CN111543479B - 脱氧雪腐镰刀菌烯醇及其衍生物的消减方法 - Google Patents

脱氧雪腐镰刀菌烯醇及其衍生物的消减方法 Download PDF

Info

Publication number
CN111543479B
CN111543479B CN202010198993.3A CN202010198993A CN111543479B CN 111543479 B CN111543479 B CN 111543479B CN 202010198993 A CN202010198993 A CN 202010198993A CN 111543479 B CN111543479 B CN 111543479B
Authority
CN
China
Prior art keywords
deoxynivalenol
electrode
adon
voltage
don
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010198993.3A
Other languages
English (en)
Other versions
CN111543479A (zh
Inventor
方海琴
章程
刘爱东
梁春来
徐伟东
刘飒娜
刘玉洁
邓陶陶
支媛
杨辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Center For Food Safety Risk Assessment
Original Assignee
China National Center For Food Safety Risk Assessment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Center For Food Safety Risk Assessment filed Critical China National Center For Food Safety Risk Assessment
Priority to CN202010198993.3A priority Critical patent/CN111543479B/zh
Publication of CN111543479A publication Critical patent/CN111543479A/zh
Priority to JP2022556192A priority patent/JP2023511221A/ja
Priority to PCT/CN2021/075802 priority patent/WO2021184998A1/zh
Application granted granted Critical
Publication of CN111543479B publication Critical patent/CN111543479B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B9/00Preservation of edible seeds, e.g. cereals
    • A23B9/06Preserving by irradiation or electric treatment without heating effect
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B9/00Preservation of edible seeds, e.g. cereals

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

本发明涉及食品科学领域,具体而言,涉及一种脱氧雪腐镰刀菌烯醇及其衍生物的消减方法,该方法利用高压气体放电产生低温等离子体对脱氧雪腐镰刀菌烯醇和/或其衍生物进行消减。该方法具有消减率高、无需高温、保留食物营养与风味、无残留等诸多优势。

Description

脱氧雪腐镰刀菌烯醇及其衍生物的消减方法
技术领域
本发明涉及食品科学领域,具体而言,涉及一种脱氧雪腐镰刀菌烯醇及其衍生物的消减方法。
背景技术
脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)为雪腐镰刀菌烯醇的脱氧衍生物,是由镰刀菌次级代谢产生的一种水溶性单端孢霉烯族真菌毒素,其化学名称为3,7,15-三羟基-12,13-环氧单端孢霉-9-烯-8酮,分子式为C15H20O6,分子量为296.3。脱氧雪腐镰刀菌烯醇又名呕吐毒素,在自然界广泛存在于玉米、小麦、大麦、燕麦、黑麦、水稻等粮食作物,并通过粮食及其制品,如面包等进入食物链,污染情况严重。3-乙酰基脱氧雪腐镰刀菌烯醇(3-Acetyldeoxynivalenol,3-ADON)及15-乙酰基脱氧雪腐镰刀菌烯醇(15-Acetyldeoxynivalenol,15-ADON)为DON最常见衍生物,近年来在谷类及其制品中也有检出。
DON会引起人和动物一系列中毒反应,例如头晕、呕吐、腹泻、反应迟钝、食欲下降、中枢神经系统紊乱等。世界卫生组织食品添加剂联合专家委员会(JECFA)第56次会议将DON的PMTDI(暂定每日最大耐受量)定为1μg/kgbw/d。此后,在2010年的第72次会议上,JECFA又将其修改为针对DON、3-ADON、15-ADON化合物组的限量为1μg/kgbw/d。2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理后,脱氧雪腐镰刀菌烯醇在三类致癌物清单中。
现有的DON减控方法主要包括物理、化学和生物方法,然而,这些方法可能存在耗能、易引入二次污染以及大规模应用受限等不足,且对于3-ADON、15-ADON的消减,迄今国际国内均未找到有效方法。因此,开展高效、安全和绿色的DON消减技术研究显得尤为重要。
发明内容
本发明的目的在于克服现有技术对脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)操作复杂,产生额外污染物或消减效率不高,适用性差等问题,并突破目前国际国内对DON衍生物(3-ADON,15-ADON)无有效减毒方法的困境,同时该方法处理的DON及其衍生物细胞毒性低,能有效保证国家粮食安全。
为了实现本发明的上述目的,特采用以下技术方案:
本发明涉及一种脱氧雪腐镰刀菌烯醇及其衍生物的消减方法,利用高压气体放电产生低温等离子体对脱氧雪腐镰刀菌烯醇和/或其衍生物进行消减。
可选的,所述衍生物为脱氧雪腐镰刀菌烯醇的乙酰化衍生物。
可选的,所述衍生物选自3-乙酰基脱氧雪腐镰刀菌烯醇(3-ADON)及15-乙酰基脱氧雪腐镰刀菌烯醇(15-ADON)。
可选的,所述高压气体放电的气氛为空气、含氧气体、氮气、稀有气体中的任一种或多种。
可选的,所述高压气体放电所采用的电源输出为正弦电压。
可选的,在进行消减时,所述电源的电压幅值为3~8kV,频率为10~50kHz。
可选的,所述消减的时间≥1min。
可选的,所述消减的时间为4min~6min。
本发明还涉及如上所述的方法在消减谷物或谷物制品中的脱氧雪腐镰刀菌烯醇和/或其衍生物中的应用。
可选的,所述谷物选自:
玉米、小麦、大麦、燕麦、黑麦、青稞、水稻、粟米、高粱、薏仁米、埃塞俄比亚画眉草、千穗谷、奎藜籽、白藜(kaniwa)、荞麦和藜麦中的任一种或其组合。
与现有技术相比,本发明所提供的方法采用的低温等离子体生成过程中产生的紫外线、高能带电粒子、活性物质(分子、激发态原子、亚稳态原子、自由基)等多种成分能够综合作用于DON及其衍生物,从而起到消减毒素的作用。与传统减毒技术相比,具有效果好、无需高温、保留食物营养与风味、无残留等诸多优势。
本发明选取低温等离子体处理为核心技术,利用高压气体放电产生低温等离子体,开展消减真菌毒素的实验研究,降解DON浓度,并减低DON毒性作用。为构建高效、安全和绿色的DON消减技术提供了全新的路径和科学依据。
该方法对DON的消减率可达约50%以上,对于其它方法难以消减的3-ADON和15-ADON也有很好的效果。其中,对于3-ADON的消减率可达约24%~26%,对15-ADON的消减率可达约20%左右。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例中DON 120μg/ml经等离子体处理后的细胞生长状态比较;
图2为本发明一个实施例中DON 120μg/ml经等离子体处理后细胞毒性剂量效应曲线;
图3为本发明一个实施例中不同浓度的3-ADON经等离子体处理后的细胞生长状态比较;
图4为本发明一个实施例中3-ADON经等离子体处理后细胞毒性剂量效应曲线;
图5为本发明一个实施例中不同浓度的15-ADON经等离子体处理后的细胞生长状态比较;
图6为本发明一个实施例中15-ADON经等离子体处理后细胞毒性剂量效应曲线。
具体实施方式
现将详细地提供本发明实施方式的参考,其一个或多个实例描述于下文。提供每一实例作为解释而非限制本发明。实际上,对本领域技术人员而言,显而易见的是,可以对本发明进行多种修改和变化而不背离本发明的范围或精神。例如,作为一个实施方式的部分而说明或描述的特征可以用于另一实施方式中,来产生更进一步的实施方式。
因此,旨在本发明覆盖落入所附权利要求的范围及其等同范围中的此类修改和变化。本发明的其它对象、特征和方面公开于以下详细描述中或从中是显而易见的。本领域普通技术人员应理解本讨论仅是示例性实施方式的描述,而非意在限制本发明更广阔的方面。
本发明涉及一种脱氧雪腐镰刀菌烯醇及其衍生物的消减方法,利用高压气体放电产生低温等离子体对脱氧雪腐镰刀菌烯醇和/或其衍生物进行消减。
物质存在的状态一般会随着温度的上升呈现出固态、液态、气态的转化过程,这三种物质的基本形态被称为物质的三态。对于处于气态的物质,如果温度升到几千摄氏度或更高时,物质的分子由于热运动加剧,相互间的激烈碰撞会使气体分子发生电离,这时物质就变成由自由电子与正离子组成的混合物,这种物质状态被称为物质的第四态,即等离子体状态。
本发明采用高压电源接通等离子体电极进行微放电,低温等离子体生成过程中产生的紫外线、高能带电粒子、活性物质(分子、激发态原子、亚稳态原子、自由基)等多种成分能够综合作用于DON及其衍生物,从而起到消减毒素的作用。与传统DON消减技术相比,低温等离子体技术具有十分显著的优点,具有成本低、无废弃物、无污染等优点;且安全性高、无药物残留、处理流程和时间短、无环境污染等优点。对于现有技术所采用的物理、化学和生物消解法都难以做到有效消减的3-ADON和15-ADON,本发明也能够达到较为理想的消减率。
综上,本发明所提供的方法具有良好的应用前景。
在一些实施方式中,所述衍生物为脱氧雪腐镰刀菌烯醇的乙酰化衍生物。
在一些实施方式中,所述衍生物选自3-乙酰基脱氧雪腐镰刀菌烯醇及15-乙酰基脱氧雪腐镰刀菌烯醇。
用于高压气体放电产生等离子体处理工艺的气体,可为例如,含氧气体,如O2、H2O、NO2,氮气和空气,或惰性气体(例如氦、氖、氩、氪、氙);或上述气体的混合气体。优选含氧气体,特别是O2和空气。气压可为大气压或更低。
在一些实施方式中,所述消减在常温下进行,例如10℃~40℃,或者18℃、20℃、25℃。
在一些实施方式中,所述高压气体放电所采用的电源输出为高频交流电压,优选正弦电压,也可采用脉冲电压和脉冲直流电压。
在一些实施方式中,在进行消减时,所述电源的电压幅值为3~8kV,频率为10~50kHz。
在一些实施方式中,在进行消减时,所述电源的电压幅值还可以选择2、5、6或7kV,频率还可以选择15、20、25、30、35、40或45kHz,优选25~35kHz。
在一些实施方式中,放电电极采用平板型介质阻挡放电结构,上下电极采用圆形铝平板电极,电极直径60mm~80mm,电极边缘半径8mm~12mm,放电时电极有效面积为18cm2~21cm2(约19.6cm2)。
在一些实施方式中,下电极上面放置有用于盛放待处理物的容器,所述容器可选为玻璃平皿。
在一些实施方式中,所述消减的时间≥1min,例如2min、3min、4min、5min、6min、7min、8min、9min、10min、11min、12min、13min、14min、15min或更多。
低温等离子体技术虽然不需高温、高压、添加化学试剂等苛刻的操作条件,但由于其在高压放电条件下产生,电耗较高,从而使该技术处理废水的成本相对较高;本发明发现,在对DON及其衍生物进行消减时,当消减时间为约5min时,再增加处理时间消减作用也不会出现明显加强。故而为提高本发明的能量利用率,减少能耗,降低处理成本,在一个更优选的实施方式中,所述消减的时间为4min~6min,最优选约5min。
根据本发明的再一方面,本发明涉及如上所述的方法在消减谷物、谷物加工副产物或谷物制品中的脱氧雪腐镰刀菌烯醇和/或其衍生物中的应用。
在一些实施方式中,所述谷物选自:
玉米、小麦、大麦、燕麦、黑麦、青稞、水稻、粟米、高粱、薏仁米、埃塞俄比亚画眉草、千穗谷、奎藜籽、白藜(kaniwa)、荞麦和藜麦中的任一种或其组合。
谷物可以是碾碎的颗粒状或粉状的。
谷物在进行消减前可进一步经过除杂处理,例如经过振动筛、去石机、自循环风选器等除杂处理工艺。
在一些实施方式中,所述谷物制品为饲料。
下面将结合实施例对本发明的实施方案进行详细描述。
实施例
本发明提供如下实验对低温等离子体消减DON的效果进行验证。
方法:低温等离子体处理DON及其衍生物溶液(DON,3-ADON,15-ADON),将处理液进行同位素稀释液相色谱-串联质谱法(LMS)检测消减效率,并将处理液进行细胞培养,测定生物效应。
材料与试剂:等离子体产生装置,DON,3-ADON,15-ADON样品、标准品、同位素内标品,平皿,离心管,灭菌用水,细胞培养试剂与CCK-8试剂盒等检测试剂等。
实验步骤:
1、配液
DON,50mg/支,5ml乙腈溶解为10mg/ml,并加超纯水稀释至0.12mg/ml,用于等离子体处理;
3-ADON,10mg/支,1ml乙腈溶解10mg/ml,并加超纯水稀释至0.12mg/ml,用于等离子体处理;
15-ADON,10mg/支,1ml乙腈溶解10mg/ml,并加超纯水稀释至0.12mg/ml,用于等离子体处理。
2、等离子体处理
本方法采用的电源为高压高频电源(HFHV20-1型),该电源由两部分组成:控制机箱和高频变压器。输入为220V工频电压,输出为正弦电压,幅值0~20kV可调,频率10kHz~60kHz可调。实验时电压幅值为3~8kV,频率为30kHz。放电电极采用平板型介质阻挡放电结构,上下电极采用圆形铝平板电极,电极直径70mm,电极边缘半径10mm,放电时电极有效面积约19.6cm2。下电极上面放置玻璃制成的平皿作为阻挡介质,其直径为80mm,厚度为2mm,深度为2mm。DON,3-ADON,15-ADON配置后,每次取7ml注入平皿,等离子体在上电极与溶液液面间产生,气隙均为2mm。为了比较低温等离子体的处理效果,处理时长设为1分钟(短时),5分钟(中时),15分钟(长时)。
3、消解率验证
参照国标GB5009.111,采用同位素稀释液相色谱-串联质谱法测定处理后DON,3-ADON,15-ADON的浓度,判定消减效率
4、生物效应验证
常规培养小鼠胚胎成纤维细胞3T3,取DON,3-ADON,15-ADON母液及等离子处理液,分别配置细胞培养液,受试物浓度为:DON(3200,1600,800,400,200,100,50,25ng/ml),3-ADON(12,6,3.2,1.6,0.8,0.4,0.2μg/ml),15-ADON(12,6,3.2,1.6,0.8,0.4,0.2μg/ml),并分别设溶剂对照和正常培养液对照组。DON,3-ADON,15-ADON等离子处理液配置浓度根据母液浓度平行配置。细胞培养24小时后,行CCK-8法测试细胞毒性,用于生物效应验证。
结果
低温等离子体消减DON及衍生物结果如表所示,当低温等离子体处理DON1分钟后,降解16.3%,5分钟降解52.1%左右,15分钟的没有更明显的降低;低温等离子体处理1、5、15分钟后,3-ADON消减率在20~30%之间,并未显示出随处理时间延长消减率增加的趋势,同样的现象也出现在15-ADON的消减结果中。
表1.低温等离子体处理DON及其衍生物消减率
Figure BDA0002418660820000091
表2.低温等离子体处理DON与现有技术中的处理方法比较
Figure BDA0002418660820000092
Figure BDA0002418660820000101
Figure BDA0002418660820000111
Figure BDA0002418660820000121
生物效应验证试验结果
细胞毒性结果显示在DON 400ng时出现明显生长抑制,而同样浓度的DON经等离子体处理(处理5分钟)后,细胞毒性效应不明显。细胞生长状态与剂量效应曲线结果分别如图1和图2所示。
细胞毒性结果显示在3-ADON 3.2μg/ml时出现明显生长抑制,而同样浓度的3-ADON经等离子体处理(处理5分钟)后,细胞毒性效应不明显。细胞生长状态与剂量效应曲线结果分别如图3和图4所示。
细胞毒性结果显示在15-ADON 3.2μg/ml时出现明显生长抑制,而同样浓度的15-ADON经等离子体处理(处理5分钟)后,细胞毒性效应不明显。细胞生长状态与剂量效应曲线结果分别如图5和图6所示。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
参考文献:
1.Samr M,Resnik S L,Gonzfilez H H L,et al.Deoxynivalenol reductionduring the frying process of turnover pie covers[J].Food Control,2007,18(10):1295-1299.
2.Wu L,Wang BJ.Evaluation on levels and conversion profiles of DON,3-ADON,and 15-ADON during bread making process.Food Chemistry,2015,185:509-516
3.Sabater-Vilar M,Malekinejad H,Selman M H J,et al.In vitroassessment of adsorbents aiming to prevent deoxynivalenol and zearalenonemycotoxicoses[J].Mycopathologia,2007,163(2):81-90.
4.张昆,卞科,关二旗,张珅铖,许蒙蒙.电子束辐照降解脱氧雪腐镰刀菌烯醇的研究.粮食与饲料工业,2014,4:13-16
5.中华人民共和国国家质量监督检验检疫总局《中华人民共和国进出口检验检疫行业标准进出口辐照食品良好辐照规范SN/T 1887-2007》
6.中华人民共和国卫生部《国家食品安全标准预包装食品标签GB7718-2011》
7.谢茂昌,王明祖.用化学方法脱除赤霉病麦毒素(DON)[J].上海农业学报,2000,16(1):58-61.
8.Niderkorn V,Boudra H,Morgavi DP.Binding of Fusarium mycotoxins byfermentative bacteria in vitro.Journal of Applied Microbiology.2006,101:849–856
9.WANG Gang,WANG Yanxia,JI Fang,et al.Biodegradation ofdeoxynivalenol and its derivatives by Devosia insulae A16[J].Food Chemistry,2019,276:436-442.

Claims (5)

1.脱氧雪腐镰刀菌烯醇衍生物的消减方法,其特征在于,利用高压气体放电产生低温等离子体对脱氧雪腐镰刀菌烯醇衍生物进行消减;
所述高压气体放电所采用的电源输出为正弦电压;在进行消减时,所述电源的电压幅值为3~8 kV,频率为10~50 kHz,放电电极采用平板型介质阻挡放电结构,上下电极采用圆形铝平板电极,电极直径60mm~80mm,电极边缘半径8 mm~12 mm,放电时电极有效面积为18cm2~21 cm2,所述下电极上面放置玻璃制成的平皿作为阻挡介质,所述消减的时间为1min~15min;
所述衍生物选自3-乙酰基脱氧雪腐镰刀菌烯醇及15-乙酰基脱氧雪腐镰刀菌烯醇。
2.根据权利要求1所述的方法,其特征在于,所述高压气体放电的气氛为含氧气体、氮气、稀有气体中的任一种或多种。
3.根据权利要求1所述的方法,其特征在于,所述消减的时间为4min~6min。
4.权利要求1~3任一项所述的方法在消减谷物、谷物加工副产物或谷物制品中的脱氧雪腐镰刀菌烯醇衍生物中的应用。
5.根据权利要求4所述的应用,其特征在于,所述谷物选自:
玉米、小麦、大麦、燕麦、黑麦、青稞、水稻、粟米、高粱、薏仁米、埃塞俄比亚画眉草、千穗谷和荞麦中的任一种或其组合。
CN202010198993.3A 2020-03-20 2020-03-20 脱氧雪腐镰刀菌烯醇及其衍生物的消减方法 Active CN111543479B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010198993.3A CN111543479B (zh) 2020-03-20 2020-03-20 脱氧雪腐镰刀菌烯醇及其衍生物的消减方法
JP2022556192A JP2023511221A (ja) 2020-03-20 2021-02-07 デオキシニバレノール及びその誘導体の低減方法
PCT/CN2021/075802 WO2021184998A1 (zh) 2020-03-20 2021-02-07 脱氧雪腐镰刀菌烯醇及其衍生物的消减方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010198993.3A CN111543479B (zh) 2020-03-20 2020-03-20 脱氧雪腐镰刀菌烯醇及其衍生物的消减方法

Publications (2)

Publication Number Publication Date
CN111543479A CN111543479A (zh) 2020-08-18
CN111543479B true CN111543479B (zh) 2021-10-22

Family

ID=71998046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010198993.3A Active CN111543479B (zh) 2020-03-20 2020-03-20 脱氧雪腐镰刀菌烯醇及其衍生物的消减方法

Country Status (3)

Country Link
JP (1) JP2023511221A (zh)
CN (1) CN111543479B (zh)
WO (1) WO2021184998A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111543479B (zh) * 2020-03-20 2021-10-22 国家食品安全风险评估中心 脱氧雪腐镰刀菌烯醇及其衍生物的消减方法
CN112300879A (zh) * 2020-10-26 2021-02-02 江南大学 一种降低啤酒原料中脱氧雪腐镰刀菌烯醇含量的方法
CN113317432A (zh) * 2021-05-11 2021-08-31 国家粮食和物资储备局科学研究院 一种降解小麦籽粒呕吐毒素的方法及其应用
CN114223833A (zh) * 2021-12-16 2022-03-25 浙江工业大学 利用等离子体活化水润麦消降谷物中呕吐毒素的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931970A (zh) * 2014-05-14 2014-07-23 河南工业大学 一种赤霉病小麦中脱氧雪腐镰刀菌烯醇的削减方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296814A (ja) * 2005-04-22 2006-11-02 National Agriculture & Food Research Organization カビ毒不活性化方法及び不活性化処理装置
KR100809952B1 (ko) * 2006-05-17 2008-03-06 대한민국 디옥시니발레놀 생체특이단백질 햅토글로빈을 이용한디옥시니발레놀 중독증·노출 진단방법 및 진단키트
US20180343878A1 (en) * 2015-09-08 2018-12-06 Archer Daniels Midland Company Methods for reducing contaminants in agricultural commodities with humid ozone
US10194672B2 (en) * 2015-10-23 2019-02-05 NanoGuard Technologies, LLC Reactive gas, reactive gas generation system and product treatment using reactive gas
EP3458113A4 (en) * 2016-05-19 2020-12-30 Purdue Research Foundation INACTIVATION OF PATHOGENIC MICROORGANISMS WITH COLD PLASMA
KR20190039445A (ko) * 2016-09-02 2019-04-11 솜니오 글로벌 홀딩스, 엘엘씨 자유 라디칼 발생 장치 및 그 제조 방법
CN106986425A (zh) * 2017-04-20 2017-07-28 甘肃农业大学 辉光放电等离子体诱导降解水体中don毒素的方法
JP2020010694A (ja) * 2019-08-26 2020-01-23 村田 正義 大気圧プラズマ殺菌処理装置
CN111543479B (zh) * 2020-03-20 2021-10-22 国家食品安全风险评估中心 脱氧雪腐镰刀菌烯醇及其衍生物的消减方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931970A (zh) * 2014-05-14 2014-07-23 河南工业大学 一种赤霉病小麦中脱氧雪腐镰刀菌烯醇的削减方法

Also Published As

Publication number Publication date
WO2021184998A1 (zh) 2021-09-23
JP2023511221A (ja) 2023-03-16
CN111543479A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
CN111543479B (zh) 脱氧雪腐镰刀菌烯醇及其衍生物的消减方法
Kan et al. High frequency discharge plasma induced plasticizer elimination in water: Removal performance and residual toxicity
Niemira Cold plasma reduction of Salmonella and Escherichia coli O157: H7 on almonds using ambient pressure gases
Iseki et al. Inactivation of Penicillium digitatum spores by a high-density ground-state atomic oxygen-radical source employing an atmospheric-pressure plasma
Marsili et al. Plasma inactivation of food-related microorganisms in liquids
Li et al. Insights into water film DBD plasma driven by pulse power for ibuprofen elimination in water: performance, mechanism and degradation route
Li et al. Study on remediation of phenanthrene contaminated soil by pulsed dielectric barrier discharge plasma: the role of active species
Chen et al. Degradation efficiency and products of deoxynivalenol treated by cold plasma and its application in wheat
Deng et al. Bacillus subtilis devitalization mechanism of atmosphere pressure plasma jet
Li et al. Plasma induced efficient removal of antibiotic-resistant Escherichia coli and antibiotic resistance genes, and inhibition of gene transfer by conjugation
Huang et al. An investigation of inactivation mechanisms of Bacillus amyloliquefaciens spores in non‐thermal plasma of ambient air
Tschang et al. Effect of external axial magnetic field on a helium atmospheric pressure plasma jet and plasma-treated water
Liu et al. Gas‐phase peroxynitrite generation using dielectric barrier discharge at atmospheric pressure: A prospective sterilizer
Huang et al. Bacterial deactivation using a low temperature argon atmospheric plasma brush with oxygen addition
Sharma et al. Sterilization of microorganisms contaminated surfaces and its treatment with dielectric barrier discharge plasma
Zhang et al. Synergistic anticancer effects of different combinations of He+ O2 plasma jet and doxorubicin on A375 melanoma cells
Xingmin et al. Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach
Zhang et al. Degradation of deoxynivalenol in wheat by double dielectric barrier discharge cold plasma: identification and pathway of degradation products
CN114349027A (zh) 一种低温等离子体去除工业废盐中有机物的方法和装置
Zhao et al. Effects of VUV/UV radiation and oxygen radicals on low-temperature sterilization in surface-wave excited O2 plasma
Wen et al. Non-thermal plasma treatment of Radix aconiti wastewater generated by traditional Chinese medicine processing
US20200231518A1 (en) Processing chemicals
Shao et al. Desulfurization and simultaneous treatment of coke-oven wastewater by pulsed corona discharge
Qian et al. Differentiation of Cefaclor and its delta-3 isomer by electrospray mass spectrometry, infrared multiple photon dissociation spectroscopy and theoretical calculations.
CN101381146A (zh) 降解污水中亚硝基二甲胺的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant