CN111557655A - 一种基于水中紧急救助装置的自动管控方法、装置和系统 - Google Patents
一种基于水中紧急救助装置的自动管控方法、装置和系统 Download PDFInfo
- Publication number
- CN111557655A CN111557655A CN202010444020.3A CN202010444020A CN111557655A CN 111557655 A CN111557655 A CN 111557655A CN 202010444020 A CN202010444020 A CN 202010444020A CN 111557655 A CN111557655 A CN 111557655A
- Authority
- CN
- China
- Prior art keywords
- human body
- emergency rescue
- emergency
- image
- rescue device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 206010013647 Drowning Diseases 0.000 claims abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 17
- 230000009182 swimming Effects 0.000 claims description 24
- 230000006399 behavior Effects 0.000 claims description 18
- 230000036391 respiratory frequency Effects 0.000 claims description 15
- 206010000117 Abnormal behaviour Diseases 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 13
- 238000013527 convolutional neural network Methods 0.000 claims description 13
- 238000012549 training Methods 0.000 claims description 13
- 230000005856 abnormality Effects 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 7
- 210000003128 head Anatomy 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000007654 immersion Methods 0.000 claims description 4
- 210000003928 nasal cavity Anatomy 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 230000009189 diving Effects 0.000 claims description 3
- 230000036387 respiratory rate Effects 0.000 claims description 3
- 210000000115 thoracic cavity Anatomy 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000013475 authorization Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 206010003591 Ataxia Diseases 0.000 description 1
- 206010010947 Coordination abnormal Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 208000003464 asthenopia Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000016290 incoordination Diseases 0.000 description 1
- 230000006996 mental state Effects 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1113—Local tracking of patients, e.g. in a hospital or private home
- A61B5/1114—Tracking parts of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1116—Determining posture transitions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1126—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb using a particular sensing technique
- A61B5/1128—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb using a particular sensing technique using image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
- G06F18/24155—Bayesian classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
- G06V20/42—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items of sport video content
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Physiology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Theoretical Computer Science (AREA)
- Dentistry (AREA)
- Data Mining & Analysis (AREA)
- Cardiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Probability & Statistics with Applications (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pulmonology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Alarm Systems (AREA)
Abstract
本发明涉及智能自救技术领域,公开了一种基于水中紧急救助装置的自动管控方法、装置和系统,方法包括危险判定和救助执行,危险判定包括实时采集人体生命参数数据、现场视频图像序列;实时处理生命参数数据和现场视频图像序列;判断人体是否处于溺水紧急情况;救助执行包括根据判断结果处理器发出控制指令;接收处理器发出的控制指令或者后台授权管理人员发出的指令命令可拆卸连接在人体上的紧急救助装置进行工作,用于保证人体漂浮在水面上;本发明可在游泳者出现溺水实施自救时发挥重要作用,自动识别,多重控制,紧急救助装置安全可靠,便于携带,使得游泳者可放心游,同时具有较高的实用价值和广泛的应用前景。
Description
技术领域
本发明涉及智能自救技术领域,具体涉及一种基于水中紧急救助装置的自动管控方法。
背景技术
随着经济的发展和社会的进步,人们的生活水平和质量越来越高,对文体活动的需求也逐步增加,很多人逐步认识到运动的重要性,其中游泳作为一项普及很广的项目逐渐与人们的生活联系起来。通过游泳可以增强体质、改变精神状态,也可实现一定的康复训练。
在游泳馆学习游泳,或者到野外江河湖海中去游泳都是不错的选择。但在下水游泳的过程中不可避免地容易出现一些溺水情况的发生,若发现不及时可能还会溺亡。现有的防溺水措施,是通过携带一些游泳圈或漂浮袋来作为溺水应急手段,但是佩戴上述设施在游泳过程中使得游泳者放不开手脚,效果不尽如人意。
如何保障儿童游泳安全,如何加强游泳馆的保障机制是一个普遍的社会热门话题。目前的整体解决方案和技术存在以下几点核心问题:不适应人多密集水域:例如,采用水下红外探测并判断遮挡物的静止时间的设计不适用于人多密集的水域,不适应在大批量人员同步一体化智能监管;误报率高:由于报警算法的问题,SOS报警信号误报率高,造成现场恐慌和不和谐,无形增加救生员的压力和疲劳度。而且,SOS事件发生时的物理反应机制过于原始和单调,不能有效及时发现并处置。
此外现有市场上有许多种类的游泳急救设备,但是这些设备大多体积较大、不便于携带,不利于与自由游泳,在突发紧急情况无法做到自动救助的效果,限制了使用的范围,降低了使用体验性。
针对上述问题,提供一种新型的自救装置,在实现溺水自救的同时不影响人员的正常游泳。
发明内容
针对现有技术的不足,本发明提供一种基于水中紧急救助装置的自动管控方法,用解决背景技术中的问题。
本发明解决技术问题采用如下技术方案:
本发明提供了一种基于水中紧急救助装置的自动管控方法,包括危险判定和救助执行,
所述危险判定包括以下步骤:
实时采集人体生命参数数据、现场视频图像序列;
实时处理生命参数数据和现场视频图像序列;
判断人体是否处于溺水紧急情况;
所述救助执行包括以下步骤:
根据判断结果处理器发出控制指令;
接收处理器发出的控制指令或者后台授权管理人员发出的指令命令可拆卸连接在人体上的紧急救助装置进行工作,用于保证人体漂浮在水面上;
所述紧急救助装置为可拆卸套设在人体颈部的环形部件,所述环形部件为中空装置,向外两侧对称设有带有密封盖板的腔室,所述腔室中设置有充气气囊,所述充气气囊通过导气管与设置在环形部件内部的微型压缩气瓶连接,所述微型压缩气瓶与导气管间通过受控电磁开关连接;
所述受控电磁开关在收到打开指令后,微型压缩气瓶中对充气气囊进行充气,并弹开密封盖板。
优选地,所述充气气囊充满气后能在头部周围对称形成两个环形气垫,保证头部始终处于水面以上。
优选地,所述导气管设置有止回气嘴,所述充气气囊设有放气口,所述微型压缩气瓶的容量为充气气囊充满的容气量,所述微型压缩气瓶还设置有充气口。
优选地,所述人体生命参数数据包括心率、呼吸频率;
所述呼吸频率包括设置在胸腔表面的呼吸频率传感器以及设置在人体鼻腔内部浸水传感器。
优选地,所述实时处理现场视频图像包括以下步骤:
对比数据库建立:采集固定单一背景下人体的各种游泳姿势行为的视频序列,采集固定单一背景下人体溺水行为的视频序列,利用卡尔曼滤波算法提取运动人体目标,提取出运动人体运动目标图像,将检测出的运动人体目标图像存储下来,构建训练数据集;
利用训练数据集中的图像对贝叶斯分类器和卷积神经网络分别进行训练,得到训练好的贝叶斯分类器和卷积神经网络,所述贝叶斯分类器的建立过程如下:首先对训练数据集中的图像,按照各种游泳姿势行为以及溺水行为类别,分别提取图像的长宽比、图像熵和Hu不变矩三个特征,根据行为图像特征值的条件概率分布,建立贝叶斯分类器,利用贝叶斯公式实现异常行为的分类识别;
对现场实时采集到的视频图像序列,对每一帧图像进行卡尔曼滤波提取运动人体目标,然后将提取出的运动人体图像分别输入训练好的贝叶斯分类器和训练好的卷积神经网络,对提取出的每一张图片分别进行贝叶斯分类器异常行为分类识别和卷积神经网络异常行为分类识别,分别获得测试结果;当检测到异常行为时,对两种测试结果进行综合判定,两种分类识别结果一致时,直接输出识别结果;当一种分类识别检测出有异常,另一种分类识别检测无异常时,给出“可能有异常”的预警,继续检测下一帧图像;当两种分类识别都检测出有异常,但检测类别不相同时,给出“存在异常,类别不定”预警,继续检测下一帧图像,直至输出识别结果。
优选地,所述实时处理生命参数数据,包括:
计算呼吸频率的大小以及变换率;
计算心率大小以及变化率;
计算湿度变化率和湿度大小。
所述判断人体是否处于溺水紧急情况包括:
预先采集人体在包括潜泳、自由泳、仰泳、蛙泳在内的游泳行为下的呼吸频率的大小以及变换率、心率大小以及变化率和湿度大小以及变化率正常范围,建立生命数据库;
将采集的呼吸频率的大小以及变换率、心率大小以及变化率、湿度变化率以及湿度大小与生命数据库进行对比,若六个数据中至少4个超过正常范围则判断处于溺水紧急情况;
若现场视频图像检测结果为有异常,则六个数据中至少有两个超过正常范围则判断处于溺水紧急情况。
本发明还提供一种基于水中紧急救助装置的自动管控装置,包括:
数据采集模块,用于实时采集人体生命参数数据、现场视频图像序列;
数据处理模块,用于实时处理生命参数数据和现场视频图像序列;
控制器模块,用于判断人体是否处于溺水紧急情况,并根据判断结果发出控制指令;
执行模块,用于接收处理器发出的控制指令或者后台授权管理人员发出的指令打开可拆卸连接在人体上的紧急救助装置,用于保证人体漂浮在水面上。
优选地,所述控制器模块还包括戴在手臂上的电子环,该电子环与控制模块无线连接,电子环设有手动指令控制按钮。
本发明还提供一种基于水中紧急救助装置的自动管控系统,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
基于水中紧急救助装置的自动管控装置;
当所述一个或多个程序被所述一个或多个处理器执行时,使得基于水中紧急救助装置的自动管控装置配合所述一个或多个处理器实现如前述的基于水中紧急救助装置的自动管控方法。
本发明还提供一种存储介质,所述存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行如前述的基于水中紧急救助装置的自动管控方法的步骤。
与现有技术相比,本发明具有如下的有益效果:
本发明采用的紧急救助装置,便于携带,可拆卸套设在颈部,能够在紧急情况下确保头部处于水面之上,为最终救援争取了时间,保证了使用者的安全,同时其不会影响使用者动作,也不会降低使用者游泳的自由感,舒适、实用、方便。
采用多种判断标准共用,将人体生命信息和视频识别技术集合,有效降低了误报率,避免了人工监管带来的视觉疲劳和疏忽,特别是多种控制端口,能够有效抗击各种引起溺水危险的因素,同时通过监管和自救相结合,能够直接产生救援效果,为救生员进行最终救援赢得时间,以至于进一步处理得到准确有效的基于水中紧急救助装置的自动管控信息以供驾驶人员参考。
关于本发明相对于现有技术,其他突出的实质性特点和显著的进步在实施例部分进一步详细介绍。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明的紧急救助装置的结构示意图;
图2为本发明的一种基于水中紧急救助装置的自动管控方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在说明书及权利要求书当中使用了某些名称来指称特定组件。应当理解,本领域普通技术人员可能会用不同名称来指称同一个组件。本申请说明书及权利要求书并不以名称的差异作为区分组件的方式,而是以组件在功能上的实质性差异作为区分组件的准则。如在本申请说明书和权利要求书中所使用的“包含”或“包括”为一开放式用语,其应解释为“包含但不限定于”或“包括但不限定于”。具体实施方式部分所描述的实施例为本发明的较佳实施例,并非用以限定本发明的范围。
此外,所属技术领域的技术人员知道,本发明的各个方面可以实现为系统、方法或计算机程序产品。因此,本发明的各个方面可以具体实现为软硬件结合的形式,这里可以统称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明的各个方面还可以实现为在一个或多个微控制器可读介质中的计算机程序产品的形式,该微控制器可读介质中包含微控制器可读的程序代码。
如图1-2所示,本实施例的一种基于水中紧急救助装置的自动管控方法,包括危险判定和救助执行;
所述危险判定包括以下步骤:
实时采集人体生命参数数据、现场视频图像序列;
所述人体生命参数数据包括心率、呼吸频率;
所述呼吸频率包括设置在胸腔表面的呼吸频率传感器以及设置在人体鼻腔内部浸水传感器;
本实施例中采用心率、呼吸以及设置在人体鼻腔内部的浸水传感器能够全面保证溺水判断的准确性;
实时处理生命参数数据和现场视频图像序列;
所述实时处理生命参数数据,包括:
计算呼吸频率的大小以及变换率;
计算心率大小以及变化率;
计算湿度变化率和湿度大小;
所述实时处理现场视频图像包括以下步骤:
对比数据库建立:采集固定单一背景下人体的各种游泳姿势行为的视频序列,采集固定单一背景下人体溺水行为的视频序列,利用卡尔曼滤波算法提取运动人体目标,提取出运动人体运动目标图像,将检测出的运动人体目标图像存储下来,构建训练数据集;
利用训练数据集中的图像对贝叶斯分类器和卷积神经网络分别进行训练,得到训练好的贝叶斯分类器和卷积神经网络,所述贝叶斯分类器的建立过程如下:首先对训练数据集中的图像,按照各种游泳姿势行为以及溺水行为类别,分别提取图像的长宽比、图像熵和Hu不变矩三个特征,根据行为图像特征值的条件概率分布,建立贝叶斯分类器,利用贝叶斯公式实现异常行为的分类识别;
对现场实时采集到的视频图像序列,对每一帧图像进行卡尔曼滤波提取运动人体目标,然后将提取出的运动人体图像分别输入训练好的贝叶斯分类器和训练好的卷积神经网络,对提取出的每一张图片分别进行贝叶斯分类器异常行为分类识别和卷积神经网络异常行为分类识别,分别获得测试结果;当检测到异常行为时,对两种测试结果进行综合判定,两种分类识别结果一致时,直接输出识别结果;当一种分类识别检测出有异常,另一种分类识别检测无异常时,给出“可能有异常”的预警,继续检测下一帧图像;当两种分类识别都检测出有异常,但检测类别不相同时,给出“存在异常,类别不定”预警,继续检测下一帧图像,直至输出识别结果;
本实施例采用贝叶斯分类器和卷积神经网络相结合的人体异常行为检测方法,能够有效提高识别精度;
判断人体是否处于溺水紧急情况,具体包括:
预先采集人体在包括潜泳、自由泳、仰泳、蛙泳在内的游泳行为下的呼吸频率的大小以及变换率、心率大小以及变化率和湿度大小以及变化率正常范围,建立生命数据库;
将采集的呼吸频率的大小以及变换率、心率大小以及变化率、湿度变化率以及湿度大小与生命数据库进行对比,若六个数据中至少4个超过正常范围则判断处于溺水紧急情况;
若现场视频图像检测结果为有异常,则六个数据中至少有两个超过正常范围则判断处于溺水紧急情况;
本实施例将人体数据与视频监控数据有效结合在一起,根据不同情况进行不同判定的标准,使得监测结果准确率大幅上升,在实际应用中基本达到了零误报率;
根据判断结果处理器发出控制指令;
接收处理器发出的控制指令或者后台授权管理人员发出的指令打开可拆卸连接在人体上的紧急救助装置,用于保证人体漂浮在水面上,所述紧急救助装置包括与人体的可拆卸连接部件和受控充气部件;
本实施例中的紧急救助装置为可拆卸套设在人体颈部的环形部件1,所述环形部件1为中空装置,向外两侧对称设有带有密封盖板2的腔室3,所述腔室3中设置有充气气囊4,所述充气气囊4通过导气管5与设置在环形部件1内部的微型压缩气瓶6连接,所述微型压缩气瓶6与导气管5间通过受控电磁开关7连接;
所述受控电磁开关7在收到打开指令后,微型压缩气瓶6中对充气气囊4进行充气,并弹开密封盖板2;
上述充气气囊充满气后能在头部周围对称形成两个环形气垫,保证头部始终处于水面以上;
上述导气管设置有止回气嘴,所述充气气囊设有放气口,所述微型压缩气瓶的容量为充气气囊充满的容气量,所述微型压缩气瓶还设置有充气口;
一种基于水中紧急救助装置的自动管控装置,其特征在于,包括:
数据采集模块,用于实时采集人体生命参数数据、现场视频图像序列;
数据处理模块,用于实时处理生命参数数据和现场视频图像序列;
控制器模块,用于判断人体是否处于溺水紧急情况,并根据判断结果发出控制指令;
执行模块,用于接收处理器发出的控制指令或者后台授权管理人员发出的指令打开可拆卸连接在人体上的紧急救助装置,用于保证人体漂浮在水面上;
所述控制模块还包括戴在手臂上的电子环,该电子环与控制模块无线连接,电子环设有手动指令控制按钮。
本实施例还提供一种基于水中紧急救助装置的自动管控系统,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
基于水中紧急救助装置的自动管控装置;
当所述一个或多个程序被所述一个或多个处理器执行时,使得基于水中紧急救助装置的自动管控装置配合所述一个或多个处理器实现如前述的基于水中紧急救助装置的自动管控方法。
本实施例还提供一种存储介质,所述存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行如前述的基于水中紧急救助装置的自动管控方法的步骤。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
Claims (10)
1.一种基于水中紧急救助装置的自动管控方法,其特征在于,包括危险判定和救助执行,
所述危险判定包括以下步骤:
实时采集人体生命参数数据、现场视频图像序列;
实时处理生命参数数据和现场视频图像序列;
判断人体是否处于溺水紧急情况;
所述救助执行包括以下步骤:
根据判断结果处理器发出控制指令;
接收处理器发出的控制指令或者后台授权管理人员发出的指令命令可拆卸连接在人体上的紧急救助装置进行工作,用于保证人体漂浮在水面上;
所述紧急救助装置为可拆卸套设在人体颈部的环形部件,所述环形部件为中空装置,向外两侧对称设有带有密封盖板的腔室,所述腔室中设置有充气气囊,所述充气气囊通过导气管与设置在环形部件内部的微型压缩气瓶连接,所述微型压缩气瓶与导气管间通过受控电磁开关连接;
所述受控电磁开关在收到打开指令后,微型压缩气瓶中对充气气囊进行充气,并弹开密封盖板。
2.根据权利要求1所述的一种基于水中紧急救助装置的自动管控方法,其特征在于,所述充气气囊充满气后能在头部周围对称形成两个环形气垫,保证头部始终处于水面以上。
3.根据权利要求1所述的一种基于水中紧急救助装置的自动管控方法,其特征在于,所述导气管设置有止回气嘴,所述充气气囊设有放气口,所述微型压缩气瓶的容量为充气气囊充满的容气量,所述微型压缩气瓶还设置有充气口。
4.根据权利要求1所述的一种基于水中紧急救助装置的自动管控方法,其特征在于,所述人体生命参数数据包括心率、呼吸频率;
所述呼吸频率包括设置在胸腔表面的呼吸频率传感器以及设置在人体鼻腔内部浸水传感器。
5.根据权利要求1所述的一种基于水中紧急救助装置的自动管控方法,其特征在于,所述实时处理现场视频图像包括以下步骤:
对比数据库建立:采集固定单一背景下人体的各种游泳姿势行为的视频序列,采集固定单一背景下人体溺水行为的视频序列,利用卡尔曼滤波算法提取运动人体目标,提取出运动人体运动目标图像,将检测出的运动人体目标图像存储下来,构建训练数据集;
利用训练数据集中的图像对贝叶斯分类器和卷积神经网络分别进行训练,得到训练好的贝叶斯分类器和卷积神经网络,所述贝叶斯分类器的建立过程如下:首先对训练数据集中的图像,按照各种游泳姿势行为以及溺水行为类别,分别提取图像的长宽比、图像熵和Hu不变矩三个特征,根据行为图像特征值的条件概率分布,建立贝叶斯分类器,利用贝叶斯公式实现异常行为的分类识别;
对现场实时采集到的视频图像序列,对每一帧图像进行卡尔曼滤波提取运动人体目标,然后将提取出的运动人体图像分别输入训练好的贝叶斯分类器和训练好的卷积神经网络,对提取出的每一张图片分别进行贝叶斯分类器异常行为分类识别和卷积神经网络异常行为分类识别,分别获得测试结果;当检测到异常行为时,对两种测试结果进行综合判定,两种分类识别结果一致时,直接输出识别结果;当一种分类识别检测出有异常,另一种分类识别检测无异常时,给出“可能有异常”的预警,继续检测下一帧图像;当两种分类识别都检测出有异常,但检测类别不相同时,给出“存在异常,类别不定”预警,继续检测下一帧图像,直至输出识别结果。
6.根据权利要求4所述的一种基于水中紧急救助装置的自动管控方法,其特征在于,所述实时处理生命参数数据,包括:
计算呼吸频率的大小以及变换率;
计算心率大小以及变化率;
计算湿度变化率和湿度大小;
所述判断人体是否处于溺水紧急情况包括:
预先采集人体在包括潜泳、自由泳、仰泳、蛙泳在内的游泳行为下的呼吸频率的大小以及变换率、心率大小以及变化率和湿度大小以及变化率正常范围,建立生命数据库;
将采集的呼吸频率的大小以及变换率、心率大小以及变化率、湿度变化率以及湿度大小与生命数据库进行对比,若六个数据中至少4个超过正常范围则判断处于溺水紧急情况;
若现场视频图像检测结果为有异常,则六个数据中至少有两个超过正常范围则判断处于溺水紧急情况。
7.一种基于水中紧急救助装置的自动管控装置,其特征在于,包括:
数据采集模块,用于实时采集人体生命参数数据、现场视频图像序列;
数据处理模块,用于实时处理生命参数数据和现场视频图像序列;
控制器模块,用于判断人体是否处于溺水紧急情况,并根据判断结果发出控制指令;
执行模块,用于接收处理器发出的控制指令或者后台授权管理人员发出的指令打开可拆卸连接在人体上的紧急救助装置,用于保证人体漂浮在水面上。
8.根据权利要求7所述的一种基于水中紧急救助装置的自动管控装置,其特征在于,所述控制模块还包括戴在手臂上的电子环,该电子环与控制模块无线连接,电子环设有手动指令控制按钮。
9.一种基于水中紧急救助装置的自动管控系统,其特征在于,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
基于水中紧急救助装置的自动管控装置;
当所述一个或多个程序被所述一个或多个处理器执行时,使得基于水中紧急救助装置的自动管控装置配合所述一个或多个处理器实现如权利要求1-6中任一所述的方法。
10.一种存储介质,其特征在于,所述存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行如权利要求1至6任一项所述的基于水中紧急救助装置的自动管控方法的步骤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010444020.3A CN111557655A (zh) | 2020-05-22 | 2020-05-22 | 一种基于水中紧急救助装置的自动管控方法、装置和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010444020.3A CN111557655A (zh) | 2020-05-22 | 2020-05-22 | 一种基于水中紧急救助装置的自动管控方法、装置和系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111557655A true CN111557655A (zh) | 2020-08-21 |
Family
ID=72071167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010444020.3A Withdrawn CN111557655A (zh) | 2020-05-22 | 2020-05-22 | 一种基于水中紧急救助装置的自动管控方法、装置和系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111557655A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111547209A (zh) * | 2020-05-22 | 2020-08-18 | 合肥利元杰信息科技有限公司 | 一种防溺水安全保障方法、装置和系统 |
-
2020
- 2020-05-22 CN CN202010444020.3A patent/CN111557655A/zh not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111547209A (zh) * | 2020-05-22 | 2020-08-18 | 合肥利元杰信息科技有限公司 | 一种防溺水安全保障方法、装置和系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107622505B (zh) | 一种泳池溺水监控检测方法 | |
CN106251584B (zh) | 多功能智能游泳手环以及游泳状态监测装置及方法 | |
CN107566797A (zh) | 一种泳池溺水监控检测装置 | |
US20150307172A1 (en) | Robotic Drowning Rescue System | |
CN111428696A (zh) | 一种智能异常检测紧急救援方法、装置和系统 | |
Roy et al. | A novel drowning detection method for safety of swimmers | |
WO2016169262A1 (zh) | 一种带有气囊的急救泳衣 | |
CN110091970A (zh) | 一种游泳者危险监测与自救装置 | |
WO2017202182A1 (zh) | 一种救生绳索装置及救生衣、水上救生设备 | |
CN107585276B (zh) | 具有自救功能的防溺水系统及方法 | |
CN206097397U (zh) | 多功能智能游泳手环以及游泳状态监测装置 | |
CN111833567B (zh) | 一种基于uwb、九轴陀螺仪的运动检测系统 | |
Shehata et al. | A Survey of Drowning Detection Techniques | |
Niranjan et al. | IoT-based safety system for swimming pools to avoid sinking of individuals | |
Hayat et al. | Comprehensive and comparative study of drowning person detection and rescue systems | |
CN111557655A (zh) | 一种基于水中紧急救助装置的自动管控方法、装置和系统 | |
CN110443979A (zh) | 一种溺水救助系统、自救装置及监控系统 | |
CN111557654A (zh) | 一种监测和自动救助一体化人体安防方法、装置和系统 | |
CN112489372A (zh) | 一种泳池监控报警系统 | |
CN111245459A (zh) | 可穿戴式设备及溺水监控方法、电子设备、存储介质 | |
US20070157926A1 (en) | Heat-retaining lifesaving appliance | |
CN111557653A (zh) | 一种便携式自救装置、基于该装置的游泳人员防护方法、设备和系统 | |
CN110853301A (zh) | 基于机器学习的泳池防溺水识别方法 | |
CN209328184U (zh) | 一种基于图像识别技术的泳池防溺水人工智能预警装置 | |
CN111547209A (zh) | 一种防溺水安全保障方法、装置和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200821 |