CN111563343A - A method for determining the elastic modulus of rockfill concrete - Google Patents
A method for determining the elastic modulus of rockfill concrete Download PDFInfo
- Publication number
- CN111563343A CN111563343A CN202010440516.3A CN202010440516A CN111563343A CN 111563343 A CN111563343 A CN 111563343A CN 202010440516 A CN202010440516 A CN 202010440516A CN 111563343 A CN111563343 A CN 111563343A
- Authority
- CN
- China
- Prior art keywords
- rockfill
- elastic modulus
- concrete
- rfc
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004567 concrete Substances 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000011376 self-consolidating concrete Substances 0.000 claims abstract description 12
- 238000006073 displacement reaction Methods 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 7
- 238000007906 compression Methods 0.000 claims description 7
- 230000003068 static effect Effects 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000002474 experimental method Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011382 roller-compacted concrete Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明提供了一种堆石混凝土弹性模量的确定方法。首先,通过试验方法分别获得堆石和自密实混凝土的弹性模量参数和泊松比,并确定自密实混凝土的弹性模量表达式。然后,构建堆石混凝土试件的细观有限元模型,用有限单元法对堆石混凝土试件进行数值加载,计算得到不同龄期试件的应力场,通过将试件各部分的应力值按体积进行平均,获得试件的平均应力。根据弹性力学中的物理方程,计算得到不同龄期的试件的宏观弹性模量。最后对计算得到的宏观弹性模量数据进行曲线拟合,得到相应的函数表达式。相比于经验公式,本发明优点在于:能够反映堆石混凝土的硬化过程,提供更加全面、准确的结果。
The invention provides a method for determining the elastic modulus of rockfill concrete. First, the elastic modulus parameters and Poisson's ratio of rockfill and self-compacting concrete were obtained by experimental method, and the elastic modulus expression of self-compacting concrete was determined. Then, a meso-finite element model of the rockfill concrete specimen is constructed, and the rockfill concrete specimen is numerically loaded by the finite element method, and the stress field of the specimen at different ages is calculated. The volumes are averaged to obtain the average stress of the specimen. According to the physical equation in elastic mechanics, the macroscopic elastic modulus of the specimens of different ages is calculated. Finally, curve fitting is performed on the calculated macroscopic elastic modulus data, and the corresponding function expression is obtained. Compared with the empirical formula, the present invention has the advantage that it can reflect the hardening process of the rockfill concrete and provide more comprehensive and accurate results.
Description
技术领域technical field
本发明涉及水利水电工程技术领域,特别涉及一种堆石混凝土弹性模量的确定方法。The invention relates to the technical field of water conservancy and hydropower engineering, in particular to a method for determining the elastic modulus of rockfill concrete.
背景技术Background technique
堆石混凝土(Rock-Filled Concrete,简称RFC)是指先将满足一定粒径要求的块石(或卵石)自然堆满仓面,然后在堆石体表面浇注满足特殊要求的自密实混凝土(Self-Compacting Concrete,简称SCC),无需振捣,仅依靠其自重充填堆石体的空隙,所形成的完整密实的混凝土,如图1所示。Rock-Filled Concrete (RFC for short) refers to the natural filling of the silo surface with boulders (or pebbles) that meet the requirements of a certain particle size, and then pouring self-compacting concrete (Self-Compacting) that meets the special requirements on the surface of the rockfill body. Concrete, referred to as SCC), does not need to vibrate, and only relies on its own weight to fill the voids of the rockfill body to form a complete and dense concrete, as shown in Figure 1.
相比于水利水电工程中较常使用的常态混凝土和碾压混凝土,堆石混凝土的水泥用量更少,骨料用量更大,具有低碳环保、低水化热、工艺简便、造价低廉、施工速度快等优点。堆石混凝土在大体积混凝土工程中具有巨大的应用潜力。Compared with normal concrete and roller compacted concrete commonly used in water conservancy and hydropower projects, rockfill concrete uses less cement and a larger amount of aggregate, and has the advantages of low carbon and environmental protection, low hydration heat, simple process, low cost, and construction The advantages of fast speed and so on. Rockfill concrete has great application potential in mass concrete engineering.
弹性模量是衡量混凝土变形难易程度的重要指标,是进行混凝土结构设计的重要依据,一般由试验直接测定。但是,由于堆石混凝土中的堆石粒径可高达1m,很难直接进行静力受压弹性模量试验,因此目前获得堆石混凝土的弹性模量的主要方法是采用经验公式,直接将自密实混凝土的弹性模量和堆石的弹性模量按堆石率进行平均。这种取值方法过于依赖经验,不能准确的反映堆石混凝土的硬化过程,给出的结果往往存在偏差。The elastic modulus is an important index to measure the difficulty of concrete deformation and an important basis for the design of concrete structures. It is generally measured directly by experiments. However, since the particle size of rockfill concrete can be as high as 1 m, it is difficult to directly test the elastic modulus of static compression. Therefore, the main method to obtain the elastic modulus of rockfill concrete is to use empirical formulas to directly The elastic modulus of compact concrete and the elastic modulus of rockfill are averaged according to the rockfill rate. This method of value selection relies too much on experience and cannot accurately reflect the hardening process of rockfill concrete, and the results are often biased.
发明内容SUMMARY OF THE INVENTION
本发明针对现有技术的缺陷,提供了一种堆石混凝土弹性模量的确定方法,解决了现有技术中存在的缺陷。Aiming at the defects of the prior art, the present invention provides a method for determining the elastic modulus of rockfill concrete, which solves the defects existing in the prior art.
为了实现以上发明目的,本发明采取的技术方案如下:In order to realize the above purpose of the invention, the technical scheme adopted by the present invention is as follows:
一种堆石混凝土弹性模量的确定方法,包括以下步骤:A method for determining elastic modulus of rockfill concrete, comprising the following steps:
S1:通过静力受压弹性模量试验,获取堆石的弹性模量ER和泊松比νR的值。S1: Obtain the values of the elastic modulus ER and Poisson's ratio ν R of the rockfill through the static compression elastic modulus test.
S2:通过静力受压弹性模量试验,获得自密实混凝土的弹性模量参数E0 scc、a、 b和泊松比νscc,确定其弹性模量Escc(τscc)的复合指数表达式如公式1所示,其中的τscc表示自密实混凝土的龄期。S2: Obtain the elastic modulus parameters E 0 scc , a , b and Poisson’s ratio ν scc of the self-compacting concrete through the static compression elastic modulus test, and determine the composite exponential expression of its elastic modulus E scc (τ scc ) As shown in Equation 1, where τ scc represents the age of the self-compacting concrete.
S3:测定堆石混凝土的堆石率n。S3: Determine the rockfill rate n of the rockfill concrete.
S4:根据堆石率n和堆石的粒径分布情况,在笛卡尔坐标系中,建立堆石混凝土试件的细观有限元模型,并对模型施加约束,使模型在z方向受到位移约束,在xoy平面能够自由变形;S4: According to the rockfill rate n and the particle size distribution of the rockfill, in the Cartesian coordinate system, a meso-scale finite element model of the rockfill concrete specimen is established, and constraints are imposed on the model, so that the model is subject to displacement constraints in the z direction , which can be freely deformed in the xoy plane;
S5:基于S1~S4步获取的计算参数和建立的模型,对堆石混凝土试件施加z 向的位移荷载△L,用有限单元法,计算不同龄期τRFC的试件的应力场。S5: Based on the calculation parameters obtained in steps S1 to S4 and the established model, apply a displacement load ΔL in the z-direction to the rockfill concrete specimen, and use the finite element method to calculate the stress field of the specimens with different ages τ RFC .
S6.将计算得到的应力场中各单元的z向应力值按体积进行平均,获得堆石混凝土试件的平均z向应力如公式2所示。S6. Average the z-direction stress values of each element in the calculated stress field by volume to obtain the average z-direction stress of the rockfill concrete specimen as shown in Equation 2.
公式2中,x,y,z表示模型中的笛卡尔坐标系的坐标,τRFC表示堆石混凝土的龄期,i表示模型中的单元编号,m为模型中的单元总数,表示龄期为τRFC的试件中点(x,y,z)处的z向应力值,△Ri表示模型中第i个单元的体积,V 为模型的总体积。In formula 2, x, y, z represent the coordinates of the Cartesian coordinate system in the model, τ RFC represents the age of rockfill concrete, i represents the unit number in the model, m is the total number of units in the model, represents the z-direction stress value at the midpoint (x, y, z) of the specimen with age τ RFC , ΔRi represents the volume of the i-th element in the model, and V is the total volume of the model.
S7:堆石混凝土试件在z向位移荷载△L的作用下,产生的z向应变为S7: The z-direction strain of the rockfill concrete specimen under the action of the z-direction displacement load △L for
S8:根据S4中对模型施加的约束情况,堆石混凝土试件在xoy平面上可以自由变形,因此,堆石混凝土试件在x方向和y方向的平均正应力均为零,即:S8: According to the constraints imposed on the model in S4, the rockfill concrete specimen can be freely deformed on the xoy plane. Therefore, the average normal stress of the rockfill concrete specimen in both the x and y directions is zero, namely:
S9:基于S6~S8获得的数据,根据弹性力学的物理方程,计算得到不同龄期的堆石混凝土试件的宏观弹性模量ERFC(τRFC),如式5所示:S9: Based on the data obtained from S6 to S8, and according to the physical equation of elasticity, the macroscopic elastic modulus E RFC (τ RFC ) of rockfill concrete specimens of different ages is calculated, as shown in Equation 5:
其中,νRFC为堆石混凝土的泊松比。where ν RFC is the Poisson's ratio of rockfill concrete.
S10:对计算得到的堆石混凝土不同龄期的宏观弹性模量ERFC(τRFC)进行数据拟合,(拟合方法为本领域的基本知识),获得堆石混凝土宏观弹性模量的的双指数表达式,如公式6所示。S10: perform data fitting on the calculated macroscopic elastic modulus E RFC (τ RFC ) of rockfill concrete at different ages, (the fitting method is the basic knowledge in the field), and obtain the macroscopic elastic modulus of rockfill concrete. A double exponential expression, as shown in Equation 6.
其中E0 RFC、A、B为弹性模量参数Among them, E 0 RFC , A and B are elastic modulus parameters
S11:根据公式6,获得堆石混凝土任意龄期时的宏观弹性模量值。S11: According to formula 6, the macroscopic elastic modulus value of rockfill concrete at any age is obtained.
与现有技术相比,本发明的优点在于:Compared with the prior art, the advantages of the present invention are:
从细观层面出发,推求堆石混凝土的宏观力学特性。分别考虑了堆石的弹性模量和自密实混凝土的硬化过程,用有限单元法对堆石混凝土试件进行数值加载,根据弹性力学的物理方程计算不同龄期试件的宏观弹性模量,最后对获得的弹性模量数据进行曲线拟合,得到相应的函数表达式。应用该表达式,可以准确获取堆石混凝土任意时刻的弹性模量值,为堆石混凝土结构设计和数值仿真提供准确的参数。From the microscopic level, the macroscopic mechanical properties of rockfill concrete are deduced. Considering the elastic modulus of rockfill and the hardening process of self-compacting concrete respectively, the rockfill concrete specimens were numerically loaded by the finite element method, and the macroscopic elastic modulus of the specimens at different ages was calculated according to the physical equation of elastic mechanics. Curve fitting is performed on the obtained elastic modulus data to obtain the corresponding function expression. Using this expression, the elastic modulus value of rockfill concrete at any time can be accurately obtained, and accurate parameters can be provided for the design and numerical simulation of rockfill concrete structure.
附图说明Description of drawings
图1为堆石混凝土的构成示意图;Fig. 1 is the composition schematic diagram of rockfill concrete;
图2为堆石混凝土试件的细观有限元模型;Figure 2 shows the meso-scale finite element model of the rockfill concrete specimen;
图3为用有限单元法计算得到的0.5d至3.5d龄期的堆石混凝土试件的应力场示意图;其中图3a为0.5d,图3b为1.0d,图3c为1.5d,图3d为2d,图3e 为2.5d,图3f为3.5d;Figure 3 is a schematic diagram of the stress field of a rockfill concrete specimen with an age of 0.5d to 3.5d calculated by the finite element method; Figure 3a is 0.5d, Figure 3b is 1.0d, Figure 3c is 1.5d, and Figure 3d is 2d, Fig. 3e is 2.5d, Fig. 3f is 3.5d;
图4为用有限单元法计算得到的5d至30d龄期的堆石混凝土试件的应力场示意图;其中图4a为5d,图4b为7.5d,图4c为10d,图4d为14d,图4e为20d,图4f为30d;Figure 4 is a schematic diagram of the stress field of the rockfill concrete specimens aged 5d to 30d calculated by the finite element method; Figure 4a is 5d, Figure 4b is 7.5d, Figure 4c is 10d, Figure 4d is 14d, Figure 4e is 20d, and Figure 4f is 30d;
图5为用有限单元法计算得到的45d至180d龄期的堆石混凝土试件的应力场示意图;其中图5a为45d,图5b为90d,图5c为180d。Figure 5 is a schematic diagram of the stress field of rockfill concrete specimens aged 45d to 180d calculated by the finite element method; Figure 5a is 45d, Figure 5b is 90d, and Figure 5c is 180d.
具体实施方式Detailed ways
为使本发明的目的、技术方案及优点更加清楚明白,以下根据附图并列举实施例,对本发明做进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below according to the accompanying drawings and examples.
本发明公开的一种堆石混凝土弹性模量的确定方法,包括以下步骤:A method for determining the elastic modulus of rockfill concrete disclosed in the present invention comprises the following steps:
S1:通过静力受压弹性模量试验(试验方法为本领域的基本知识,这里不详细阐述),获取堆石的弹性模量ER为25GPa、泊松比νR为0.25。S1: Through the static compression elastic modulus test (the test method is the basic knowledge in the field, and will not be described in detail here), the elastic modulus ER of the rockfill is obtained as 25GPa, and the Poisson's ratio ν R is 0.25.
S2:通过静力受压弹性模量试验,获得自密实混凝土的弹性模量参数,并确定其弹性模量Escc(τscc)的双指数表达式(如公式1所示),其中的τscc表示自密实混凝土的龄期。S2: Obtain the elastic modulus parameters of the self-compacting concrete through the static compression elastic modulus test, and determine the double exponential expression of its elastic modulus E scc (τ scc ) (as shown in Equation 1), where τ scc represents the age of self-compacting concrete.
S3:测定堆石混凝土的堆石率n为0.53(测定方法为本领域的基本知识)。S3: The rockfill ratio n of the rockfill concrete is determined to be 0.53 (the determination method is the basic knowledge in the field).
S4:根据堆石率n和堆石的粒径分布情况,建立堆石混凝土试件的细观有限元模型,如附图2所示,模型为立方体,边长L=4.5m。在模型的底部施加z向约束,在A点和B点施加x向约束,在B点和C点施加y向约束,;S4: According to the rockfill ratio n and the particle size distribution of the rockfill, establish a mesoscopic finite element model of the rockfill concrete specimen, as shown in Figure 2, the model is a cube, and the side length L=4.5m. Apply z-direction constraints at the bottom of the model, x-direction constraints at points A and B, and y-direction constraints at points B and C,;
S5:基于S1~S4步获取的计算参数和建立的模型,对堆石混凝土试件施加z 向的位移荷载△L=0.01m,用有限单元法,计算不同龄期τRFC的试件的应力场,如图3所示(计算方法为本领域的基本知识)。S5: Based on the calculation parameters obtained in steps S1 to S4 and the established model, apply a z-direction displacement load △L=0.01m to the rockfill concrete specimen, and use the finite element method to calculate the stress of the specimens of different ages τ RFC field, as shown in Figure 3 (the calculation method is the basic knowledge in the field).
S6.将计算得到的应力场中各单元的z向应力值按体积进行平均(如公式2 所示),获得堆石混凝土试件的平均z向应力如表1所示。S6. Average the z-direction stress value of each element in the calculated stress field by volume (as shown in formula 2) to obtain the average z-direction stress of the rockfill concrete specimen As shown in Table 1.
公式2中,x,y,z表示模型中的笛卡尔坐标系的坐标,τRFC表示堆石混凝土的龄期,i表示模型中的单元编号,m为模型中的单元总数,表示龄期为τRFC的试件中点(x,y,z)处的z向应力值,△Ri表示模型中第i个单元的体积,V 为模型的总体积。In formula 2, x, y, z represent the coordinates of the Cartesian coordinate system in the model, τ RFC represents the age of rockfill concrete, i represents the unit number in the model, m is the total number of units in the model, represents the z-direction stress value at the midpoint (x, y, z) of the specimen with age τ RFC , ΔRi represents the volume of the i-th element in the model, and V is the total volume of the model.
表1Table 1
S7:堆石混凝土试件在z向位移荷载△L的作用下,用公式3,计算产生的z 向应变为0.00222。S7: Under the action of the z-direction displacement load △L, the z-direction strain of the rockfill concrete specimen is calculated by formula 3 is 0.00222.
S8:根据S4中对模型施加的约束情况,可以判定,堆石混凝土试件在xoy平面上可以自由变形,因此,堆石混凝土试件在x方向和y方向的平均正应力均为零,即:S8: According to the constraints imposed on the model in S4, it can be determined that the rockfill concrete specimen can be freely deformed on the xoy plane. Therefore, the average normal stress of the rockfill concrete specimen in both the x and y directions is zero, that is, :
S9:基于S6~S8获得的数据,根据弹性力学的物理方程(本领域的基本知识),可以用公式5,计算得到不同龄期的堆石混凝土试件的宏观弹性模量ERFC(τRFC),如表2所示,S9: Based on the data obtained from S6 to S8, according to the physical equation of elasticity (basic knowledge in the field), formula 5 can be used to calculate the macroscopic elastic modulus E RFC (τ RFC of rockfill concrete specimens of different ages) ),As shown in table 2,
其中,νRFC为堆石混凝土的泊松比。where ν RFC is the Poisson's ratio of rockfill concrete.
表2Table 2
S10:对计算得到的堆石混凝土不同龄期的宏观弹性模量ERFC(τRFC)进行数据拟合,(拟合方法为本领域的基本知识),获得堆石混凝土宏观弹性模量的的双指数表达式(如公式6所示)。S10: perform data fitting on the calculated macroscopic elastic modulus E RFC (τ RFC ) of rockfill concrete at different ages, (the fitting method is the basic knowledge in the field), and obtain the macroscopic elastic modulus of rockfill concrete. A double exponential expression (as shown in Equation 6).
ERFC(τRFC)=27.35τRFC 0.69/(0.87+τRFC 0.69) (6)E RFC (τ RFC )=27.35τ RFC 0.69 /(0.87+τ RFC 0.69 ) (6)
S11:根据公式6,即可获得堆石混凝土任意龄期时的宏观弹性模量值。S11: According to formula 6, the macroscopic elastic modulus value of rockfill concrete at any age can be obtained.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的实施方法,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those of ordinary skill in the art will appreciate that the embodiments described herein are intended to help readers understand the implementation method of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations without departing from the essence of the present invention according to the technical teaching disclosed in the present invention, and these modifications and combinations still fall within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010440516.3A CN111563343B (en) | 2020-05-22 | 2020-05-22 | Method for determining elastic modulus of rock-fill concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010440516.3A CN111563343B (en) | 2020-05-22 | 2020-05-22 | Method for determining elastic modulus of rock-fill concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111563343A true CN111563343A (en) | 2020-08-21 |
CN111563343B CN111563343B (en) | 2024-01-26 |
Family
ID=72073490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010440516.3A Active CN111563343B (en) | 2020-05-22 | 2020-05-22 | Method for determining elastic modulus of rock-fill concrete |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111563343B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112765871A (en) * | 2021-04-07 | 2021-05-07 | 中国人民解放军国防科技大学 | Parallel particle tracking method and device based on curve coordinates |
CN113211649A (en) * | 2021-05-20 | 2021-08-06 | 李友彬 | Method for cutting, processing and forming rock-fill concrete large test piece |
CN116644599A (en) * | 2023-06-05 | 2023-08-25 | 重庆大学 | Crack prediction method based on elastic modulus of concrete under capillary pore stress effect |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101988858A (en) * | 2010-04-30 | 2011-03-23 | 北京木联能工程科技有限公司 | Method of measuring reinforced concrete creep stress by using engineering safety monitoring rebar stressometer |
CN102979307A (en) * | 2012-12-12 | 2013-03-20 | 新疆生产建设兵团金来建设工程技术研发有限责任公司 | Temperature-controlled crack prevention construction method for concrete structure |
CN104655820A (en) * | 2014-09-11 | 2015-05-27 | 中铁十六局集团第五工程有限公司 | Judging, grading and processing method of rockburst of hard rocks for tunnel |
CN105158447A (en) * | 2015-09-07 | 2015-12-16 | 中建三局集团有限公司 | Maturity-based concrete structure cracking risk evaluation method |
CN106202649A (en) * | 2016-06-29 | 2016-12-07 | 河海大学 | Consider concretion of soft foundation and the lock head Construction simulation method of concrete creep |
CN107301307A (en) * | 2017-08-08 | 2017-10-27 | 武汉理工大学 | Finite element modeling method is carefully seen in bituminous concrete diametral compression test based on actual measurement pattern |
CN110162827A (en) * | 2019-03-29 | 2019-08-23 | 河海大学 | A kind of entity finite element calculation method of concrete structure time-varying effecting |
CN110489924A (en) * | 2019-08-31 | 2019-11-22 | 湘潭大学 | Beams of concrete nonlinear model modification method based on Response surface meth od |
CN110702886A (en) * | 2019-10-23 | 2020-01-17 | 中国水利水电科学研究院 | Method for inverting parameters of mass concrete material |
CN110728093A (en) * | 2019-10-23 | 2020-01-24 | 中国水利水电科学研究院 | Temperature control optimization method for mass concrete |
CN110837667A (en) * | 2019-10-21 | 2020-02-25 | 暨南大学 | Soil filling method based on steel corrugated plate bridge reinforcement |
CN110866362A (en) * | 2019-12-06 | 2020-03-06 | 广西交通科学研究院有限公司 | Method for calculating design thickness of diaphragm wall |
-
2020
- 2020-05-22 CN CN202010440516.3A patent/CN111563343B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101988858A (en) * | 2010-04-30 | 2011-03-23 | 北京木联能工程科技有限公司 | Method of measuring reinforced concrete creep stress by using engineering safety monitoring rebar stressometer |
CN102979307A (en) * | 2012-12-12 | 2013-03-20 | 新疆生产建设兵团金来建设工程技术研发有限责任公司 | Temperature-controlled crack prevention construction method for concrete structure |
CN104655820A (en) * | 2014-09-11 | 2015-05-27 | 中铁十六局集团第五工程有限公司 | Judging, grading and processing method of rockburst of hard rocks for tunnel |
CN105158447A (en) * | 2015-09-07 | 2015-12-16 | 中建三局集团有限公司 | Maturity-based concrete structure cracking risk evaluation method |
CN106202649A (en) * | 2016-06-29 | 2016-12-07 | 河海大学 | Consider concretion of soft foundation and the lock head Construction simulation method of concrete creep |
CN107301307A (en) * | 2017-08-08 | 2017-10-27 | 武汉理工大学 | Finite element modeling method is carefully seen in bituminous concrete diametral compression test based on actual measurement pattern |
CN110162827A (en) * | 2019-03-29 | 2019-08-23 | 河海大学 | A kind of entity finite element calculation method of concrete structure time-varying effecting |
CN110489924A (en) * | 2019-08-31 | 2019-11-22 | 湘潭大学 | Beams of concrete nonlinear model modification method based on Response surface meth od |
CN110837667A (en) * | 2019-10-21 | 2020-02-25 | 暨南大学 | Soil filling method based on steel corrugated plate bridge reinforcement |
CN110702886A (en) * | 2019-10-23 | 2020-01-17 | 中国水利水电科学研究院 | Method for inverting parameters of mass concrete material |
CN110728093A (en) * | 2019-10-23 | 2020-01-24 | 中国水利水电科学研究院 | Temperature control optimization method for mass concrete |
CN110866362A (en) * | 2019-12-06 | 2020-03-06 | 广西交通科学研究院有限公司 | Method for calculating design thickness of diaphragm wall |
Non-Patent Citations (2)
Title |
---|
张子明;张研;宋智通;: "基于细观力学方法的混凝土热膨胀系数预测", 计算力学学报, no. 06, pages 806 - 809 * |
翟建平;秦红禧;何旭辉;: "铁路斜拉桥承台大体积混凝土水化热温度-应力场研究", 铁道科学与工程学报, no. 02, pages 24 - 31 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112765871A (en) * | 2021-04-07 | 2021-05-07 | 中国人民解放军国防科技大学 | Parallel particle tracking method and device based on curve coordinates |
CN112765871B (en) * | 2021-04-07 | 2021-06-18 | 中国人民解放军国防科技大学 | A parallel particle tracking method and device based on curve coordinates |
CN113211649A (en) * | 2021-05-20 | 2021-08-06 | 李友彬 | Method for cutting, processing and forming rock-fill concrete large test piece |
CN116644599A (en) * | 2023-06-05 | 2023-08-25 | 重庆大学 | Crack prediction method based on elastic modulus of concrete under capillary pore stress effect |
Also Published As
Publication number | Publication date |
---|---|
CN111563343B (en) | 2024-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111563343A (en) | A method for determining the elastic modulus of rockfill concrete | |
Li et al. | Numerical analysis of wave-induced poro-elastic seabed response around a hexagonal gravity-based offshore foundation | |
Li et al. | Mesoscopic chloride ion diffusion model of marine concrete subjected to freeze-thaw cycles | |
CN107764644B (en) | Equivalent Method for Asphalt Pavement Structural Analysis Based on Pavement Material Modulus Stress and Strain Dependence Model | |
Jia et al. | Back-analysis of soil parameters of the Malutang II concrete face rockfill dam using parallel mutation particle swarm optimization | |
CN113094946B (en) | Phase field model localization self-adaptive algorithm for simulating material cracking | |
Jiang et al. | Degree of hydration based prediction of early age basic creep and creep recovery of blended concrete | |
WO2021218070A1 (en) | Cross-scale simulation calculation method for rock mass engineering based on rev full area coverage | |
Zhou et al. | Mesoscopic simulation of thermo-mechanical behaviors in concrete under frost action | |
CN105808836A (en) | Method for determining temperature history curve of mass concrete with ultrahigh content of fly ash | |
CN109408971A (en) | A kind of early concrete condition Changeement method under novel effect of multiple parameters | |
CN102621009A (en) | Test method for simulating long-term deformation of rockfill | |
CN106202649B (en) | Consider the lock head Construction simulation method of concretion of soft foundation and concrete creep | |
Zheng et al. | Arch-dam crack deformation monitoring hybrid model based on XFEM | |
CN106960116A (en) | A kind of method based on dam body monitoring data of displacement inverting dam foundation restrained deformation in situ | |
CN112949065B (en) | Dual-scale method, device, storage medium and equipment for simulating mechanical behavior of layered rock mass | |
Rao et al. | Three-dimensional mesoscale modeling of foamed cement paste using peridynamics | |
Xu et al. | Effect of hydration heat inhibitor on thermal stress of hydraulic structures with different thicknesses | |
CN111579582A (en) | A method for determining the adiabatic temperature rise of rockfill concrete | |
Gao et al. | Analytical and numerical modeling of elastic moduli for cement based composites with solid mass fractal model | |
CN106596908B (en) | The matrix volume modulus measurements method and device of hole class material | |
CN109518574B (en) | Determination method of equivalent elastic modulus of subgrade top surface under humidification | |
You et al. | Model for Transversely Isotropic Materials Based on Distinct Lattice Spring Model (DLSM). | |
Xie et al. | Mesoscale simulation method for preplaced aggregate concrete based on physics engine | |
CN114970258A (en) | Method for calculating and predicting core wall pore water pressure during construction of high core wall earth-rock dam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |