面来提示用户输入这样的信息。在示例实施例中,用户可以通过访问用户设备(由农业智能计算机系统服务)上的地图并选择已经在地图上图形地示出的特定CLU来指定标识数据。在替代实施例中,用户102可以通过访问用户设备(由农业智能计算机系统130服务)上的地图并且在地图上绘画田地的边界来指定标识数据。这样的CLU选择或地图绘画表示地理标识符。在替代实施例中,用户可以通过经由用户设备访问来自美国农业部服务机构或其他来源的田地标识数据(作为形状文件或以类似格式提供)来指定识别数据,并将这样的田地标识数据提供给农业智能计算机系统。
在示例实施例中,农业智能计算机系统130被编程为生成并且使得显示包括数据管理器的图形用户界面以用于数据输入。在使用上述方法标识了一个或多个田地之后,数据管理器可以提供一个或多个图形用户界面小工具,当这些小工具被选择时,可标识对田地、土壤、作物、耕种、或营养物实践的改变。数据管理器可以包括时间线视图、电子表格视图、和/或一个或多个可编辑程序。
图5描绘了用于数据条目的时间线视图的示例实施例。使用图5中描绘的显示器,用户计算机可以输入针对添加事件的特定田地和特定日期的选择。在时间线的顶部描绘的事件可以包括氮、种植、实践、以及土壤。为了添加氮施用事件,用户计算机可以提供输入以选择氮选项卡(nitrogen tab)。然后,用户计算机可以在时间线上选择针对特定田地的位置,以指示在所选田地上氮的施用。响应于接收到在时间线上针对特定田地的位置的选择,数据管理器可以显示数据条目覆盖图,从而允许用户计算机输入关于氮施用、种植程序、土壤施用、耕种程序、灌溉实践、或关于特定田地的其他信息的数据。例如,如果用户计算机选择时间线的一部分并且指示施用氮,则数据条目覆盖图可以包括用于输入所施用的氮的量、施用的日期、所使用的肥料的类型、以及与氮的施用相关的任何其他信息的田地。
在实施例中,数据管理器提供用于创建一个或多个程序的接口。在此上下文中,“程序”是指与氮施用、种植程序、土壤施用、耕种程序、灌溉实践、或可能与一个或多个田地相关的其他信息相关、并且可存储在数字数据存储装置中以在其他操作中作为集合重用的数据集合。在创建了程序之后,可以将其概念性地应用于一个或多个田地,并且可以将对该程序的引用与标识这些田地的数据相关联地存储在数字存储中。因此,用户计算机可以创建指示氮的特定施用的程序,然后将该程序应用于多个不同田地,而非手动输入与针对多个不同区域的相同氮施加相关的相同数据。例如,在图5的时间线视图中,最上面的两个时间线中选择了“春季施用”程序,其包括在四月初施用150lbs N/ac。数据管理器可以提供用于编辑程序的界面。在实施例中,当特定程序被编辑时,已选择该特定程序的每个田地被编辑。例如,在图5中,如果“春季施用”程序被编辑为将氮的施用减少到130lbs N/ac,则可以基于经编辑的程序用减少的氮施用来更新最上面两个田地。
在实施例中,响应于接收到对具有所选择的程序的田地的编辑,数据管理器移除该田地与所选择的程序的对应关系。例如,如果将氮施用添加到图5中的最上面的田地,则界面可以更新以指示“春季施用”程序不再被应用于最上面的田地。虽然可以保留在四月初施用氮,但是对“春季施用”程序的更新将不会改变四月施用氮。
图6描绘了用于数据条目的电子表格视图的示例实施例。使用图6中所描绘的显示器,用户可以创建和编辑针对一个或多个田地的信息。数据管理器可以包括如图6所示的用于输入关于氮、种植、实践、以及土壤的信息的电子表格。为了编辑特定条目,用户计算机可以在电子表格中选择特定条目并且更新值。例如,图6描绘了针对第二田地的目标产值的进行中更新。此外,用户计算机可以选择一个或多个田地,以便应用一个或多个程序。响应于接收到针对特定田地的程序的选择,数据管理器可以基于所选择的程序自动完成针对特定田地的条目。如时间线视图中,数据管理器可以响应于接收到对特定程序的更新而更新针对与该程序相关联的每个田地的条目。此外,数据管理器可以响应于接收到针对田地的条目中的一个的编辑,移除所选择的程序与该田地的对应关系。
在实施例中,模型和田地数据存储在模型和田地数据储存库160中。模型数据包括针对一个或多个田地创建的数据模型。例如,作物模型可以包括一个或多个田地上作物发育的数字化构造的模型。在此上下文中,“模型”是指彼此相关联的电子数字存储的可执行指令和数据值集合,这些指令能够接收针对基于指定输入值的解析的编程或其他数字召用、调用、或请求并对其做出响应,以产生一个或多个存储或计算的输出值,该输出值可用作计算机实现的建议、输出数据显示、或机器控制等的基础。本领域技术人员发现使用数学方程表达模型是方便的,但该表达形式并不将本文所公开的模型限制为抽象概念;而是,本文中的每个模型在计算机中具有存储的可执行指令和数据的形式的实际应用,所述指令和数据使用计算机来实现该模型。模型可以包括一个或多个田地上的过去事件的模型、一个或多个田地的当前状态的模型、和/或一个或多个田地上的预测事件的模型。模型和田地数据可以存储在存储器中的数据结构、数据库表中的行、平面文件或电子表格中、或其他形式的存储数字数据中。
在实施例中,杂交种子分类子系统170包含特别配置的逻辑(包括但不限于杂交种子标准化指令172、成功概率生成指令174以及产量分类指令176),包括农业智能计算机系统130中的主存储器(例如RAM)的一个或多个页的集合,其中,可执行指令被加载到该主存储器中,并且当指令被执行时,使农业智能计算系统执行本文参考这些模块描述的功能或操作。在实施例中,杂交种子推荐子系统180包含特别配置的逻辑(包括但不限于杂交种子过滤指令182、风险生成指令184、优化分类指令186),包括农业智能计算机系统130中的主存储器(例如RAM)的一个或多个页的集合,其中,可执行指令被加载到该主存储器中,并且当指令被执行时,使农业智能计算系统执行本文参考这些模块描述的功能或操作。例如,杂交种子标准化指令172可以包括RAM中的页面的集合,其包含指令,指令在被执行时,使得执行本文所述的目标识别功能。指令可以是CPU的指令集中的机器可执行代码,并且其可以基于在JAVA、C++、OBJECTIVE-C、或任何其他人类可读编程语言或环境中编写的源代码(单独地或与JAVASCRIPT中的脚本、其他脚本语言和其他编程源文本组合地)来编译。术语“页”旨在广泛地指代主存储器中的任何区域,并且在系统中使用的特定术语可以根据存储器架构或处理器架构而变化。在另一实施例中,杂交种子标准化指令172、成功概率生成指令174、产量分类指令176、杂交种子过滤指令182、风险生成指令184以及优化分类指令186中的每个还可以表示源代码的一个或多个文件或项目,这些文件或项目数字地存储在农业智能计算机系统130或单独的储存库系统中的诸如非易失性RAM或磁盘存储之类的大容量存储设备中,并且当被编译或被解释时使得生成可执行指令,该可执行指令当被执行时使得农业智能计算系统执行本文中参考那些模块描述的功能或操作。换句话说,附图可以表示程序员或软件开发者组织和布置源代码以便以后编译为可执行代码或解释为字节码或等效物以供农业智能计算机系统130执行的方式。
硬件/虚拟化层150包括一个或多个中央处理单元(CPU)、存储器控制器、以及计算机系统的其他设备、组件或元件(例如易失性或非易失性存储器、诸如磁盘之类的非易失性存储装置、以及I/O设备或接口,例如结合图4所示和所述的)。
为了示出清晰的示例,图1示出了某些功能元件的有限数量的实例。然而,在其他实施例中,可能存在任何数量的这样的元件。例如,实施例可以使用与不同用户相关联的数千或数百万个不同的移动计算设备104。此外,系统130和/或外部数据服务器计算机108可以使用物理机器或虚拟机器的两个或更多个处理器、核心、集群、或实例来实现,并且被配置在数据中心、共享计算设施或云计算设施中的分立位置中或与其他元件处于同一位置。
2.2.应用程序概览
在实施例中,使用一个或多个计算机程序或其他软件元件来实现本文所述的功能将使得通用计算机被配置作为特定机器或专门适于执行本文所述功能的计算机,其中,所述一个或多个计算机程序或其他软件元件被加载到一个或多个通用计算机中并使用一个或多个通用计算机来执行。此外,本文进一步描述的流程图中的每个可以单独地或与本文的散文中的过程和功能的描述组合地用作算法、计划或指导,其可以用于对计算机或逻辑进行编程以实现所描述的功能。换句话说,本文的所有散文文本和所有附图旨在一起提供算法、计划或指导的公开,这些公开足以允许技术人员结合这样的人员的技术和知识(给定适合于这种类型的发明和公开的技术水平),对计算机进行编程以执行本文描述的功能。
在实施例中,用户102使用配置有操作系统和一个或多个应用程序或应用的田地管理者计算设备104与农业智能计算机系统130交互;田地管理者计算设备104还可以在程序控制或逻辑控制下独立地和自动地与农业智能计算机系统交互操作,并且不总是需要直接的用户交互。田地管理者计算设备104广义地代表智能电话、PDA、平板计算设备、膝上型计算机、台式计算机、工作站、或能够发送和接收信息并且执行本文描述的功能的任何其他计算设备中的一者或多者。田地管理者计算设备104可以使用存储在田地管理者计算设备104上的移动应用经由网络进行通信,并且在一些实施例中,可以使用电缆113或连接器将设备耦合到传感器112和/或控制器114。特定用户102可以结合系统130同时拥有、操作或占有和使用多于一个的田地管理者计算设备104。
移动应用可以经由网络向一个或多个移动计算设备提供客户端侧功能性。在示例实施例中,田地管理者计算设备104可以经由网络浏览器或本地客户端应用程序或应用来访问移动应用。田地管理者计算设备104可以使用基于网络的协议或格式(例如,HTTP、XML和/或JSON)、或特定应用的协议,向一个或多个前端服务器发送数据,以及从一个或多个前端服务器接收数据。在示例实施例中,数据可以采取到移动计算设备中的请求和用户信息输入(例如,田地数据)的形式。在一些实施例中,移动应用与田地管理者计算设备104上的位置追踪硬件和软件交互,该位置追踪硬件和软件使用标准追踪技术来确定田地管理者计算设备104的位置,该标准追踪技术为例如无线电信号的多点定位、全球定位系统(GPS)、WiFi定位系统、或其他移动定位方法。在一些情况下,与设备104、用户102、和/或(一个或多个)用户账户相关联的位置数据或其他数据可以通过查询设备的操作系统或通过请求设备上的应用从操作系统获得数据来获得。
在实施例中,田地管理者计算设备104向农业智能计算机系统130发送田地数据106,该田地数据106包括或包含但不限于表示以下项中的一个或多个的数据值:一个或多个田地的地理位置、一个或多个田地的耕种信息、种植在一个或多个田地中的作物、以及从一个或多个田地提取的土壤数据。田地管理者计算设备104可以响应于来自用户102的指定针对一个或多个田地的数据值的用户输入而发送田地数据106。此外,当一个或多个数据值变得对田地管理者计算设备104可用时,田地管理者计算设备104可以自动地发送田地数据106。例如,田地管理者计算设备104可以通信地耦合到包括灌溉传感器和/或灌溉控制器的远程传感器112和/或施用控制器114。响应于接收到指示施用控制器114将水释放到了一个或多个田地上的数据,田地管理者计算设备104可以将田地数据106发送到农业智能计算机系统130,从而指示水被释放到了一个或多个田地上。在本公开中标识的田地数据106可以使用电子数字数据来输入和传送,该电子数字数据是使用HTTP上的参数化URL或另一合适的通信或消息传送协议在计算设备之间传送的。
移动应用的商业示例是CLIMATE FIELDVIEW,其可从加利福尼亚州旧金山的克莱米特公司商业地获得。CLIMATE FIELDVIEW应用或其他应用可被修改、扩展、或调整以包括在本公开的申请日之前未公开的特征、功能和编程。在一个实施例中,移动应用包括集成软件平台,该集成软件平台允许种植者为他们的操作做出基于事实的决策,因为该平台将关于种植者田地的历史数据与种植者希望比较的任何其他数据组合。该组合和比较可以实时地执行,并且基于提供潜在方案的科学模型,以允许种植者做出更好、更明智的决定。
图2示出了当示例移动应用被加载以用于执行时,主存储器中的指令集的示例逻辑组织的两个视图。在图2中,每个被命名的元件表示RAM或其他主存储器的一个或多个页面的区域,或者磁盘存储或其他非易失性存储的一个或多个块的区域,以及这些区域内的编程指令。在一个实施例中,在视图(a)中,移动计算机应用200包括账户-田地-数据摄取-共享指令202、概览和警报指令204、数字地图书指令206、种子和种植指令208、氮指令210、天气指令212、田地健康指令214、以及表现指令216。
在一个实施例中,移动计算机应用200包括账户田地数据摄取共享指令202,其被编程为经由手动上传或API从第三方系统接收、转换和摄取田地数据。数据类型可以包括田地边界、产量图、种植后的图、土壤测试结果、施用后的图、和/或管理地域等。数据格式可以包括形状文件、第三方的本地数据格式、和/或农场管理信息系统(FMIS)导出等。接收数据可以经由人工上传、具有附件的电子邮件、将数据推送到移动应用的外部API、或调用外部系统的API以将数据拉到移动应用中的指令来进行。在一个实施例中,移动计算机应用程序200包括数据收件箱。响应于接收到对数据收件箱的选择,移动计算机应用200可以显示图形用户界面,以人工上传数据文件并且将所上传的文件导入到数据管理器。
在一个实施例中,数字地图书指令206包括存储在设备存储器中的田地地图数据层,并且被编程有数据可视化工具和地理空间田地标注。这为种植者提供了随手可得的方便的信息,以便参考、记录和视觉洞察田地表现。在一个实施例中,概览和警报指令204被编程为提供对种植者重要的内容的操作范围视图,以及提供及时的建议以采取行动或关注特定问题。这允许种植者将时间集中在需要注意的地方,节省时间并且在整个季节中保持产量。在一个实施例中,种子和种植指令208被编程为基于科学模型和经验数据来提供用于种子选择、杂交布置(hybrid placement)、以及脚本创建的工具(包括可变速率(variablerate;VR)脚本创建)。这使得种植者能够通过优化的种子购买、布置和总数来最大化产量或投资回报。
在一个实施例中,脚本生成指令205被编程为提供界面,以生成包括可变速率(VR)肥力脚本。该界面使种植者能够为田地器具创建脚本,例如营养物施用、种植、以及灌溉。例如,种植脚本界面可以包括用于标识用于种植的种子的类型的工具。在接收到种子类型的选择后,移动计算机应用200可以显示被分成管理地域的一个或多个田地,例如,被创建作为数字地图书指令206的一部分的田地地图数据层。在一个实施例中,管理地域包括土壤地域,并且通过面板标识每个土壤地域和针对每个地域的土壤名称、质地、排水系统、或其他田地数据。移动计算机应用200还可以显示用于编辑或创建的工具,例如用于在一个或多个田地的地图上绘制管理地域(例如,土壤地域)的图形工具。种植程序可以应用于所有管理地域,或者不同的种植程序可以应用于管理地域的不同子集。当脚本被创建,移动计算机应用200可以使脚本可供下载,其格式为施用控制器可读的格式(例如,存档或压缩格式)。附加地和/或可选地,脚本可以从移动计算机应用200直接发送到驾驶室计算机115和/或上传到一个或多个数据服务器并被存储以供进一步使用。
在一个实施例中,氮指令210被编程为提供工具,以通过可视化氮对作物的可用性来通知氮决策。这使得种植者能够通过在季节期间优化氮施用来最大化产量或投资回报。示例编程功能包括显示图像(例如,SSURGO图像),以实现以高空间分辨率(精细至毫米级或更小,这取决于传感器的接近度和分辨率)绘制肥料施用地域和/或根据子田地土壤数据(例如,从传感器获得的数据)生成的图像;上传现有的种植者定义的地域;提供植物养分有效性的图和/或地图以实现调节跨多个地域的氮的施用;输出驱动机器的脚本;用于大量数据条目和调整的工具;和/或用于数据可视化的地图等。在此上下文中,“大量数据条目”可以意味着:输入数据一次,然后将相同的数据应用于已经在系统中定义的多个田地和/或地域;示例数据可以包括氮施用数据,其对于相同种植者的许多田地和/或地域是相同的,但是这样的大量数据条目适用于将任何类型的田地数据条目应用到移动计算机应用200中。例如,氮指令210可被编程为接受氮施用和实践程序的定义,并且接受指定跨多个田地应用这些程序的用户输入。在此上下文中,“氮施用程序”指的是与以下项相关联的存储的、命名的数据集合:名称、颜色代码或其他标识符、一个或多个施用日期、针对日期中的每个的材料或产品的类型和量、施用或掺入的方法(例如注入或撒施)、和/或针对每个日期的施用量或速率、受到施用的作物或混合作物等。在此上下文中,“氮实践程序”指的是与以下项相关联的存储的、命名的数据集合:实践名称;先前作物;耕种系统;初次耕种日期;一个或多个先前使用的耕种系统;一个或多个使用过的施用类型(例如肥料)指示标志。氮指令210还可以被编程为产生氮图表显示氮图表并使其显示,该氮图表指示指定氮的种植使用的预测以及预测是过剩还是短缺;在一些实施例中,不同的颜色指示标志可以示意通知过剩的量或短缺的量。在一个实施例中,氮图表包括计算机显示器设备中的图形显示,该图形显示包括多个行,每行与田地相关联并且标识该田地;指定在田地中种植了什么作物、田地大小、田地位置、以及田地周界的图形表示的数据;在每行中,时间线是逐月的,其中图形指示标志指定与月名相关的点处的每个氮施用和量;以及过剩或短缺的数字和/或彩色指示标志,其中颜色指示量级。
在一个实施例中,氮图表可以包括一个或多个用户输入特征(例如,调谐钮或滑动条),以动态地改变氮种植和实践程序,使得用户可以优化其氮图表。然后,用户可以使用他的优化的氮图表和相关的氮种植和实践程序来实现一个或多个脚本(包括可变速率(VR)肥力脚本)。氮指令210还可以被编程以产生氮地图并使其显示,该氮地图指示指定氮的种植使用的预测以及预测是过剩还是短缺;在一些实施例中,不同的颜色指示标志可以示意过剩的量或短缺的量。氮地图可以显示指定氮的种植使用的预测,以及使用盈余或短缺的数字和/或彩色指示符来预测在过去和将来(诸如每天、每周、每月或每年)的不同时间的盈余或短缺,其中颜色指示量值。在一个实施例中,氮映射可以包括一个或多个用户输入特征(例如,调谐钮或滑动条),以动态地改变氮种植和实践程序,使得用户可以优化其氮地图,例如以获得相对于短缺的优选过剩量。然后,用户可以使用他的优化氮地图和相关的氮种植和实践程序来实现一个或多个脚本(包括可变速率(VR)肥力脚本)。在其他实施例中,与氮指令210类似的指令可用于施用其他营养物(例如,磷和钾)、施用农药、以及灌溉程序。
在一个实施例中,天气指令212被编程为提供特定于田地的最近天气数据和预报天气信息。这使得种植者能够节省时间并且具有关于日常操作决策的高效集成显示。
在一个实施例中,田地健康指令214被编程为提供及时的遥感图像,该遥感图像突出季节中的作物变化和潜在的关注。示例编程功能包括云检查,以识别可能的云或云阴影;基于田地图像确定氮指数;侦察层(scouting layer)的图形可视化,包括例如与田地健康相关的那些,以及侦察标记的观看和/或共享;和/或从多个来源下载卫星图像,并且为种植者按优先级对图像排序,等等。
在一个实施例中,表现指令216被编程为使用农场上数据来提供报告、分析、以及洞察工具,以进行评估、洞察和决策。这使得种植者能够通过关于为什么投资回报在先前的水平的基于事实的结论,以及通过对产量限制因子的了解,来寻求下一年的改进的结果。表现指令216可以被编程为经由(一个或多个)网络109传送到后端分析程序,该后端分析程序在农业智能计算机系统130和/或外部数据服务器计算机108处执行并且被配置为分析诸如产量、产量差异、杂交、总数、SSURGO地域、土壤测试特性、或海拔等度量。编程报告和分析可以包括产量可变性分析、治疗效果估计、基于从多个种植者收集的匿名化数据的针对其他种植者的产量和其他度量的基准化分析(benchmarking)、或针对种子和种植的数据等。
具有以此方式配置的指令的应用可针对不同计算设备平台实施,同时保持相同的总体用户界面外观。例如,移动应用可以被编程用于在平板电脑、智能电话、或使用客户端计算机处的浏览器访问的服务器计算机上执行。此外,如针对平板计算机或智能电话配置的移动应用可以提供适合于驾驶室计算机115的显示和处理能力的完整应用体验或驾驶室应用体验。例如,现在参考图2的视图(b),在一个实施例中,驾驶室计算机应用220可以包括地图驾驶室指令222、远程视图指令224、数据收集和传送指令226、机器警报指令228、脚本传送指令230、以及侦察驾驶室指令232。视图(b)的指令的代码库可以与视图(a)的相同,并且实现代码的可执行代码可以被编程为检测它们正在其上执行的平台的类型,并且通过图形用户界面仅展示适合于驾驶室平台或全平台的那些功能。此方法使得系统能够识别适合于驾驶室内环境和驾驶室的不同技术环境的明显不同的用户体验。地图驾驶室指令222可以被编程为提供对于引导机器操作有用的场地、农场或区域的地图视图。远程视图指令224可被编程为开启、管理机器活动的视图,并将其实时或接近实时地提供给经由无线网络、有线连接器或适配器等连接到系统130的其他计算设备。数据收集和传输指令226可以被编程为开启、管理在传感器和控制器处收集的数据,并经由无线网络、有线连接器或适配器等将其传输到系统130。机器警报指令228可以被编程为检测关于与驾驶室相关联的机器或工具的操作的问题,并生成操作员警报。脚本传送指令230可以被配置为传送指令脚本,该指令脚本被配置成引导机器操作或数据收集。侦察驾驶室指令232可以被编程为基于农业装置111或传感器112在田地中的位置来显示从系统130接收的基于位置的警报和信息,并且基于田地管理器计算设备104、农业装置111或传感器112在田地中的位置来摄取、管理基于位置的侦察观测结果,提供其到系统130的传送。
2.3.对计算机系统的数据摄取
在实施例中,外部数据服务器计算机108存储外部数据110,该外部数据110包括表示针对一个或多个田地的土壤成分的土壤数据和表示一个或多个田地上的温度和降水的天气数据。天气数据可以包括过去和当前天气数据以及未来天气数据的预报。在实施例中,外部数据服务器计算机108包括由不同实体托管的多个服务器。例如,第一服务器可以包括土壤成分数据,而第二服务器可以包括天气数据。此外,土壤成分数据可以存储在多个服务器中。例如,第一服务器可以存储表示土壤中沙、淤泥和粘土的百分比的数据,而第二服务器可以存储表示土壤中有机质(OM)的百分比的数据。
在实施例中,远程传感器112包括被编程为或被配置为产生一个或多个观察的一个或多个传感器。远程传感器112可以是空中传感器,例如,卫星、车辆传感器、种植设备传感器、耕种传感器、肥料或杀虫剂施用传感器、收割机传感器、以及能够从一个或多个田地接收数据的任何其他器具。在实施例中,施用控制器114被编程为或被配置为从农业智能计算机系统130接收指令。施用控制器114还可以被编程为或被配置为控制农用车辆或器具的操作参数。例如,施用控制器可被编程为或配置为控制车辆的操作参数,所述车辆为诸如拖拉机、种植设备、耕种设备、肥料、或杀虫剂设备、收割机设备、或诸如水阀的其他器具。其他实施例可以使用传感器和控制器的任何组合,以下仅是选择的示例。
系统130可以在用户102的控制下,在来自已经向共享数据库系统贡献数据的大量种植者的大量基础上获得或摄取数据。这种获得数据的形式可以被称为“人工数据摄取”,因为一个或多个用户控制计算机操作被请求或被触发以获得供系统130使用的数据。作为示例,可以操作从加利福尼亚州旧金山的克莱米特公司商业地获得的CLIMATE FIELDVIEW应用,以将数据输出到系统130,以存储在储存库160中。
例如,种子监测系统可以控制种植器装置部件并且获得种植数据,该种植数据包括经由信号线束接收的来自种子传感器的信号,该信号线束包括CAN主干和点对点连接以进行注册和/或诊断。种子监测系统可以被编程为或被配置为经由系统130中的驾驶室计算机115或其他设备向用户显示种子间距、总数和其他信息。在美国专利No.8,738,243和美国专利公开20150094916中公开了示例,并且本公开采用这些其他专利公开的知识。
类似地,产量监测系统可以包括用于收割机装置的产量传感器,其将产量测量数据发送到系统130中的驾驶室计算机115或其他设备。产量监控系统可以利用一个或多个远程传感器112来获得联合收割机或其他收割机中的谷物湿度测量值,并经由系统130中的驾驶室计算机115或其他设备将这些测量值传送给用户。
在实施例中,可以与本文其他地方描述的类型的任何移动车辆或装置一起使用的传感器112的示例包括运动学传感器和位置传感器。运动传感器可以包括任何速度传感器,例如,雷达或车轮速度传感器、加速计、或陀螺仪。位置传感器可以包括GPS接收器或收发器,或被编程为基于附近WiFi热点等来确定位置的基于WiFi的位置或地图应用等等。
在实施例中,可以用于拖拉机或其他运动车辆的传感器112的示例包括发动机速度传感器、燃料消耗传感器、与GPS或雷达信号交互的面积计数器或距离计数器、PTO(动力输出)速度传感器、被配置为检测诸如压力或流量的液压参数的拖拉机液压传感器、和/或液压泵速度、车轮速度传感器或车轮滑动(slippage)传感器。在实施例中,可以用于拖拉机的控制器114的示例包括液压定向控制器、压力控制器、和/或流量控制器;液压泵速度控制器;速度控制器或调速器;悬挂机构位置控制器;或提供自动转向的车轮位置控制器。
在实施例中,可以用于诸如播种机、条播机、或空中播种机的种子播种设备之类的传感器112的示例包括种子传感器,其可以是光学、电磁、或冲击传感器;下压力传感器,例如,载荷销、载荷传感器、压力传感器;土壤性质传感器,例如,反射率传感器、湿度传感器、电导率传感器、光学残留物传感器、或温度传感器;部件操作标准传感器,例如,种植深度传感器、下压力缸压力传感器、种子盘速度(seed disc speed)传感器、种子驱动电机编码器、种子输送器系统速度传感器、或真空水平传感器;或杀虫剂施用传感器,例如,光学或其他电磁传感器,或冲击传感器。在实施例中,可以用于这样的种子种植设备的控制器114的示例包括:工具杆折叠控制器,例如,用于与液压缸相关联的阀的控制器;下压力控制器,例如,用于与气压缸、气囊、或液压缸相关联的阀的、并且被编程用于将下压力施加到各个行单元或整个种植机框架上的控制器;种植深度控制器,例如,线性致动器;排种控制器,例如,电排种器驱动电机、液压排种器驱动电机、或刈幅控制离合器(swath controlclutch);杂交选择控制器,例如,排种器驱动电机、或被编程用于选择性地允许或防止种子或空气-种子混合物将种子递送至排种器或中央散料料斗或从排种器或中央散料料斗递送种子的其他致动器;排种控制器,例如,电排种器驱动电机、或液压排种器驱动电机;种子输送器系统控制器,例如,用于带式种子输送机电机的控制器;标记控制器,例如,用于气动或液压致动器的控制器;或农药施用率控制器,例如,排种驱动控制器、孔口尺寸或位置控制器。
在实施例中,可以用于耕种设备的传感器112的示例包括用于诸如柄或盘的工具的位置传感器;用于这样的工具的工具位置传感器,其被配置为检测深度、组角(gangangle)、或横向间距;下压力传感器;或牵引力传感器。在实施例中,可以用于耕种设备的控制器114的示例包括下压力控制器或工具位置控制器,例如,被配置成控制工具深度、组角、或横向间距的控制器。
在实施例中,可与用于施用肥料、杀虫剂、杀真菌剂等的装置(例如,种植机上起动器肥料系统、底土肥料施用器、或肥料喷雾器)相关使用的传感器112的示例包括:流体系统标准传感器,例如,流量传感器或压力传感器;指示哪些喷头阀或流体管线阀打开的传感器;与箱相关联的传感器,例如,填充水平传感器;分段或全系统电源线传感器、或特定于行的电源线传感器;或运动学传感器,例如,设置在喷雾器杆上的加速计。在实施例中,可以用于这样的装置的控制器114的示例包括泵速度控制器;阀控制器,其被编程为控制压力、流量、方向、PWM等;或位置致动器,例如,用于悬臂高度、深松机深度、或悬臂位置。
在实施例中,可以用于收割机的传感器112的示例包括:产量监测器,例如,冲击板应变计或位置传感器、电容流量传感器、负载传感器、重量传感器、或与升降机或螺旋推运器相关联的扭矩传感器、或光学或其他电磁谷物高度传感器;谷物湿度传感器,例如,电容传感器;谷物损失传感器,包括冲击、光学、或电容传感器;收获台(header)操作标准传感器,例如,收获台高度、收获台类型、甲板板间隙、进料器速度、以及卷轴速度传感器;分离器操作标准传感器,例如,凹形间隙、转子速度、闸瓦间隙、或谷壳间隙传感器;用于位置、操作、或速度的螺旋钻传感器;或发动机速度传感器。在一个实施例中,可以与收割机一起使用的控制器114的示例包括用于诸如收获头高度、收获头类型、甲板板间隙、进料器速度或卷轴速度的元件的收获头操作标准控制器;用于诸如凹形间隙、转子速度、闸瓦间隙或谷壳间隙的特征的分离器操作标准控制器;或用于螺旋推运器(augar)位置、操作或速度的控制器。
在实施例中,可以用于谷物推车的传感器112的示例包括重量传感器,或用于螺旋推运器位置、操作、或速度的传感器。在实施例中,可以用于谷物推车的控制器114的示例包括用于螺旋推运器位置、操作、或速度的控制器。
在实施例中,传感器112和控制器114的示例可以安装在无人驾驶飞行器(UAV)装置或“无人机”中。这样的传感器可以包括具有对任何范围的电磁频谱(包括可见光、红外线、紫外线、近红外线(NIR)等)有效的检测器的相机;加速度计;高度计;温度传感器;湿度传感器;皮托管传感器或其他空速或风速传感器;电池寿命传感器;或者雷达发射器和反射雷达能量检测设备;其他电磁辐射发射器和反射式电磁辐射检测装置。这样的控制器可以包括引导或电机控制装置、控制面控制器、相机控制器、或被编程为开启、操作、管理和配置任何前述传感器、或从该处获得数据的控制器。在美国专利申请No.14/831,165中公开了示例,并且本公开采用该其他专利公开的知识。
在实施例中,传感器112和控制器114可以被固定到土壤采样和测量装置,该土壤采样和测量装置被配置为或被编程为对土壤进行采样并且执行土壤化学测试、土壤湿度测试、以及与土壤相关的其他测试。例如,可以使用美国专利No.8,767,194和美国专利No.8,712,148中公开的装置,并且本公开采用这些专利公开的知识。
在实施例中,传感器112和控制器114可以包括用于监测田地的天气状况的天气设备。例如,可以使用于2015年4月29日提交的美国临时申请No.62/154,207、于2015年6月12日提交的美国临时申请No.62/175,160、于2015年7月28日提交的美国临时申请No.62/198,060、以及于2015年9月18日提交的美国临时申请No.62/220,852中公开的装置,并且本公开采用这些专利公开的知识。
2.4.过程概览——农艺模型训练
在实施例中,农业智能计算机系统130被编程为或被配置为创建农艺模型。在此上下文中,农艺模型是农业智能计算机系统130的存储器中的数据结构,其包括田地数据106(例如,针对一个或多个田地的标识数据和收获数据)。农艺模型还可以包括计算的农学性质,这些性质描述了可以影响一种或多种作物在田地上生长的条件、或一种或多种作物的性质,或此两者。此外,农艺模型可以包括基于农艺因子的建议,例如,作物建议、灌溉建议、种植建议、肥料建议、杀真菌剂建议、杀虫剂建议、收获建议和其他作物管理建议。农艺因子还可用于评估一种或多种作物相关结果,例如,农艺产量。作物的农艺产量是对所生产的作物的量的估计,或者在一些示例中是从所生产的作物获得的收入或利润。
在实施例中,农业智能计算机系统130可以使用预配置的农艺模型来计算与当前接收到的一个或多个田地的位置和作物信息相关的农学性质。预配置的农艺模型基于先前处理的田地数据,该田地数据包括但不限于标识数据、收获数据、肥料数据、以及天气数据。预配置的农艺模型可能已经被交叉验证以确保模型的准确性。交叉验证可以包括与地面事实的比较,该比较将预测结果与田地上的实际结果进行比较,例如,将降水估计值与提供相同或附近位置处的天气数据的雨量计或传感器进行比较,或者将氮含量估计值与土壤样品测量值进行比较。
图3示出了编程的过程,农业智能计算机系统利用由一个或多个数据来源提供的田地数据,通过该过程生成一个或多个预配置的农艺模型。图3可以用作用于对农业智能计算机系统130的功能元件进行编程以执行现在描述的操作的算法或指令。
在框305处,农业智能计算机系统130被配置或编程为对从一个或多个数据源接收的田地数据实施农艺数据预处理。从一个或多个数据来源接收的田地数据可以被预处理,以用于去除农艺数据中的噪声、失真效应以及混合因子(包括可能不利地影响接收到的田地数据值的测量的异常值)的目的。农艺数据预处理的实施例可以包括但不限于移除通常与异常数据值相关联的数据值、已知不必要地使其他数据值偏斜的特定测量数据点、用于从噪声中移除或减少加性或乘法效应的数据平滑、聚合或采样技术、以及用于提供正负数据输入之间的清楚区别的其他滤波或数据导出技术。
在框310处,农业智能计算机系统130被配置为或被编程为使用预处理的田地数据来执行数据子集选择,以便标识对初始农艺模型生成有用的数据集。农业智能计算机系统130可以实现数据子集选择技术,包括但不限于遗传算法方法、全子集模型方法、顺序搜索方法、逐步回归方法、粒子群优化方法、以及蚁群优化方法。例如,遗传算法选择技术使用自适应启发式搜索算法,基于自然选择和遗传学的进化原理,来确定和评估预处理的农艺数据中的数据集。
在框315处,农业智能计算机系统130被配置为或被编程为实现田地数据集评估。在实施例中,通过创建农艺模型并使用针对所创建的农艺模型的特定质量阈值来评估特定的田地数据集。农艺模型可以使用一种或多种比较技术进行比较和/或验证,这些比较技术包括但不限于留一法交叉验证(RMSECV)的均方根误差、平均绝对误差、以及平均百分比误差。例如,RMSECV可以通过比较农学模型所产生的预测的农艺性质值与收集和分析的历史农艺性质值来交叉验证农艺模型。在一实施方式中,农艺数据集评估逻辑用作反馈环,其中在未来的数据子集选择步骤(框310)中使用不满足所配置的质量阈值的农学数据集。
在方框320处,农业智能计算机系统130被配置或被编程为基于交叉验证的农艺数据集来实现农艺模型创建。在一实施方式中,农艺模型创建可以实现多变量回归技术以创建预配置的农艺数据模型。
在框325处,农业智能计算机系统130被配置为或被编程为存储预配置的农艺数据模型以用于未来田地数据评估。
2.5.杂交种子分类子系统
在实施例中,农业智能计算机系统130等组件包括杂交种子分类子系统170。杂交种子分类子系统170被配置为生成杂交种子的目标成功产量组,该杂交种子的目标成功产量组是专门针对在目标田地上的最优性能而识别的。如本文所使用的,术语“最优”和相关术语(例如,“使……优化”、“优化”等)是泛指针对任何结果、系统、数据等的“最佳或最有效”(“普遍优化”)以及“更好或更有效”的改进(“相对优化”)的术语。目标成功产量组包括一种或多种杂交种子的子集、每种杂交种子的估计产量预测、以及超过被类似地分类的杂交种子的平均估计产量预测的成功概率。
在实施例中,识别将在目标田地上最优地表现的杂交种子是基于由农业智能计算机系统130接收到的输入的,该输入包括但不限于:针对多个不同杂交种子的农业数据记录和与农业数据记录被收集处的田地相关的地理位置数据。例如,如果接收到针对100种杂交种子的农业数据记录,则农业数据记录将包括针对该100种杂交种子的生长和产量数据以及关于种植过该100种杂交种子的田地的地理位置数据。在实施例中,农业智能计算机系统130还接收针对第二组田地的地理位置和农业数据。第二组田地是种植者打算种植选定的杂交种子的目标田地。关于目标田地的信息对于将特定的杂交种子与目标田地的环境相匹配特别相关。
杂交种子标准化指令172提供用于生成杂交种子特性的数据集的指令,杂交种子特性的数据集描述由农业智能计算机系统130接收到的每种杂交种子的代表性产量值和优选环境条件的环境分类。成功概率生成指令174提供用于生成与每种杂交种子相关联的成功概率分数的数据集的指令。成功概率分数描述目标田地上的成功产量的概率。产量分类指令176提供用于生成杂交种子的目标成功产量组的指令,该目标成功产量组基于与每种杂交种子相关联的成功概率分数而被识别以用于获得在目标田地上的最优表现。
在实施例中,农业智能计算机系统130被配置为通过表现层134呈现所选杂交种子的目标成功产量组以及其标准化产量值和成功概率分数。
杂交种子分类子系统170和相关指令在本文的其他地方另外描述。
2.6.杂交种子推荐子系统
在实施例中,农业智能计算机系统130等组件包括杂交种子推荐子系统180。杂交种子推荐子系统180被配置为生成一组目标杂交种子,该组目标杂交种子被专门选择用于以最小的风险获得在目标田地上的最优表现。该组目标杂交种子包括一种或多种杂交种子的子集,该一种或多种杂交种子的子集具有高于特定产量阈值的估计产量预测并且具有低于特定风险目标的相关联风险值。
在实施例中,识别将在目标田地上最优地表现的一组目标杂交种子是基于这样的杂交种子的输入集合而进行的:该杂交种子的输入集合已被识别为具有在目标田地上产生成功产量的特定概率。农业智能计算机系统130可以被配置为接收一组杂交种子作为由杂交种子分类子系统170生成的目标成功产量组的一部分。目标成功产量组还可以包括指定每个杂交种子的成功概率的农业数据,以及根据先前观测到的收获的其他农业数据,例如,产量值、相对成熟度和环境观测。在实施例中,农业智能计算机系统130还接收一组目标田地的地理位置和农业数据。“目标田地”是指种植者正在考虑或打算种植目标杂交种子的田地。
杂交种子过滤指令182提供用于过滤和识别具有高于指定成功产量阈值的成功概率值的杂交种子的子集的指令。风险生成指令184提供用于生成与每种杂交种子相关联的风险值的数据集的指令。风险值描述与每种杂交种子的估计产量值相关的每种杂交种子的风险量。优化分类指令186提供根据风险值的数据集生成平均产量值高于针对一定范围的风险值的目标阈值的目标杂交种子的数据集的指令。
在实施例中,农业智能计算机系统130被配置为通过表现层134呈现目标杂交种子组并包括其平均产量值。
杂交种子推荐子系统180和相关指令在本文的其他地方另外描述。
2.7.实现方式示例——硬件概览
根据一个实施例,本文描述的技术由一个或多个专用计算设备实现。专用计算设备可以是硬连线的以执行技术,或者可以包括诸如一个或多个专用集成电路(ASIC)或现场可编程门阵列(FPGA)之类的被永久编程以执行技术的数字电子设备,或者可以包括被编程为根据固件、存储器、其他存储或组合中的程序指令来执行技术的一个或多个通用硬件处理器。这样的专用计算设备还可以将定制的硬连线逻辑、ASIC、或FPGA与定制的编程进行组合以实现这些技术。专用计算设备可以是台式计算机系统、便携式计算机系统、手持式设备、联网设备或结合硬连线和/或程序逻辑来实现这些技术的任何其他设备。
例如,图4是示出了可以在其上实现本发明的实施例的计算机系统400的框图。计算机系统400包括总线402或用于传送信息的其他通信机构,以及与总线402耦合以进行处理信息的硬件处理器404。硬件处理器404可以为例如通用微处理器。
计算机系统400还包括主存储器406(例如,随机存取存储器(RAM)或其他动态存储设备),其耦合到总线402以用于存储信息和要由处理器404执行的指令。主存储器406还可以用于在执行要由处理器404执行的指令期间存储临时变量或其他中间信息。当存储在处理器404可访问的非暂态存储介质中时,这样的指令将计算机系统400渲染为被定制为执行指令中指定的操作的专用机器。
计算机系统400还包括只读存储器(ROM)408或其他静态存储设备,其耦合到总线402以用于存储静态信息和处理器404的指令。提供了诸如磁盘、光盘、或固态驱动器之类的存储设备410,其耦合到总线402以用于存储信息和指令。
计算机系统400可以经由总线402耦合到显示器412(例如,阴极射线管(CRT)),以向计算机用户显示信息。包括字母数字键和其他键的输入设备414耦合到总线402,以向处理器404传送信息和命令选择。另一种类型的用户输入设备是光标控制416(例如,鼠标、轨迹球、或光标方向键),以向处理器404传送方向信息和命令选择以及控制显示器412上的光标移动。该输入设备通常在两个轴(第一轴(例如,x)和第二轴(例如,y))上具有两个自由度,这允许设备指定平面中的位置。
计算机系统400可以使用与计算机系统结合使计算机系统400成为或编程为专用机器的定制的硬连线逻辑、一个或多个ASIC或FPGA、固件和/或程序逻辑来实现本文描述的技术。根据一个实施例,响应于处理器404执行包括在主存储器406中的一个或多个指令的一个或多个序列,计算机系统400执行本文的技术。这样的指令可以从诸如存储设备410的另一存储介质读入到主存储器406中。执行包括在主存储器406中的指令序列使得处理器404执行本文描述的处理步骤。在替代实施例中,可以使用硬连线电路来代替软件指令或与软件指令组合。
如本文所使用的术语“存储介质”是指存储使机器以特定方式操作的数据和/或指令的任何非暂态介质。这样的存储介质可以包括非易失性介质和/或易失性介质。非易失性介质包括例如光盘、磁盘、或固态驱动器(例如,存储设备410)。易失性介质包括动态存储器,例如主存储器406。存储介质的常见形式包括例如软盘、柔性盘、硬盘、固态驱动器、磁带、或任何其他磁性数据存储介质、CD-ROM、任何其他光学数据存储介质、具有孔图案的任何物理介质、RAM、PROM、以及EPROM、FLASH-EPROM、NVRAM、任何其他存储器芯片或盒。
存储介质与传输介质不同,但是可以与其结合使用。传输介质参与在存储介质之间传送信息。例如,传输介质包括同轴电缆、铜线和光纤,包括包含总线402的线。传输介质还可以采取声波或光波的形式,例如在无线电波和红外数据通信期间生成的那些。
各种形式的介质可用于将一个或多个指令的一个或多个序列传送到处理器404以供执行。例如,指令最初可以承载在远程计算机的磁盘或固态驱动器上。远程计算机可以将指令加载到其动态存储器中,并且使用调制解调器通过电话线发送指令。计算机系统400本地的调制解调器可以接收电话线上的数据,并且使用红外发射器将数据转换为红外信号。红外检测器可以接收红外信号中携带的数据,并且适当的电路可以将数据置于总线402上。总线402将数据传送到主存储器406,处理器404从主存储器取回并执行指令。主存储器406接收的指令可以可选地在处理器404执行之前或之后存储在存储设备410上。
计算机系统400还包括通信接口418,其耦合到总线402。通信接口418提供耦合到与本地网络422连接的网络链路420的双向数据通信。例如,通信接口418可以是综合业务数字网(ISDN)卡、电缆调制解调器、卫星调制解调器、或用于提供到相应类型的电话线的数据通信连接的调制解调器。作为另一个示例,通信接口418可以是局域网(LAN)卡,以提供到兼容LAN的数据通信连接。也可以实现无线链路。在任何这样的实现中,通信接口418发送和接收携带表示各种类型的信息的数字数据流的电、电磁或光信号。
网络链路420通常通过一个或多个网络向其他数据设备提供数据通信。例如,网络链路420可以通过本地网络422提供到主机计算机424或到由互联网服务提供商(ISP)426操作的数据设备的连接。ISP 426又通过现在通常称为“互联网”428的全球分组数据通信网络提供数据通信服务。本地网络422和互联网428都使用携带数字数据流的电信号、电磁信号或光信号。通过各种网络的信号和网络链路420上并且通过通信接口418的信号(其携带去往和来自计算机系统400的数字数据)是传输介质的示例形式。
计算机系统400可以通过(一个或多个)网络、网络链路420和通信接口418发送消息和接收数据(包括程序代码)。在互联网示例中,服务器430可以通过互联网428、ISP 426、本地网络422和通信接口418发送所请求的应用程序代码。
接收到的代码可以在其被接收时由处理器404执行,和/或存储在存储设备410或其他非易失性存储设备中以供稍后执行。
3.功能概述——生成并显示杂交种子的目标成功产量组
图7描绘了基于杂交种子的农业数据记录和与目标田地相关联的地理位置数据来生成杂交种子的目标成功产量组的详细示例,该杂交种子的目标成功产量组被识别以用于获得目标田地上的最优产量表现。
3.1.数据输入
在步骤705处,农业智能计算机系统130接收来自一个或多个田地的、针对多种不同杂交种子的农业数据记录。在实施例中,农业数据记录可以包括针对一种或多种杂交种子的作物种子数据。作物种子数据可以包括与一个或多个田地上特定杂交种子的种植、生长和收获相关的历史农业数据。作物种子数据的示例可以包括但不限于历史产量值、收获时间信息、杂交种子的相对成熟度以及关于植物生命周期的任何其他观测数据。例如,农业数据记录可包括针对两百种(或更多)不同类型的可用玉米杂交种的杂交种子数据。与每种玉米杂交种相关联的作物种子数据将包括与观测到的收获相关联的历史产量值、与种植相关的收获时间信息、以及在每个观测田地上观测到的每种玉米杂交种的相对成熟度。例如,玉米杂交种-001可以具有农业数据记录,该农业记录包括过去十年(或更多)年从二十个(或更多)不同田地收集的历史产量数据。
在实施例中,农业数据记录可以包括与作物种子数据被观测处的田地相关的田地特定数据。例如,田地特定数据可以包括但不限于地理位置信息、基于田地地理位置的观测到的相对成熟度、历史天气指数数据、观测到的土壤特性、观测到的土壤湿度和水位、以及历史作物种子数据被收集处的田地特定的任何其他环境观测。田地特定数据可以用于进一步对作物种子数据进行量化和分类,因为田地特定数据与每种杂交种子相关。例如,基于杂交种子的相对成熟度和生长季节的长短,不同地理位置的不同田地可能更适合不同的杂交种子。基于与特定地理位置相关联的气候和生长季节期间可用的生长度日(GDD),特定区域和子区域中的田地可能具有针对生长季节的指定相对成熟度。
图8描绘了州内不同区域的示例,这些不同区域具有基于生长季节持续时间的不同的指定相对成熟度。州805是伊利诺伊州,被分为多个不同的区域和子区域。子区域的示例可以包括基于郡、市或镇边界的区域。区域810、815、820、825和830中的每个代表具有不同生长季节持续时间的地理位置特定区域。例如,区域810代表的是基于其地理位置和相关气候而具有较短生长季节(由于气候较冷)的区域。因此,区域810可被分类为适合于具有100天相对成熟度的杂交种子的田地(示出为图8中阴影和相应GDD的图例)。区域815位于区域100以南,并因此整体气候可能更温暖。区域815的田地可被分类为适合于具有105天相对成熟度的杂交种子的田地。类似地,区域820、825和830位于区域810和815更南方,并因此分别通过相对成熟度分类110、115和120天而被分类。针对不同区域的相对成熟度分类可与针对杂交种子的历史产量数据一起使用,以基于定级的(rated)相对成熟度来评估杂交种子在田地上的表现。
在实施例中,农业数据记录中的特定田地数据还可以包括作物轮作数据。针对田地的土壤养分管理可取决于多种因素,例如,建立多样性的作物轮作和管理土壤耕作量。例如,一些历史观察表明,在田地上在不同作物之间进行轮作的“轮作效应”可能会相对于年复一年种植同一作物增加5%至15%的作物产量。因此,农业数据记录中的作物轮作数据可用于帮助确定更准确的产量估计。
在实施例中,特定的田地数据可以包括在作物季节期间使用的耕作数据和管理实践。耕作数据和管理实践是指在特定田地上进行耕作的方式和时间表。土壤质量和土壤中有用养分的量基于表层土壤的量而不同。土壤侵蚀是指去除表层土壤,表层土壤是土壤中有机质和营养价值最丰富的层。造成土壤侵蚀的一种实践是耕作。耕作会分解土壤团聚体(soil aggregates)并增加土壤通气量,这可能会加速有机质的分解。因此,跟踪耕作管理实践可能有助于了解可能影响所种植作物的总产量的土壤侵蚀量。
在实施例中,农业数据记录包括历史作物种子数据和来自由制造商用于确定杂交种子特性的一组试验田地的田地特定数据。例如,孟山都公司生产若干种商业杂交种子,并在多个试验田地上测试这些种子的作物生长情况。孟山都公司的试验田地可以作为一组试验田地的示例,其中农业数据记录由农业智能计算机系统130收集和接收。在另一实施例中,农业数据记录可以包括历史作物种子数据和来自由个体种植者拥有和经营的一组田地的田地特定数据。农业数据记录被收集的位置处的这些组田地也可以是被指定为与用于种植新选择作物的目标田地的相同的田地。在又一些其它实施例中,种植者所拥有和操作的多组田地可以提供由其他种植者在确定杂交种子的目标成功产量组时使用的农业数据记录。
回到图7,在步骤710处,农业智能计算机系统130接收针对一个或多个目标田地的地理位置信息。目标田地表示这样的区域:种植者正在考虑在这些区域处种植或计划种植从目标成功产量组中选择的一组杂交种子。在实施例中,针对一个或多个目标田地的地理位置信息可以与特定田地的农业数据记录结合使用,以基于相对成熟度和气候来确定哪些杂交种子最适合目标田地。
3.2.农业数据处理
在步骤715处,杂交种子标准化指令172提供用于生成杂交种子特性的数据集的指令,该数据集描述作为农业数据记录的一部分而被接收的每种杂交种子的代表性产量值和环境分类。在实施例中,与杂交种子相关联的农业数据记录用于计算每种杂交种子的代表性产量值和环境分类。代表性产量值是:基于历史产量值和从以往收获中观测到的其他农业数据,特定杂交种子如果在田地中种植时该特定杂交种子的预期产量值。
在实施例中,可以通过对跨不同观测生长年份的来自不同田地的多个不同产量观测进行标准化来计算标准化产量值。例如,第一次种植特定杂交种子的田地可用于计算针对特定杂交种子的平均第一年生长周期产量。针对特定杂交种子的平均第一年生长周期产量可以包括对来自不同年份不同田地的观测产量值进行组合。例如,特定杂交种子可能已经在孟山都商业产品周期(PS3、PS4、MD1和MD2)生产阶段(时间跨度从2009年到2015年)的试验田上种植。然而,特定杂交种子的第一周期可能是于不同年份在每个田地上种植的。下表示出了一个这样的示例:
表中的列表示收获年份,表中的行表示孟山都公司的商业产品开发周期,其中周期1表示杂交种子被种植在各个田地上的4年,周期2表示在相同田地环境下种植的另一组杂交种子的4年的第二周期,以此类推。
在实施例中,计算标准化产量值可以基于在多个田地种植杂交种子的类似周期。例如,周期1的标准化产量值可计算为田地PS3(2009)、PS4(2010)、MD1(2011)和MD2(2012)上观测到的产量值的平均值。通过这样做,产量值可以基于在特定田地发生了多少个生长周期的共同特征进行平均。在其他实施例中,可以基于来自诸如相同年或相同区域/田地的农业数据记录的其他农业特性来计算标准化产量值。
在实施例中,可以使用杂交种子的与相对成熟度田地特性相关联的农业数据记录来计算每种杂交种子的环境分类。例如,特定的杂交种子可能已经在区域820中的若干田地上种植。区域820中的每个田地被分类为具有与110天的相对成熟度一致的观测生长季节。因此,基于与特定杂交种子相关联的田地,特定杂交种子的环境分类可被指定与区域820等同的相对成熟度,即110天。在其它实施例中,如果与特定杂交种子的历史观察相关联的田地包含被分类在多个区域中的田地,则环境分类可被计算为不同的指定相对成熟度值的平均值。
在实施例中,杂交种子特性的数据集包含每种杂交种子的标准化产量值和描述与标准化产量值相关联的相对成熟度值的环境分类。在其他实施例中,杂交种子特性的数据集还可以包括与杂交种子生长周期和田地特性相关的特性,例如,作物轮作、耕作、天气观测、土壤成分和任何其他农业观测。
返回参考图7,在步骤720处,成功概率生成指令174提供用于生成针对每种杂交种子的成功概率分数的数据集的指令,该数据集将成功产量的概率描述为实现相对于具有相同相对成熟度的其他杂交种子的平均产量的成功产量的概率值。在实施例中,杂交种子的成功概率分数基于针对与目标田地相关联的地理位置的杂交种子特性的数据集。例如,与目标田地的地理位置相关联的相对成熟度值被部分地用于确定一组杂交种子以相对于这些杂交种子进行评估,以便计算特定杂交种子的成功概率分数。例如,玉米杂交种-002可能是标准化产量被计算为7.5蒲式耳每英亩的杂交种子,并且其指定相对成熟度为100GDD。然后将玉米杂交种-002相对于具有类似相对成熟度的其他杂交种子进行比较,以便根据玉米杂交种-002和其他杂交种子的标准化产量值来确定玉米杂交-002是否是良好的种植候选项。
机器学习技术被实现用于确定杂交种子在与目标田地相关联的地理位置处的成功概率分数。在实施例中,标准化产量值和指定相对成熟度值被用作用于机器学习模型的预测变量。在其它实施例中,附加的杂交种子特性(例如,作物轮作、耕作、天气观测、土壤成分)也可以用作机器学习模型的附加预测变量。机器学习模型的目标变量是从0到1的概率值,其中0等于0%的成功产量概率,1等于100%的成功产量概率。在其它实施例中,目标变量可以是被缩放为从0到10、1到10或任何其他度量尺度的概率值。成功产量被描述为特定杂交种子的产量比被类似地分类的杂交种子的平均产量高出一定值的可能性。例如,成功产量可以定义为每英亩产量比具有相同的指定相对成熟度值的杂交种子的平均产量高出5蒲式耳。
图9描绘了描述在所分类的相对成熟度中的杂交种子的标准化产量值的范围的样本图形。平均值905表示具有相同的相对成熟度(例如110GDD)的杂交种子的计算平均产量值。在实施例中,可以通过实现最小显著性差异计算(least significant differencecalculation)来确定哪些杂交种子具有高于平均值905的显著性标准化产量。最小显著性差异是在特定统计概率水平处的值。如果两个平均值之间的差异超过了该值,则认为这两个平均值是不同的。例如,如果杂交种子的产量值与计算的平均产量之间的差异超过最小显著性差异,则杂交种子的产量被视为不同。在其他实施例中,可以使用任何其他统计算法来确定产量值和平均值905之间的显著性差异。
范围910表示被认为在最小显著性差异内的一定范围的产量值,并且因此这些产量值没有显著性差异。阈值915表示范围910的上限。高于阈值915的标准化产量值被认为与平均值905显著不同。在实施例中,范围910和阈值915可以被配置为表示这样的阈值:该阈值用于确定哪些杂交种子产量被认为显著高于平均值905,从而是成功产量值。例如,阈值915可以被配置为等于这样的值:该值高于平均值905每英亩5蒲式耳。在实施例中,阈值915可以被配置为依赖于具有针对相同相对成熟度的特定杂交种子的平均值905、范围910和总体产量值范围的产量值。
范围920表示被认为是成功产量的杂交种子的产量值范围。杂交种子925表示范围920内的特定杂交种子,其标准化产量值高于阈值915。在实施例中,机器学习模型可以被配置为在计算0和1之间的成功概率分数时使用范围910和阈值915。不同的机器学习模型可以包括但不限于逻辑回归、随机森林、向量机建模、以及梯度推进建模。
在实施例中,逻辑回归可以被实现为机器学习技术,以确定每种杂交种子针对目标田地的成功概率分数。对于逻辑回归,每种杂交种子的输入值是标准化产量值和环境分类(被指定为相对成熟度)。逻辑回归的函数形式为:
其中,P(y=1|x1=yldi ,x2=RMj )是具有标准化产量值的产品i在目标田地j中在给定的相对成熟度下的成功概率(y=1);常数a、b和c是通过历史数据来估计的回归系数。逻辑回归的输出是针对每种杂交种子的介于0和1之间的一组概率分数,其基于指定给与目标田地相关联的地理位置的相对成熟度来指定在目标田地处的成功。
在另一实施例中,随机森林算法可以被实现为机器学习技术,以确定每种杂交种子针对目标田地的成功概率分数。随机森林算法是一种总体(ensemble)机器学习方法,其通过在训练周期内构造多个决策树进行操作,然后输出作为各个决策树的平均回归的分类。每个杂交种子的输入值是标准化的产量值和环境分类(作为相对成熟度)。输出是介于0和1之间的、针对每种杂交种子的一组概率分数。
在另一实施例中,支持向量机(SVM)建模可以被实现为机器学习技术,以确定每种杂交种子针对目标田地的成功概率分数。支持向量机建模是一种监督学习模型,其被用于对输入是否使用分类和回归分析进行分类。支持向量机模型的输入值是每种杂交种子的标准化产量值和环境分类相对成熟度值。输出是介于0和1之间的、针对每种杂交种子的一组概率分数。在又一实施例中,梯度提升(GBM)建模可以被实现为机器学习技术,其中输入值是每种杂交种子的标准化产量值和环境分类相对成熟度值。梯度提升是一种用于回归和分类问题的技术,其以弱预测模型(例如决策树)的总体的形式产生预测模型。
参考图7,在步骤725处,产量分类指令176生成目标成功产量组,该目标成功产量组由杂交种子的子集组成,该子集已被识别为具有产生这样的产量的高概率:该产量显著高于针对目标田地的相同相对成熟度分类中的其他杂交种子的平均产量。在实施例中,目标成功产量组包含具有高于特定成功概率阈值的成功概率值的杂交种子。成功概率阈值可以是被配置的概率值,其与显著高于其他杂交种子的平均产量的产量相关联。例如,如果在步骤720处,针对成功产量的产量阈值等于高于平均值5蒲式耳每英亩,则成功概率阈值可与这样的成功概率值相关联:该成功概率值等于产量阈值的成功概率值。例如,如果产量阈值等于高于平均产量5蒲式耳每英亩并且具有0.80的成功概率值,则成功概率阈值可被指定为0.80。在本此示例中,目标成功产量组将包含成功概率值等于或大于0.80的杂交种子。
在其他实施例中,成功概率阈值可以被配置为更高或更低(分别取决于种植者期望更小或更大的目标成功产量组)。
3.3.当前目标成功产量组
在实施例中,目标成功产量组包含具有等于与目标田地相关联的相对成熟度的指定相对成熟度值的杂交种子。在步骤730处,农业智能计算机系统130的表现层134被配置为在田地管理器计算设备104上的显示设备上显示或导致在其上显示目标成功产量组和目标成功产量组中每种杂交种子的标准化产量值。在另一实施例中,表现层134可以将对目标成功产量组的显示传送到可以通信地耦合到农业智能计算机系统130的任何其他显示设备,例如,远程计算机设备、驾驶室内的显示设备、或任何其他连接的移动设备。在又一实施例中,表现层134可以通过农业智能计算机系统130将目标成功产量组传送到其他系统和子系统,以便进行进一步处理和呈现。
在实施例中,表现层134可以显示附加的杂交种子特性数据和可能与种植者相关的其他农业数据。表现层134还可以基于成功概率值对目标成功产量组中的杂交种子进行排序。例如,对杂交种子的显示可以按成功概率值的降序排序,以便种植者能够最先查看针对其目标田地的最成功的杂交种子。
在一些实施例中,种植者在接收到所显示的信息之后,可以按照该信息采取行动并种植所建议的杂交种子。在一些实施例中,种植者可以作为正在确定目标成功产量组的组织的一部分进行操作,和/或可以是单独的。例如,种植者可以是确定目标成功产量组的组织的客户,并且可以基于目标成功产量组进行种植。
4.功能概述——生成并显示用于种植的目标杂交种子
图10描绘了基于杂交种子的农业数据记录和与目标田地相关联的地理位置数据来生成一组目标杂交种子的详细示例,该组目标杂交种子被识别以用于获得目标田地上的最优产量表现以及经管理的风险。
4.1.数据输入
在步骤1005处,农业智能计算机系统130接收以下项:候选杂交种子的数据集,该候选杂交种子的数据集包括适合于在目标田地上种植的一种或多种杂交种子;与每种杂交种子相关联的成功概率值;以及与每种杂交种子相关联的历史农业数据。在实施例中,候选杂交种子的数据集可以包括一组一种或多种杂交种子,该组一种或多种杂交种子被杂交种子分类子系统170识别为根据目标田地以及与候选杂交种子集合中的每种杂交种子相关联的历史农业数据具有产生成功产量值的高概率。在图7的步骤725处所生成的目标成功产量组可以表示候选杂交种子的数据集。
在实施例中,历史农业数据可以包括与在一个或多个田地上种植、生长和收获特定杂交种子相关的农业数据。农业数据的示例可以包括但不限于历史产量值、收获时间信息、杂交种子的相对成熟度、以及关于植物生命周期的任何其他观测数据。例如,如果候选杂交种子的数据集是来自杂交种子分类子系统170的目标成功产量组,则农业数据可以包括指定给每种杂交种子的平均产量值和相对成熟度。
在步骤1010处,农业智能计算机系统130接收关于目标田地的数据,种植者计划在这些目标田地处种植一组目标杂交种子。在实施例中,关于目标田地的数据是包括但不限于目标田地的地理位置信息和每个目标田地的尺寸和大小信息的特性信息。在实施例中,目标田地的地理位置信息可以结合历史农业数据来使用以基于目标田地的相对成熟度和气候来确定最优组的目标杂交种子和每种目标杂交种子在每个目标田地上的种植量。
4.2.杂交种子选择
在步骤1015处,杂交种子过滤指令182提供从一组候选杂交种子中选择一个或多个杂交种子的子集的指令,该一个或多个杂交种子的子集具有大于或等于目标概率过滤阈值的成功概率值。在实施例中,目标概率过滤阈值是配置的成功概率值阈值,其与杂交种子候选集合中的每种杂交种子相关联。目标概率过滤阈值可用于基于仅选择具有一定成功概率的杂交种子来进一步缩小杂交种子的选择池(selection pool)。在实施例中,如果杂交种子的候选集合表示在步骤725处所生成的目标成功产量组,则很可能该组杂合种子已被过滤以仅包括具有高成功概率值的杂交种子。在一个示例中,目标概率过滤阈值可以具有与用于生成目标成功产量组的成功产量阈值相同的阈值。如果是这种情况,则该一种或多种杂交种子的子集可以包括整组杂交种子。在另一示例中,种植者可能希望缩小的杂交种子列表,这可以通过为目标概率过滤阈值配置更高的成功概率值来实现,以过滤掉具有低于期望的成功概率值的杂交种子。
在步骤1020处,种子标准化指令172提供指令,该指令用于基于来自针对每种杂交种子的历史农业数据的产量值,针对一种或多种杂交种子的子集中的每种杂交种子生成代表性产量值。在实施例中,代表性产量值是:基于历史产量值和从以往收获中观测到的其他农业数据,特定杂交种子如果在田地中种植时该特定杂交种子的预期产量值。在实施例中,代表性产量值是来自多个田地上多个不同观测生长季节的产量的计算平均值。例如,可以将代表性产量值计算为不同观测生长周期年份的平均值,其中特定杂交种子的平均第一年生长周期产量可包括对来自不同年份不同田地的观测到的产量值进行组合。在计算针对不同生长周期年份的平均生长周期产量后,可以将每个平均值组合起来,以针对每种特定杂交种子生成代表性平均产量。在另一实施例中,代表性产量值可以是在步骤715处计算的标准化产量值。
4.3.生成杂交种子的风险值
在步骤1025处,风险生成指令184提供指令,该指令用于基于与每种杂交种子相关联的历史农业数据针对一种或多种杂交种子的子集中的每种杂交种子生成风险值的数据集。风险值描述基于代表性产量值的每种杂交种子在产量可变性(yield variablity)方面的风险量。例如,如果玉米杂交种-002的代表性产量为15蒲式耳每英亩,并且玉米杂交种-002的可变性高到使得产量可从5蒲式耳每英亩到25蒲式耳每英亩的范围变化,则玉米杂交-002的代表性产量很可能不能很好地代表实际产量,因为产量可在5蒲式耳每英亩到25蒲式耳每英亩之间变化。高风险值与产量回报的高可变性相关联,而低风险值与产量回报的低可变性以及与代表性产量更紧密地一致的产量结果相关联。
在实施例中,杂交种子的风险值是基于针对特定杂交种子的两年或两年以上的逐年产量回报之间的可变性的。例如,计算玉米杂交种-002的风险值包括根据历史农业数据计算来自多年产量输出的产量值的可变性。来自玉米杂交种-002的2015年和2016年的产量输出中的方差(variance)可用于确定可能与玉米杂交种-002的代表性产量值相关联的风险值。确定产量输出的方差不限于使用来自前两年的产量产出,方差可以用来自多年的产量输出数据来计算。在实施例中,计算出的风险值可表示为蒲式耳每英亩的标准偏差,其中标准偏差被计算为计算出的风险方差的平方根。
在实施例中,杂交种子的风险值可以是基于针对特定年份根据逐田地观测的产量输出的可变性的。例如,计算与田地可变性相关联的风险值可以包括确定针对特定年份、针对特定杂交种子所观测到的来自每个田地的产量的可变性。如果对于特定杂交种子,跨多个田地观测到的产量输出在5蒲式耳每英亩到50蒲式耳每英亩的范围变化,则特定杂交种子可能具有高田地可变性。因此,可以基于田地可变性为特定杂交种子分配高风险因子,因为任何给定田地上的预期输出可能在5蒲式耳每英亩到50蒲式耳每英亩之间变化,而非更接近代表性产量值。
在另一实施例中,杂交种子的风险值可以是基于逐年产量回报之间的可变性和逐田地观测之间的可变性的。逐年风险值和逐田地风险值可以被组合以表示包括跨多个观测田地和跨多个观测季节的产量输出的可变性的风险值。在又一些其他实施例中,风险值可以包括与历史作物生长和产量相关联的其他的观测到的作物种子数据。
4.4.生成目标杂交种子的数据集
在步骤1030处,优化分类指令186提供指令,该指令用于基于风险值的数据集、杂交种子的代表性产量值以及目标田地的一个或多个特性来生成用于在目标田地上种植的目标杂交种子的数据集。在实施例中,基于目标杂交种子的代表性产量值和来自风险值的数据集中的相关联风险值来选择目标杂交种子的数据集中的目标杂交种子。
确定要包括在目标杂交种子的数据集中的杂交种子的组合涉及确定特定杂交种子的代表性产量和与特定杂交种子相关联的风险值之间的关系。如果高产量杂交种子也具有高风险水平,则选择具有高代表性产量的杂交种子可能不会产生最优的一组杂交种子。相反,选择具有风险值低的杂交种子可能没有足够高的产量投资回报率。
在实施例中,来自一种或多种杂交种子的子集中的杂交种子可基于其各自的代表性产量值相对于其相关联的风险值而被绘制图形。图11描绘了针对一种或多种杂交种子的子集的产量相对于风险的示例图形1105。y轴1110代表杂交种子的代表性产量(如预期产量),x轴1115代表表示为标准偏差的杂交种子的风险值。通过将风险值表示为标准偏差,风险值的单位可以与代表产量的单位相同,即蒲式耳每英亩。图形1105上由组1125和组1130表示的点表示来自一种或多种杂交种子的子集中的每种杂交种子。例如,图形1105显示杂交种子1135具有200蒲式耳每英亩的代表性产量值并具有191蒲式耳每英亩的标准偏差的风险值。在其他实施例中,图形1105可以使用不同的单位来生成,例如以美元度量的每英亩利润或任何其他得出的度量单位。
在实施例中,确定哪些杂交种子属于目标杂交种子的数据集涉及确定针对特定风险量的预期产量回报。为了生成将可能对各种环境和其他因素具有适应力(resilient)的一组目标杂交种子,优选地,生成包含具有低风险值和高风险值两者以及中等到高产量输出的杂交种子的多样性的一组杂交种子。参考图10,步骤1032表示生成针对一定范围的风险值的代表性产量值的目标阈值。在实施例中,优化分类指令186提供指令,该指令用于计算最优边界曲线(frontier curve),该最优边界曲线表示在该一定范围的风险值上具有可管理风险容限量的最优产量输出阈值。边界曲线是一条拟合曲线,其表示在考虑最优效率的情况下针对绘制的输入值的最优输出。例如,图形1105包含基于代表性产量相对于风险值的杂交种子,其中可以推断出具有较高产量的特定杂交种子也可能具有较高的风险。相反,风险值较低的杂交种子可能具有较低的代表性产量值。边界曲线1120表示基于一定范围的风险值跟踪最优产量的量的最优曲线。
在步骤1034处,优化分类指令186提供指令,该指令用于通过选择具有满足由边界曲线1120定义的阈值的代表性产量和风险值的杂交种子来选择构成一组目标杂交种子的杂交种子。落在边界曲线1120上或接近边界曲线1120的杂交种子在期望的风险水平处提供最优产量水平。目标杂交种子1140代表针对目标杂交种子的数据集的最优的一组杂交种子。落在边界曲线1120之下的杂交种子针对风险水平具有欠佳产量输出,或者针对所产生的产量输出水平具有高于预期的风险。例如,杂交种子1135在边界曲线1120之下,并且可以解释为针对其风险量具有低于最优产量的产量,如杂交种子1135垂直位于边界曲线1120下方的位置所示。此外,杂交种子1135可以被解释为针对其产量输出具有高于预期的风险,如杂交种子1135针对该代表产量的量水平地位于边界曲线1120的右侧的位置所示。不在边界曲线1120上或位于其附近的杂交种子1135针对其相关联的风险值具有欠佳代表性产量,并且因此不被包括在该组目标杂交种子中。此外,杂交种子1135表示具有高于期望风险值的杂交种子,并且因此不被包括在目标杂交种子组中。
在实施例中,优化分类指令186提供指令,该指令用于针对一组目标杂交种子中的每种目标杂交种子生成分配指令。分配指令描述一组目标杂交种子中的每种目标杂交种子的种子分配量,其基于目标田地的量和位置为种植者提供最优分配策略。例如,针对包括种子(CN-001、CN-002、SOY-005、CN-023)的一组目标杂交种子的分配指令可以包括CN-001占75%、CN-002占10%、SOY-005占13%、CN-023占2%的分配。分配指令的实施例可以包括但不限于种子的袋的数量、跨多个目标田地种植的总体种子的百分比、或针对要种植的每种目标杂交种子的分配英亩数。在实施例中,可以通过使用第三方优化求解器产品(例如IBM的CPLEX Optimizer)进行计算来确定分配量。CPLEX Optimizer是用于线性规划、混合整数规划和二次规划的数学规划求解器。优化求解器(例如,CPLEX Optimizer)被配置为评估与目标杂交种子相关联的代表性产量值和风险值,并且确定用于针对一组目标杂交种中的每种目标杂交种子分配种子量的分配指令集合。在实施例中,优化求解器可以使用目标杂交种子的代表性产量值的总和以及计算出的目标杂交种子的风险值总和来计算所配置的总风险阈值,该总风险阈值可用于确定针对一组目标杂交种子的允许风险的上限和产量输出。
在另一实施例中,优化求解器还可以输入描述每个目标田地的大小、形状和地理位置的目标田地数据,以便确定包括针对目标杂交种子的每个分配的放置指令的分配指令。例如,如果特定目标田地以特定方式成形或调整大小,则优化求解器可以确定在特定田地上分配一个目标杂交种子相对于在特定田地上种植多个目标杂交种子是更加优选的。优化求解器不限于CPLEX Optimizer,其他实施例可以实现其他优化求解器或其他优化算法以确定针对一组目标杂交种子的分配指令集。
4.5.种子投资组合分析
步骤1030描述使用边界曲线来为基于目标田地的种植者确定和生成一组目标杂交种子,以确定针对期望风险水平的最优产量输出。在实施例中,优化分类指令186提供指令,该指令用于配置边界曲线以确定种植者的种子投资组合相对于同一区域或子区域中的其他种植者的总体最优表现。例如,可以为特定区域中的每个种植者计算代表性产量和总体风险值。例如,使用多个种植者的历史农业数据,可以将由每个种植者所种植的杂交种子的代表性产量值和相关风险值进行聚合,以生成与每个种植者相关联的聚合产量输出值和聚合风险值。然后,每个种植者的聚合值可以被绘制在种子投资组合图形(类似于图形1105)上,其中图形上的各个点可以表示种植者的聚合杂交种子产量输出和聚合风险。在实施例中,边界曲线可被生成以确定针对特定区域中种植者的最优聚合产量输出和聚合风险值。处于或接近边界曲线的种植者可表示其种子投资组合在经管理的风险量的情况下产生最优产量的种植者。低于边界曲线的种植者表示没有基于其风险而最大化其输出的种植者。
在实施例中,优化分类指令186提供指令,该指令用于在种植者的种子投资组合的聚合产量输出和聚合风险不满足种子投资组合图形上的边界曲线所描述的种子投资组合的最优阈值时,为特定种植者生成警报消息。表现层134可以被配置为向种植者的田地管理器计算设备104呈现并发送警报消息。然后种植者可以有请求针对未来的生长季节提供最优产量的一组目标杂交种子的选项。
4.6.呈现一组目标杂交种子
在实施例中,目标杂交种子的数据集可以包含与针对目标田地的目标杂交种子数据集中的每种目标杂交种子相关联的代表性产量值和风险值(来自风险值数据集)。参考图10,在步骤1035处,农业智能计算机系统130的表现层134被配置为在田地管理器计算设备104上的显示设备上传送目标杂交种子的数据集的显示,其中包括每种目标杂交种子的代表性产量值和相关联的风险值。在另一实施例中,表现层134可以将目标杂交种子的数据集的显示传送到可通信地耦合到农业智能计算机系统130的任何其他显示设备,例如,远程计算机设备、驾驶室内的显示设备、或任何其他连接的移动设备。在又一实施例中,表现层134可以通过农业智能计算机系统130将目标杂交种子的数据集传送到其他系统和子系统,以便进行进一步处理和呈现。
在实施例中,表现层134可以显示针对每种目标杂交种子的分配指令(包括种子分配和放置信息)。表现层134还可以基于分配量对目标杂交种子进行排序,或者可以基于在目标田地上的放置策略来呈现目标杂交种子。例如,对目标杂交种子和分配指令的显示可以叠加到目标田地的地图上,这样种植者就可以直观地看到下一季的种植策略。
在一些实施例中,种植者可以采用与分配指令相关的所呈现的信息并且基于分配指令来种植种子。种植者可以作为确定分配指令的组织的一部分,和/或可以是单独的。例如,种植者可以是确定分配指令的组织的客户,并且可以基于分配指令来种植种子。
Claims (20)
1.一种计算机实现的方法,包括:
在服务器计算机系统处,通过数字数据通信网络接收一个或多个农业数据记录,所述一个或多个农业数据记录表示描述一种或多种杂交种子的种子和产量特性的作物种子数据以及种植过所述一种或多种杂交种子的一个或多个当前农业田地的第一田地地理位置数据;
在所述服务器计算机系统处,通过所述数字数据通信网络接收要种植杂交种子的一个或多个目标田地的第二地理位置数据;
使用所述服务器计算机系统中的杂交种子标准化指令,根据所述一个或多个农业数据记录来生成杂交种子特性的数据集,所述杂交种子特性的数据集描述所述一种或多种杂交种子中的每种杂交种子针对特定生长周期的代表性产量值和环境分类,所述特定生长周期表示特定杂交种子已经在特定田地上被种植的特定连续年数,其中所述代表性产量值根据表示相同的所述特定生长周期从一组农田观察到的历史产量值被计算为平均历史产量值;
使用所述服务器计算机系统中的成功概率生成指令,基于所述杂交种子特性的数据集和所述一个或多个目标田地的所述第二地理位置数据,来生成针对所述一种或多种杂交种子中的每种杂交种子的成功概率分数的数据集,所述成功概率分数的数据集将成功产量的概率描述为所述一个或多个目标田地上的成功概率值;
使用所述服务器计算机系统中的产量分类指令,基于针对所述杂交种子中的每种杂交种子的所述成功概率分数的数据集和所配置的概率阈值,来生成由所述一种或多种杂交种子的子集和与所述一种或多种杂交种子的所述子集中的每种杂交种子相关联的成功概率值组成的目标成功产量组,所述目标成功产量组描述将在所述一个或多个目标田地上产生推荐产量估计的杂交种子;
基于所述杂交种子的所述代表性产量值和所述一个或多个农业数据记录,使用所述服务器计算机系统中的风险生成指令生成风险值,所述风险值描述所述一种或多种杂交种子的所述子集中的每种杂交种子在产量可变性方面的风险量;
基于所述一种或多种杂交种子的所述子集中的所述杂交种子的所述代表性产量值和所述风险值,使用优化分类指令生成分配指令,所述分配指令描述针对所述一种或多种杂交种子的所述子集中的每种杂交种子的种子分配量;以及
使得在与所述服务器计算机系统通信地耦合的显示设备上显示所述一种或多种杂交种子的所述子集的所述目标成功产量组和所述分配指令,所述目标成功产量组包括所述一种或多种杂交种子的所述子集中的每种杂交种子的产量值,并且所述分配指令包括针对所述一种或多种杂交种子的所述子集中的每种杂交种子的所述种子分配量。
2.根据权利要求1所述的计算机实现的方法,其中,所述第一田地地理位置数据包括在所述一个或多个农业田地处针对所述一种或多种杂交种子的观测到的相对成熟度。
3.根据权利要求1所述的计算机实现的方法,其中,所述作物种子数据包括以下项中的至少一者:一个或多个农业田地处的所述一种或多种杂交种子的历史产量值、收获时间信息、或相对成熟度信息。
4.根据权利要求3所述的计算机实现的方法,其中生成描述所述一种或多种杂交种子中的每种杂交种子的代表性产量值和环境分类的所述杂交种子特性的数据集还包括:
基于所述一种或多种杂交种子中的每种杂交种子的所述历史产量值计算标准化产量值;以及
基于先前在所述一个或多个农业田地处种植的所述一种或多种杂交种子的观测到的相对成熟度来计算所述环境分类中的每个环境分类的环境分类值。
5.根据权利要求4所述的计算机实现的方法,其中生成所述一种或多种杂交种子中的每种杂交种子的所述成功概率分数的数据集包括:对所述一种或多种杂交种子中的每种杂交种子的所述标准化产量值和所述环境分类值执行逻辑回归建模。
6.根据权利要求4所述的计算机实现的方法,其中生成所述一种或多种杂交种子中的每种杂交种子的所述成功概率分数的数据集包括:对所述一种或多种杂交种子中的每种杂交种子的所述标准化产量值和所述环境分类值执行随机森林建模。
7.根据权利要求4所述的计算机实现的方法,其中生成所述一种或多种杂交种子中的每种杂交种子的所述成功概率分数的数据集包括:对所述一种或多种杂交种子中的每种杂交种子的所述标准化产量值和所述环境分类值执行支持向量机建模。
8.根据权利要求4所述的计算机实现的方法,其中生成所述一种或多种杂交种子中的每种杂交种子的所述成功概率分数的数据集包括:对所述一种或多种杂交种子中的每种杂交种子的所述标准化产量值和所述环境分类值执行梯度提升建模。
9.根据权利要求1所述的计算机实现的方法,其中,所配置的概率阈值是基于大于针对所述一个或多个目标田地的杂交种子的计算平均产量范围的配置产量值。
10.根据权利要求1所述的计算机实现的方法,其中使得显示所述一种或多种杂交种子的所述子集的所述目标成功产量组包括:
将所述一种或多种杂交种子的所述子集按与每种杂交种子相关联的成功概率值降序排序;以及
使得显示所述一种或多种杂交种子的经排序的子集,包括所述产量值。
11.一种服务器计算机系统,包括:
一个或多个处理器;
一种或多种非暂时性计算机可读介质,其存储指令,在使用所述一个或多个处理器执行所述指令时,使所述一个或多个处理器执行以下操作:
在服务器计算机系统处,通过数字数据通信网络,接收一个或多个农业数据记录,所述一个或多个农业数据记录表示描述一种或多种杂交种子的种子和产量特性的作物种子数据以及种植过所述一种或多种杂交种子的一个或多个当前农业田地的第一田地地理位置数据;
在所述服务器计算机系统处,通过所述数字数据通信网络,接收要种植杂交种子的一个或多个目标田地的第二地理位置数据;
使用所述服务器计算机系统中的杂交种子标准化指令,根据所述一个或多个农业数据记录来生成杂交种子特性的数据集,所述杂交种子特性的数据集描述所述一种或多种杂交种子中的每种杂交种子针对特定生长周期的代表性产量值和环境分类,所述特定生长周期表示特定杂交种子已经在特定田地上被种植的特定连续年数,其中所述代表性产量值根据表示相同的所述特定生长周期从一组农田观察到的历史产量值被计算为平均历史产量值;
使用所述服务器计算机系统中的成功概率生成指令,基于所述杂交种子特性的数据集和所述一个或多个目标田地的所述第二地理位置数据,来生成针对所述一种或多种杂交种子中的每种杂交种子的成功概率分数的数据集,所述成功概率分数的数据集将成功产量的概率描述为所述一个或多个目标田地上的成功概率值;
使用所述服务器计算机系统中的产量分类指令,基于针对所述杂交种子中的每种杂交种子的所述成功概率分数的数据集和所配置的概率阈值,来生成由所述一种或多种杂交种子的子集和与所述一种或多种杂交种子的所述子集中的每种杂交种子相关联的成功概率值组成的目标成功产量组,所述目标成功产量组描述将在所述一个或多个目标田地上产生推荐产量估计的杂交种子;
基于所述杂交种子的所述代表性产量值和所述一个或多个农业数据记录,使用所述服务器计算机系统中的风险生成指令生成风险值,所述风险值描述所述一种或多种杂交种子的所述子集中的每种杂交种子在产量可变性方面的风险量;
基于所述一种或多种杂交种子的所述子集中的所述杂交种子的所述代表性产量值和所述风险值,使用优化分类指令生成分配指令,所述分配指令描述针对所述一种或多种杂交种子的所述子集中的每种杂交种子的种子分配量;以及
使得在与所述服务器计算机系统通信地耦合的显示设备上显示所述一种或多种杂交种子的所述子集的所述目标成功产量组和所述分配指令,所述目标成功产量组包括所述一种或多种杂交种子的所述子集中的每种杂交种子的产量值,并且所述分配指令包括针对所述一种或多种杂交种子的所述子集中的每种杂交种子的所述种子分配量。
12.根据权利要求11所述的计算机系统,其中,所述第一田地地理位置数据包括在所述一个或多个农业田地处针对所述一种或多种杂交种子的观测到的相对成熟度。
13.根据权利要求11所述的计算机系统,其中,所述作物种子数据包括以下项中的至少一者:一个或多个农业田地处的所述一种或多种杂交种子的历史产量值、收获时间信息、或相对成熟度信息。
14.根据权利要求13所述的计算机系统,其中生成描述所述一种或多种杂交种子中的每种杂交种子的代表性产量值和环境分类的所述杂交种子特性的数据集还包括:
基于所述一种或多种杂交种子中的每种杂交种子的所述历史产量值计算标准化产量值;以及
基于先前在所述一个或多个农业田地处种植的所述一种或多种杂交种子的观测到的相对成熟度来计算所述环境分类中的每个环境分类的环境分类值。
15.根据权利要求14所述的计算机系统,其中生成所述一种或多种杂交种子中的每种杂交种子的所述成功概率分数的数据集包括:对所述一种或多种杂交种子中的每种杂交种子的所述标准化产量值和所述环境分类值执行逻辑回归建模。
16.根据权利要求14所述的计算机系统,其中生成所述一种或多种杂交种子中的每种杂交种子的所述成功概率分数的数据集包括:对所述一种或多种杂交种子中的每种杂交种子的所述标准化产量值和所述环境分类值执行随机森林建模。
17.根据权利要求14所述的计算机系统,其中生成所述一种或多种杂交种子中的每种杂交种子的所述成功概率分数的数据集包括:对所述一种或多种杂交种子中的每种杂交种子的所述标准化产量值和所述环境分类值执行支持向量机建模。
18.根据权利要求14所述的计算机系统,其中生成所述一种或多种杂交种子中的每种杂交种子的所述成功概率分数的数据集包括:对所述一种或多种杂交种子中的每种杂交种子的所述标准化产量值和所述环境分类值执行梯度提升建模。
19.根据权利要求11所述的计算机系统,其中,所配置的概率阈值是基于大于针对所述一个或多个目标田地的杂交种子的计算平均产量范围的配置产量值。
20.根据权利要求11所述的计算机系统,其中使得显示所述一种或多种杂交种子的所述子集的所述目标成功产量组包括:
将所述一种或多种杂交种子的所述子集按与每种杂交种子相关联的成功概率值降序排序;以及
使得显示所述一种或多种杂交种子的经排序的子集,包括所述产量值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310338520.2A CN116341865A (zh) | 2017-11-09 | 2018-11-08 | 根据田地的杂交种子选择和种子投资组合优化 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/807,872 | 2017-11-09 | ||
US15/807,872 US11568340B2 (en) | 2017-11-09 | 2017-11-09 | Hybrid seed selection and seed portfolio optimization by field |
PCT/US2018/059848 WO2019094606A1 (en) | 2017-11-09 | 2018-11-08 | Hybrid seed selection and seed portfolio optimization by field |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310338520.2A Division CN116341865A (zh) | 2017-11-09 | 2018-11-08 | 根据田地的杂交种子选择和种子投资组合优化 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111565558A CN111565558A (zh) | 2020-08-21 |
CN111565558B true CN111565558B (zh) | 2023-04-21 |
Family
ID=66327335
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880085904.5A Active CN111565558B (zh) | 2017-11-09 | 2018-11-08 | 根据田地的杂交种子选择和种子投资组合优化 |
CN202310338520.2A Pending CN116341865A (zh) | 2017-11-09 | 2018-11-08 | 根据田地的杂交种子选择和种子投资组合优化 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310338520.2A Pending CN116341865A (zh) | 2017-11-09 | 2018-11-08 | 根据田地的杂交种子选择和种子投资组合优化 |
Country Status (8)
Country | Link |
---|---|
US (2) | US11568340B2 (zh) |
EP (1) | EP3706534A4 (zh) |
CN (2) | CN111565558B (zh) |
AR (1) | AR115048A1 (zh) |
BR (1) | BR112020009202B1 (zh) |
CA (2) | CA3081024C (zh) |
MX (1) | MX2020004738A (zh) |
WO (1) | WO2019094606A1 (zh) |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014007109A1 (ja) * | 2012-07-04 | 2014-01-09 | ソニー株式会社 | 農作業支援装置および方法、プログラム、記録媒体、並びに農作業支援システム |
US11562444B2 (en) | 2017-11-09 | 2023-01-24 | Climate Llc | Hybrid seed selection and seed portfolio optimization by field |
US11423492B2 (en) | 2017-11-21 | 2022-08-23 | Climate Llc | Computing risk from a crop damaging factor for a crop on an agronomic field |
US11564345B1 (en) * | 2018-06-24 | 2023-01-31 | Climate Llc | Computer-implemented recommendation of side-by-side planting in agricultural fields |
US11861737B1 (en) * | 2018-08-31 | 2024-01-02 | Climate Llc | Hybrid seed supply management based on prescription of hybrid seed placement |
CA3116341A1 (en) * | 2018-10-24 | 2020-04-30 | The Climate Corporation | Leveraging genetics and feature engineering to boost placement predictability for seed product selection and recommendation by field |
US11957072B2 (en) | 2020-02-06 | 2024-04-16 | Deere & Company | Pre-emergence weed detection and mitigation system |
US11672203B2 (en) | 2018-10-26 | 2023-06-13 | Deere & Company | Predictive map generation and control |
US11178818B2 (en) | 2018-10-26 | 2021-11-23 | Deere & Company | Harvesting machine control system with fill level processing based on yield data |
US11079725B2 (en) | 2019-04-10 | 2021-08-03 | Deere & Company | Machine control using real-time model |
US11589509B2 (en) | 2018-10-26 | 2023-02-28 | Deere & Company | Predictive machine characteristic map generation and control system |
US11240961B2 (en) | 2018-10-26 | 2022-02-08 | Deere & Company | Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity |
US11467605B2 (en) | 2019-04-10 | 2022-10-11 | Deere & Company | Zonal machine control |
US12069978B2 (en) | 2018-10-26 | 2024-08-27 | Deere & Company | Predictive environmental characteristic map generation and control system |
US11653588B2 (en) | 2018-10-26 | 2023-05-23 | Deere & Company | Yield map generation and control system |
US11641800B2 (en) | 2020-02-06 | 2023-05-09 | Deere & Company | Agricultural harvesting machine with pre-emergence weed detection and mitigation system |
US11234366B2 (en) | 2019-04-10 | 2022-02-01 | Deere & Company | Image selection for machine control |
US11715024B1 (en) | 2020-02-20 | 2023-08-01 | Arva Intelligence Corp. | Estimating soil chemistry at different crop field locations |
US11704576B1 (en) | 2020-01-29 | 2023-07-18 | Arva Intelligence Corp. | Identifying ground types from interpolated covariates |
US11704581B1 (en) | 2020-01-29 | 2023-07-18 | Arva Intelligence Corp. | Determining crop-yield drivers with multi-dimensional response surfaces |
US11610272B1 (en) | 2020-01-29 | 2023-03-21 | Arva Intelligence Corp. | Predicting crop yield with a crop prediction engine |
US12035648B2 (en) | 2020-02-06 | 2024-07-16 | Deere & Company | Predictive weed map generation and control system |
US11477940B2 (en) | 2020-03-26 | 2022-10-25 | Deere & Company | Mobile work machine control based on zone parameter modification |
US11367151B2 (en) * | 2020-09-17 | 2022-06-21 | Farmobile Llc | Geospatial aggregating and layering of field data |
US11711995B2 (en) | 2020-10-09 | 2023-08-01 | Deere & Company | Machine control using a predictive map |
US12013245B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Predictive map generation and control system |
US11592822B2 (en) | 2020-10-09 | 2023-02-28 | Deere & Company | Machine control using a predictive map |
US11474523B2 (en) | 2020-10-09 | 2022-10-18 | Deere & Company | Machine control using a predictive speed map |
US11650587B2 (en) | 2020-10-09 | 2023-05-16 | Deere & Company | Predictive power map generation and control system |
US11849672B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Machine control using a predictive map |
US11727680B2 (en) | 2020-10-09 | 2023-08-15 | Deere & Company | Predictive map generation based on seeding characteristics and control |
US11889788B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive biomass map generation and control |
US11844311B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Machine control using a predictive map |
US11845449B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Map generation and control system |
US11864483B2 (en) | 2020-10-09 | 2024-01-09 | Deere & Company | Predictive map generation and control system |
US11946747B2 (en) | 2020-10-09 | 2024-04-02 | Deere & Company | Crop constituent map generation and control system |
US11927459B2 (en) | 2020-10-09 | 2024-03-12 | Deere & Company | Machine control using a predictive map |
US11895948B2 (en) | 2020-10-09 | 2024-02-13 | Deere & Company | Predictive map generation and control based on soil properties |
US11871697B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Crop moisture map generation and control system |
US12069986B2 (en) | 2020-10-09 | 2024-08-27 | Deere & Company | Map generation and control system |
US11825768B2 (en) | 2020-10-09 | 2023-11-28 | Deere & Company | Machine control using a predictive map |
US11635765B2 (en) | 2020-10-09 | 2023-04-25 | Deere & Company | Crop state map generation and control system |
US11675354B2 (en) | 2020-10-09 | 2023-06-13 | Deere & Company | Machine control using a predictive map |
US11874669B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Map generation and control system |
US11983009B2 (en) | 2020-10-09 | 2024-05-14 | Deere & Company | Map generation and control system |
US11849671B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Crop state map generation and control system |
US11889787B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive speed map generation and control system |
CN112464560B (zh) * | 2020-11-25 | 2022-11-22 | 吉林农业大学 | 基于粒子群算法的循环农业多目标种养规模分配优化方法 |
CN113051273B (zh) * | 2021-03-30 | 2021-12-03 | 天津市生态环境科学研究院 | 空气质量数据处理方法、装置、电子设备及存储介质 |
WO2022256214A1 (en) * | 2021-06-01 | 2022-12-08 | Climate Llc | Systems and methods for use in planting seeds in growing spaces |
US12082531B2 (en) | 2022-01-26 | 2024-09-10 | Deere & Company | Systems and methods for predicting material dynamics |
US12058951B2 (en) | 2022-04-08 | 2024-08-13 | Deere & Company | Predictive nutrient map and control |
US20240070141A1 (en) * | 2022-08-31 | 2024-02-29 | Palantir Technologies Inc. | Systems and methods for generating interrelated notional data |
WO2024076593A1 (en) * | 2022-10-05 | 2024-04-11 | Climate Llc | Systems and methods for assessing crop damaging factors associated with agronomic fields |
CN117054354B (zh) * | 2023-10-12 | 2024-03-05 | 云南省林业和草原科学院 | 一种便携式种子成熟度光谱检测系统及装置 |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001017169A2 (en) | 1999-08-31 | 2001-03-08 | Accenture Llp | A system, method and article of manufacture for a network-based predictive fault management system |
AU1343601A (en) | 1999-10-25 | 2001-05-08 | Monsanto Company | Computer systems and methods for selecting seed varieties |
WO2001075706A1 (en) | 2000-04-04 | 2001-10-11 | Nagarjuna Holdings Private Limited | Agricultural management system for providing agricultural solutions and enabling commerce |
AU2001271287A1 (en) | 2000-06-05 | 2001-12-17 | Ag-Chem Equipment Company, Inc. | System and method for providing profit analysis for site-specific farming |
CA2419272A1 (en) | 2000-08-22 | 2002-02-28 | Deere & Company | System and method for developing a farm management plan for production agriculture |
AU2002237957B2 (en) | 2001-01-31 | 2006-09-14 | Accenture Global Services Limited | Configuring architecture for mobile access to at least one business resource |
US6874707B2 (en) | 2001-05-31 | 2005-04-05 | Terra Spase | System for automated monitoring and maintenance of crops including computer control of irrigation and chemical delivery using multiple channel conduit |
US6549852B2 (en) | 2001-07-13 | 2003-04-15 | Mzb Technologies, Llc | Methods and systems for managing farmland |
US7047133B1 (en) * | 2003-01-31 | 2006-05-16 | Deere & Company | Method and system of evaluating performance of a crop |
US20050150160A1 (en) | 2003-10-28 | 2005-07-14 | Norgaard Daniel G. | Method for selecting crop varieties |
US7702597B2 (en) * | 2004-04-20 | 2010-04-20 | George Mason Intellectual Properties, Inc. | Crop yield prediction using piecewise linear regression with a break point and weather and agricultural parameters |
US20060282467A1 (en) | 2005-06-10 | 2006-12-14 | Pioneer Hi-Bred International, Inc. | Field and crop information gathering system |
US8046280B2 (en) * | 2005-06-10 | 2011-10-25 | Pioneer Hi-Bred International, Inc. | Method for using environmental classification to assist in financial management and services |
US20080040165A1 (en) | 2006-08-08 | 2008-02-14 | Monsanto Technology Llc | Transgenic crop financial systems and methods |
US20110054921A1 (en) | 2009-08-25 | 2011-03-03 | Lynds Heather | System for planning the planting and growing of plants |
US8855937B2 (en) | 2010-10-25 | 2014-10-07 | Trimble Navigation Limited | Crop characteristic estimation |
US20120123817A1 (en) | 2010-11-12 | 2012-05-17 | Smartfield, Inc. | Agricultural management using biological signals |
AR085702A1 (es) | 2011-03-07 | 2013-10-23 | Syngenta Participations Ag | Metodos para predecir el rendimiento en plantas y aplicaciones de uso de los mismos |
WO2013123164A1 (en) * | 2012-02-14 | 2013-08-22 | Wilson John Hugh Mccleery | Method to increase plant yield |
US20140278731A1 (en) | 2013-03-15 | 2014-09-18 | Cresco Ag, Llc | System and Method for Agricultural Risk Management |
US9087022B2 (en) * | 2012-10-05 | 2015-07-21 | Land O'lakes, Inc. | Systems and methods for predicting regional turfgrass performance |
US9443436B2 (en) | 2012-12-20 | 2016-09-13 | The Johns Hopkins University | System for testing of autonomy in complex environments |
US8626698B1 (en) | 2013-01-14 | 2014-01-07 | Fmr Llc | Method and system for determining probability of project success |
WO2015051339A1 (en) | 2013-10-03 | 2015-04-09 | Farmers Business Network, Llc | Crop model and prediction analytics |
US10371561B2 (en) * | 2013-11-01 | 2019-08-06 | Iowa State University Research Foundation, Inc. | Yield measurement and base cutter height control systems for a harvester |
WO2015100023A1 (en) * | 2013-12-27 | 2015-07-02 | Dow Agrosciences Llc | Characterizing field sites for agronomic stress tests |
US20150248720A1 (en) * | 2014-03-03 | 2015-09-03 | Invent.ly LLC | Recommendation engine |
WO2016151566A1 (en) | 2015-03-26 | 2016-09-29 | Tower-Sec Ltd | Security system and methods for identification of in-vehicle attack originator |
US10667456B2 (en) * | 2014-09-12 | 2020-06-02 | The Climate Corporation | Methods and systems for managing agricultural activities |
US11113649B2 (en) | 2014-09-12 | 2021-09-07 | The Climate Corporation | Methods and systems for recommending agricultural activities |
US11069005B2 (en) * | 2014-09-12 | 2021-07-20 | The Climate Corporation | Methods and systems for determining agricultural revenue |
US11080798B2 (en) | 2014-09-12 | 2021-08-03 | The Climate Corporation | Methods and systems for managing crop harvesting activities |
US20160224703A1 (en) * | 2015-01-30 | 2016-08-04 | AgriSight, Inc. | Growth stage determination system and method |
ES2951703T3 (es) | 2014-10-31 | 2023-10-24 | Purdue Research Foundation | Método para proporcionar una evaluación tridimensional del movimiento del agua a través del suelo y a través de un campo y el sistema asociado |
US9638678B2 (en) | 2015-01-30 | 2017-05-02 | AgriSight, Inc. | System and method for crop health monitoring |
US20160232621A1 (en) | 2015-02-06 | 2016-08-11 | The Climate Corporation | Methods and systems for recommending agricultural activities |
US10768340B2 (en) | 2015-04-29 | 2020-09-08 | The Climate Corporation | Systems, methods, and devices for monitoring weather and field conditions |
US20170270446A1 (en) | 2015-05-01 | 2017-09-21 | 360 Yield Center, Llc | Agronomic systems, methods and apparatuses for determining yield limits |
US11216758B2 (en) * | 2015-05-14 | 2022-01-04 | Board Of Trustees Of Michigan State University | Methods and systems for crop land evaluation and crop growth management |
US10342174B2 (en) * | 2015-10-16 | 2019-07-09 | The Climate Corporation | Method for recommending seeding rate for corn seed using seed type and sowing row width |
US10586158B2 (en) | 2015-10-28 | 2020-03-10 | The Climate Corporation | Computer-implemented calculation of corn harvest recommendations |
US10628895B2 (en) | 2015-12-14 | 2020-04-21 | The Climate Corporation | Generating digital models of relative yield of a crop based on nitrate values in the soil |
US10529036B2 (en) | 2016-01-22 | 2020-01-07 | The Climate Corporation | Forecasting national crop yield during the growing season using weather indices |
US10331931B2 (en) * | 2016-02-05 | 2019-06-25 | The Climate Corporation | Modeling trends in crop yields |
US10327400B2 (en) * | 2016-06-08 | 2019-06-25 | Monsanto Technology Llc | Methods for identifying crosses for use in plant breeding |
US9563852B1 (en) | 2016-06-21 | 2017-02-07 | Iteris, Inc. | Pest occurrence risk assessment and prediction in neighboring fields, crops and soils using crowd-sourced occurrence data |
WO2018049290A1 (en) | 2016-09-09 | 2018-03-15 | Cibo Technologies, Inc. | Systems for determining agronomic outputs for a farmable region, and related methods and apparatus |
CN106600444A (zh) * | 2016-12-12 | 2017-04-26 | 北京大学 | 基于神经网络算法和投资组合理论的品种选择方法和装置 |
US20180330435A1 (en) * | 2017-05-11 | 2018-11-15 | Harvesting Inc. | Method for monitoring and supporting agricultural entities |
US11562444B2 (en) | 2017-11-09 | 2023-01-24 | Climate Llc | Hybrid seed selection and seed portfolio optimization by field |
US11151500B2 (en) * | 2017-11-21 | 2021-10-19 | The Climate Corporation | Digital modeling of disease on crops on agronomic fields |
US11423492B2 (en) | 2017-11-21 | 2022-08-23 | Climate Llc | Computing risk from a crop damaging factor for a crop on an agronomic field |
-
2017
- 2017-11-09 US US15/807,872 patent/US11568340B2/en active Active
-
2018
- 2018-11-08 WO PCT/US2018/059848 patent/WO2019094606A1/en unknown
- 2018-11-08 CN CN201880085904.5A patent/CN111565558B/zh active Active
- 2018-11-08 BR BR112020009202-9A patent/BR112020009202B1/pt active IP Right Grant
- 2018-11-08 CA CA3081024A patent/CA3081024C/en active Active
- 2018-11-08 CA CA3169756A patent/CA3169756A1/en active Pending
- 2018-11-08 EP EP18877274.3A patent/EP3706534A4/en active Pending
- 2018-11-08 CN CN202310338520.2A patent/CN116341865A/zh active Pending
- 2018-11-08 MX MX2020004738A patent/MX2020004738A/es unknown
- 2018-11-09 AR ARP180103264A patent/AR115048A1/es not_active Application Discontinuation
-
2023
- 2023-01-30 US US18/103,061 patent/US20230169428A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CA3081024A1 (en) | 2019-05-16 |
CA3169756A1 (en) | 2019-05-16 |
CA3081024C (en) | 2022-10-04 |
WO2019094606A1 (en) | 2019-05-16 |
AR115048A1 (es) | 2020-11-25 |
EP3706534A4 (en) | 2021-06-30 |
MX2020004738A (es) | 2022-01-28 |
CN116341865A (zh) | 2023-06-27 |
BR112020009202B1 (pt) | 2024-02-20 |
US20190138962A1 (en) | 2019-05-09 |
CN111565558A (zh) | 2020-08-21 |
US20230169428A1 (en) | 2023-06-01 |
EP3706534A1 (en) | 2020-09-16 |
US11568340B2 (en) | 2023-01-31 |
BR112020009202A2 (pt) | 2020-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111565558B (zh) | 根据田地的杂交种子选择和种子投资组合优化 | |
CN111373425B (zh) | 对农艺田地上作物上的病害的数字建模 | |
CN111565557B (zh) | 根据田地的杂交种子选择和种子投资组合优化 | |
CN111372446B (zh) | 根据针对农艺田地上的作物的作物损害因子计算风险 | |
CN113168598B (zh) | 由田间的风险调整的杂交种子选择和作物产量优化 | |
CN112585643B (zh) | 将杂交种或种子自动分配给田地用于种植 | |
US20200005401A1 (en) | Optimal placement and portfolio opportunity targeting | |
US20200042890A1 (en) | Automatic prediction of yields and recommendation of seeding rates based on weather data | |
US11864488B1 (en) | Computer-implemented recommendation of side-by-side planting in agricultural fields | |
US11861737B1 (en) | Hybrid seed supply management based on prescription of hybrid seed placement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: California, USA Applicant after: Clemet Co.,Ltd. Address before: California, USA Applicant before: THE CLIMATE Corp. |
|
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: Missouri, USA Applicant after: Clemet Co.,Ltd. Address before: California, USA Applicant before: Clemet Co.,Ltd. |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |