CN111562196A - 灌水法测定现场堆石料原位密度的修正方法 - Google Patents

灌水法测定现场堆石料原位密度的修正方法 Download PDF

Info

Publication number
CN111562196A
CN111562196A CN202010195792.8A CN202010195792A CN111562196A CN 111562196 A CN111562196 A CN 111562196A CN 202010195792 A CN202010195792 A CN 202010195792A CN 111562196 A CN111562196 A CN 111562196A
Authority
CN
China
Prior art keywords
water
rockfill
measuring
rockfill material
pit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010195792.8A
Other languages
English (en)
Other versions
CN111562196B (zh
Inventor
吉恩跃
陈生水
傅中志
张灿虹
耿之周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources
Original Assignee
Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources filed Critical Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources
Priority to CN202010195792.8A priority Critical patent/CN111562196B/zh
Publication of CN111562196A publication Critical patent/CN111562196A/zh
Application granted granted Critical
Publication of CN111562196B publication Critical patent/CN111562196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/02Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/02Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume
    • G01N2009/022Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume of solids
    • G01N2009/026Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume of solids the volume being determined by amount of fluid displaced
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了一种灌水法测定堆石料原位密度的修正方法,通过将聚乙烯膜侵入问题简化为一定厚度介质在均匀压力下侵入均匀颗粒孔隙内的情况,从而有效降低塑料薄膜在逐渐注水的过程中有发生侵入颗粒孔隙间的影响,可以极大提高灌水法测定现场堆石料密度的精度,从而保障工程施工质量。

Description

灌水法测定现场堆石料原位密度的修正方法
技术领域
本发明属于岩土工程现场测试领域,涉及的是一种灌水法测定堆石料原位密度的修正方法。
背景技术
中国水利水电施工规范(SL303-2004)中规定:土石坝工程中,应以压实度作为堆石料的现场压实质量控制指标。现场压实度则由压实后的堆石料原位密度除以堆石料最大干密度得到,大量室内研究表明堆石料密度对其应力变形影响很大,因此堆石料现场原位密度测量的准确性事关整个土石坝的安全。
目前,测定土体原位密度的方法主要有环刀法、灌砂法、灌水法及附加质量法等。土工试验方法标准(GB/T50123-2019)中规定环刀法适用于细粒土;灌砂法和灌水法适用于细粒土、砂类土和砾类土。由于堆石料颗粒直径较大,颗粒间孔隙较为明显,采用灌砂法进行试验时砂常常会从孔隙间流出,因此不适用于填石路堤等有大孔洞或大孔隙材料的压实度检测。实际土石坝工程中,常常采用灌水法来测定压实后的堆石料原位密度。土工试验方法标准(GB/T50123-2019) 中规定灌水法应使用聚乙烯塑料薄膜作为坑内储水容器,规范中规定最终密度计算采用坑内注满水后储水桶内消落的水的体积作为坑内堆石料的绝对体积。实际操作中,塑料薄膜在逐渐注水的过程中有发生侵入颗粒孔隙间的现象,测得的堆石料体积包含了塑料薄膜侵入堆石料孔隙间的体积,这部分体积不应计入堆石料的绝对体积中,因此灌水法测得的坑内堆石料体积偏大,导致测得的原位密度总体偏小。
发明内容
为解决现有方法的缺点,本发明提供了一种灌水法测定堆石料原位密度的修正方法,降低塑料薄膜在逐渐注水的过程中有发生侵入颗粒孔隙间的影响。
为达到上述目的,本发明所采用的方法为:、一种灌水法测定堆石料原位密度的修正方法,其特征在于,包括如下步骤:
(1)根据室内土工试验测定现场堆石料平均粒径d50、现场试验拟用的聚乙烯膜厚度tp及弹模Ep
(2)堆石料碾压后,现场挖圆柱形试坑,测定试坑深度h1;优选地,所述试坑深度h1大于堆石料最大粒径的5倍,试坑的直径要大于堆石料最大粒径的5 倍;
(3)测定挖出堆石料的重量为m0、含水率为ωs
(4)在试坑周边安装套环,并在坑内铺设聚乙烯膜,测定套环深度h0及套环直径d0,亦即试坑的直径;
(5)打开储水桶的开关,水通过水管接入试坑内,待水位与套环表面相同时关闭储水桶的开关,记录储水桶内的水位差为h2-h3、量测储水桶直径为dt
(6)计算水流入试坑内的体积为:
Figure BDA0002417549420000021
(7)根据式(15)计算聚乙烯膜的侵入体积为:
Figure BDA0002417549420000022
其中,M=324.7α4+237.3α2-3.5α+20.2,
Figure BDA0002417549420000023
其中γ为水的重度9.8kN/m3
(8)计算试坑实际体积为:vs-vp
(9)根据试坑内堆石料的重量计算堆石料的湿密度ρs及干密度ρd分别为:
Figure BDA0002417549420000024
Figure BDA0002417549420000025
有益效果:与现有技术相比,本申请具有如下技术效果:
(1)有效降低塑料薄膜在逐渐注水的过程中有发生侵入颗粒孔隙间的影响,可以极大提高灌水法测定现场堆石料密度的精度,从而保障工程施工质量;
(2)测定方法简单,只要测量6个参数即可准确得到现场堆石料密度值;
(3)对于现场不同粒径的堆石料、反滤料、过渡料原位密度均有较好的修正效果,适用范围广,且大大节省了测量成本。
附图说明
图1为本发明一种灌水法测定堆石料原位密度的修正方法示意图;图中主要附图标记含义如下:
1-储水桶;2-水管;3-聚乙烯薄膜;4-套环;5堆石料;6振动压实机;7 铁桶;
图2为薄膜均布于颗粒簇(4个颗粒)下变形示意图;
图3位埋置铁桶后,现场碾压示意图。
具体实施方式
下面结合附图对本发明做具体的介绍。
本发明提出了一种灌水法测定现场堆石料密度的方法。图1为灌水法测定堆石料原位密度的示意图。传统灌水法操作中,塑料薄膜在逐渐注水的过程中有发生侵入颗粒孔隙间的现象,测得的堆石料体积包含了塑料薄膜侵入堆石料孔隙间的体积,这部分体积不应计入堆石料的绝对体积中,因此灌水法测得的坑内堆石料体积偏大,导致测得的原位密度总体偏小。为了克服这一缺陷,本申请将聚乙烯膜侵入问题简化为一定厚度介质在均匀压力下侵入均匀颗粒孔隙内的情况。如图2所示,颗粒中心点间距为a,堆石料平均粒径为d50,聚乙烯膜厚度及弹膜分别为tp及Ep
依据板壳理论,该问题的变形方程为:
Figure BDA0002417549420000031
其中,ω(x,y)为曲面上任一点垂直于压应力方向的挠度,ω0为平均挠度,其最大值为ω0(2-α)。α为系数,表示为:
Figure BDA0002417549420000041
其中,其中,p为作用于膜表面的均布力,a为相邻颗粒间间距,为2d50。α是理论中的参数,用来修正ω(x,y)曲面形状的,没有物理意义,则该介质侵入颗粒孔隙间的总体积可以表示为:
Vm=∫ωodAp (3)
该问题的弹性力学基本物理方程为:
Figure BDA0002417549420000042
其中Gp为聚乙烯膜的剪切模量:
Figure BDA0002417549420000043
基于板壳理论,该问题的协调方程为
Figure BDA0002417549420000044
聚乙烯膜的应变能为:
Figure BDA0002417549420000045
将式(6)带入到式(7)可得到:
Figure BDA0002417549420000046
Figure BDA0002417549420000051
利用正弦及余弦波函数表示整体位移:
Figure BDA0002417549420000052
Figure BDA0002417549420000053
水平位移在竖向不做功:
Figure BDA0002417549420000054
将上述式子带入式(11)可以得到:
Figure BDA0002417549420000055
作用于膜表面的均布力p对橡皮膜做功应等于橡皮膜本身的应变能,可得到:
Figure BDA0002417549420000056
消去式(13)中π可得聚乙烯膜的单位面积侵入量为:
Figure BDA0002417549420000057
对图1中聚乙烯膜进行受力分析,其所受水压力分别为周边水压力γh及底部水压力γh1,其中,周边水压力γh可以简化为均布压力0.5γh1。根据置入坑内聚乙烯膜的总面积,可以求出圆形坑内聚乙烯膜的总侵入体积为:
Figure BDA0002417549420000061
其中,M=324.7α4+237.3α2-3.5α+20.2,
Figure BDA0002417549420000062
式(14)即为灌水过程中聚乙烯膜侵入堆石料间体积的理论解,需要测定的参数有6个:堆石料平均粒径d50、试坑深度h1、套环深度h0、套环直径d0、聚乙烯膜厚度tp及弹模Ep
具体操作步骤:
(1)根据室内土工试验测定现场堆石料平均粒径d50、现场试验拟用的聚乙烯膜厚度tp及弹模Ep
(2)堆石料5碾压后,现场挖圆柱形试坑,测定试坑深度h1
(3)测定挖出堆石料的重量为m0、含水率为ωs
(4)在试坑周边安装套环4,并在坑内铺设聚乙烯膜3,测定套环套环深度 h0及套环直径d0
(5)打开储水桶1的开关,水通过水管2接入试坑内,待水位与套环表面相同时关闭储水桶1的开关,记录储水桶内的水位差为h2-h3、量测储水桶直径为dt
(6)计算水流入试坑内的体积为:
Figure BDA0002417549420000063
(7)根据式(15)计算聚乙烯膜的侵入体积为:
Figure BDA0002417549420000064
其中,M=324.7α4+237.3α2-3.5α+20.2,
Figure BDA0002417549420000065
(8)计算试坑实际体积为:vs-vp
(9)根据试坑内堆石料的重量计算堆石料的湿密度ρs及干密度ρd分别为:
Figure BDA0002417549420000071
Figure BDA0002417549420000072
利用上述方法,本申请碾压前在现场不同位置分别埋置了8个圆形铁桶,直径分别为120cm和50cm,采用的聚乙烯膜厚度tp为0.50mm,弹模Ep为0.45GPa,待场地全部碾压后,挖出铁桶内的堆石料,称量其重量,根据铁桶的体积即可求出无侵入情况下现场堆石料的真实密度。传统灌水法与埋置铁桶的方法测得的干密度相差较大,经本方法修正后得到的干密度与真实值差异较小,因此本发明方法可以极大提高灌水法测定现场堆石料密度的精度。
Figure BDA0002417549420000073
Figure BDA0002417549420000081
从实验结果可以看出,利用本发明的方法测定的现场堆石料密度可以有效降低塑料薄膜在逐渐注水的过程中发生的侵入颗粒孔隙间的影响,可以极大提高灌水法测定现场堆石料密度的精度,从而保障工程施工质量;本发明测定方法简单,只要测量6个参数即可准确得到现场堆石料密度值;且对于现场不同粒径的堆石料、反滤料、过渡料原位密度均有较好的修正效果,适用范围广。

Claims (1)

1.一种灌水法测定堆石料原位密度的修正方法,其特征在于,包括如下步骤:
(1)根据室内土工试验测定现场堆石料平均粒径d50、现场试验拟用的聚乙烯膜厚度tp及弹模Ep
(2)堆石料碾压后,现场挖圆柱形试坑,测定试坑深度h1
(3)测定挖出堆石料的重量为m0、含水率为ωs
(4)在试坑周边安装套环,并在坑内铺设聚乙烯膜,测定套环深度h0及套环直径d0
(5)打开储水桶的开关,水通过水管接入试坑内,待水位与套环表面相同时关闭储水桶的开关,记录储水桶内的水位差为h2-h3、量测储水桶直径为dt
(6)计算水流入试坑内的体积为:
Figure FDA0002417549410000011
(7)根据式(15)计算聚乙烯膜的侵入体积为:
Figure FDA0002417549410000012
其中,M=324.7α4+237.3α2-3.5α+20.2,
Figure FDA0002417549410000013
γ为水的重度,
(8)计算试坑实际体积为:vs-vp
(9)根据试坑内堆石料的重量计算堆石料的湿密度ρs及干密度ρd分别为:
Figure FDA0002417549410000014
Figure FDA0002417549410000015
CN202010195792.8A 2020-03-19 2020-03-19 灌水法测定现场堆石料原位密度的修正方法 Active CN111562196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010195792.8A CN111562196B (zh) 2020-03-19 2020-03-19 灌水法测定现场堆石料原位密度的修正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010195792.8A CN111562196B (zh) 2020-03-19 2020-03-19 灌水法测定现场堆石料原位密度的修正方法

Publications (2)

Publication Number Publication Date
CN111562196A true CN111562196A (zh) 2020-08-21
CN111562196B CN111562196B (zh) 2022-09-23

Family

ID=72074207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010195792.8A Active CN111562196B (zh) 2020-03-19 2020-03-19 灌水法测定现场堆石料原位密度的修正方法

Country Status (1)

Country Link
CN (1) CN111562196B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720327A (zh) * 2022-03-08 2022-07-08 山东高速济青中线公路有限公司 用于评价含石路基灌砂法检测可靠性的评估方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010532B3 (de) * 2007-02-26 2008-04-30 Technische Universität Bergakademie Freiberg Verfahren und Einrichtung zur Ermittlung der Dichte der Bodensubstanz von Prüfgruben
CN105403481A (zh) * 2015-10-27 2016-03-16 中国电力工程顾问集团中南电力设计院有限公司 适用于粗颗粒土的土壤密度测量方法
CN208568526U (zh) * 2018-06-30 2019-03-01 天津华勘商品检验有限公司 一种填筑细颗粒土石料密度检测装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010532B3 (de) * 2007-02-26 2008-04-30 Technische Universität Bergakademie Freiberg Verfahren und Einrichtung zur Ermittlung der Dichte der Bodensubstanz von Prüfgruben
CN105403481A (zh) * 2015-10-27 2016-03-16 中国电力工程顾问集团中南电力设计院有限公司 适用于粗颗粒土的土壤密度测量方法
CN208568526U (zh) * 2018-06-30 2019-03-01 天津华勘商品检验有限公司 一种填筑细颗粒土石料密度检测装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
于子忠等: "浅析混凝土面板堆石坝密实度的检测技术", 《水利建设与管理》 *
李玉笑: "采用直接灌水法测定试坑体积的应用", 《山西水利》 *
钟野: "珊溪面板堆石坝填筑密度检测方法的探讨", 《水力发电》 *
陈云等: "灌水法检测堆石体密度影响因素分析与控制措施", 《岩土工程学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720327A (zh) * 2022-03-08 2022-07-08 山东高速济青中线公路有限公司 用于评价含石路基灌砂法检测可靠性的评估方法
CN114720327B (zh) * 2022-03-08 2023-08-29 山东高速济青中线公路有限公司 用于评价含石路基灌砂法检测可靠性的评估方法

Also Published As

Publication number Publication date
CN111562196B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN104931305B (zh) 一种确定粗粒料的室内缩尺试验相对密度制样标准的方法及试验装置
CN111175477B (zh) 饱和粉细砂层诱导注浆实验模型及实验方法
CN111680341A (zh) 一种坝上地区预钻孔沉桩桩基的承载力分析方法
CN111562196B (zh) 灌水法测定现场堆石料原位密度的修正方法
Liu et al. Failure mechanism of face for slurry shield-driven tunnel in sand
CN109736289A (zh) 一种液压快速夯实地基的施工方法
Salim et al. The impact of driving and loading piles on existing tunnel
CN203745110U (zh) 岩土压力传感器埋设装置
Ventini et al. Analysis of transient seepage through a river embankment by means of centrifuge modelling
Li et al. Computer Simulation of Sequential Impoundment Process of Concrete-faced Rockfill Dam.
CN103215914B (zh) 堤身沉降控制方法
Li et al. Experimental studies on shear behavior of sand-suction caisson wall interface under variable normal load and penetration rate
CN105675438B (zh) 路堤强夯后平均压实度的确定方法
Tschernutter Influence of soft rock-fill material as dam embankment with central bituminous concrete membrane
Yan-bin et al. Distribution of pile-soil stress in centrifugal modelling of composite foundation
Yang et al. A preliminary study on the piping erosion of soils using glucose dissolution method
CN112255158A (zh) 一种堤基管涌破坏模式实验装置及方法
Yang et al. An experimental investigation of piping effects on the mechanical properties of toyoura sand
SHI et al. Preliminary study on real-time pore water pressure response and reinforcement mechanism of air-booster vacuum preloading treated dredged slurry
Rathod et al. Experimental investigations on footings supported on soft clay beds reinforced with strength enhanced jute geogrids
Lei et al. Experimental evaluation of consolidation behavior of double-layer soft soil ground
CN117605100A (zh) 一种通过孔隙率比确定挤密碎石桩置换率试桩方法
CN115450198B (zh) 一种微生物加压注浆固化黄土地基的装置及固化黄土地基的方法
CN106400853A (zh) 锚杆+铰链式砌块生态护坡振动台模型试验装置
Man et al. Experimental study on permeability characteristics of geotubes for seepage analysis on safety assessment of dams

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant