CN111538723A - Monitoring data processing method, device and electronic equipment - Google Patents

Monitoring data processing method, device and electronic equipment Download PDF

Info

Publication number
CN111538723A
CN111538723A CN202010359888.3A CN202010359888A CN111538723A CN 111538723 A CN111538723 A CN 111538723A CN 202010359888 A CN202010359888 A CN 202010359888A CN 111538723 A CN111538723 A CN 111538723A
Authority
CN
China
Prior art keywords
data
data point
value
point
monitoring data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010359888.3A
Other languages
Chinese (zh)
Inventor
王建辉
韦福东
刘朋鹏
金晶
王辉
姚丙雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Electrical Apparatus Research Institute Group Co Ltd
Shanghai Motor System Energy Saving Engineering Technology Research Center Co Ltd
Original Assignee
Shanghai Electrical Apparatus Research Institute Group Co Ltd
Shanghai Motor System Energy Saving Engineering Technology Research Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Electrical Apparatus Research Institute Group Co Ltd, Shanghai Motor System Energy Saving Engineering Technology Research Center Co Ltd filed Critical Shanghai Electrical Apparatus Research Institute Group Co Ltd
Priority to CN202010359888.3A priority Critical patent/CN111538723A/en
Publication of CN111538723A publication Critical patent/CN111538723A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/215Improving data quality; Data cleansing, e.g. de-duplication, removing invalid entries or correcting typographical errors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2474Sequence data queries, e.g. querying versioned data

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

The application provides a monitoring data processing method, a monitoring data processing device and electronic equipment, wherein the method comprises the following steps: obtaining a variation trend function corresponding to the monitoring data according to the collected monitoring data; extracting data from the variation trend function according to a set time sequence to form an initial data set; and carrying out validity processing on each data point in the initial data set to obtain target monitoring data. By processing the monitoring data, the monitoring data can reflect the state of the object more accurately.

Description

监测数据处理方法、装置及电子设备Monitoring data processing method, device and electronic equipment

技术领域technical field

本发明涉及数据处理技术领域,具体而言,涉及一种监测数据处理方法、装置及电子设备。The present invention relates to the technical field of data processing, and in particular, to a monitoring data processing method, device and electronic equipment.

背景技术Background technique

需要对设备进行故障检测或运行维护时,需要对被监测设备的一些可量测参数进行在线监测。例如,被监测设备是电机时,可量测数据一般包括温度、电压、电流、振动等。基于这些可量测数据,可以得到按时间变化的数据序列,例如随时间变化的温度序列、电压有效值序列、电流有效值序列、振动有效值序列。从这些数据序列,可以进一步分析被监测设备的健康状态和故障趋势等。When it is necessary to perform fault detection or operation and maintenance on the equipment, it is necessary to perform online monitoring of some measurable parameters of the monitored equipment. For example, when the monitored device is a motor, the measurable data generally include temperature, voltage, current, vibration, and the like. Based on these measurable data, time-varying data sequences can be obtained, such as time-varying temperature sequences, voltage rms sequences, current rms sequences, and vibration rms sequences. From these data sequences, the health status and failure trend of the monitored equipment can be further analyzed.

但是,在采样和记录过程中,因为监测设备偶尔可能会受到干扰、电源断电或者通讯中断等,因此,采集的数据序列可能导致后续对被监测设备的状态评估、故障诊断产生误判断。However, during the sampling and recording process, because the monitoring equipment may occasionally be disturbed, the power supply is cut off, or the communication is interrupted, etc., the collected data sequence may lead to misjudgments in the subsequent status evaluation and fault diagnosis of the monitored equipment.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种监测数据处理方法、装置及电子设备,能够使监测数据能够更准确地反应被监测对象的状态。The purpose of the present invention is to provide a monitoring data processing method, device and electronic equipment, which can enable the monitoring data to more accurately reflect the state of the monitored object.

第一方面,本发明实施例提供一种监测数据处理方法,包括:In a first aspect, an embodiment of the present invention provides a monitoring data processing method, including:

根据采集到的被监测设备的监测数据得到所述监测数据对应的变化趋势函数;Obtain a change trend function corresponding to the monitoring data according to the collected monitoring data of the monitored equipment;

从所述变化趋势函数中按照设定的时间顺序抽取数据,以形成初始数据组;Extract data from the change trend function according to a set time sequence to form an initial data group;

对所述初始数据组中的各个数据点进行有效性处理,以得到目标监测数据。Validity processing is performed on each data point in the initial data set to obtain target monitoring data.

在可选的实施方式中,所述对所述初始数据组中的各个数据点进行有效性处理,以得到目标监测数据,包括:In an optional implementation manner, performing validity processing on each data point in the initial data set to obtain target monitoring data, including:

根据预设波动区间及数值限制区间,判断所述初始数据组中的各个数据点是否为无效数据点;Judging whether each data point in the initial data group is an invalid data point according to the preset fluctuation interval and the numerical limit interval;

若所述初始数据组中存在无效数据点时,将所述无效数据点的值替换为指定数据点的值,以对所述初始数据组进行更新,以得到目标监测数据。If there is an invalid data point in the initial data set, the value of the invalid data point is replaced with the value of the specified data point, so as to update the initial data set to obtain target monitoring data.

本申请实施例提供的监测数据处理方法,通过将初始数据组中的无效点进行替换处理,从而可以使得到的目标监测数据中的数据是无效数据点的概率大大降低,从而可以使目标监测数据能够更好地代表被监测设备的状况。In the monitoring data processing method provided by the embodiment of the present application, by replacing the invalid points in the initial data group, the probability that the data in the obtained target monitoring data is invalid data points can be greatly reduced, so that the target monitoring data can be greatly reduced. Better representation of the condition of the equipment being monitored.

在可选的实施方式中,所述对所述初始数据组中的各个数据点进行有效性处理,以得到目标监测数据,包括:In an optional implementation manner, performing validity processing on each data point in the initial data set to obtain target monitoring data, including:

根据预设的数值限制区间,从所述初始数据组确定出初始数据点;Determine initial data points from the initial data set according to a preset numerical limit interval;

根据预设波动区间,判断所述初始数据组中在所述初始数据点之后的数据点是否为无效数据点,其中,若所述初始数据组中的当前数据点与所述当前数据点的前一数据点确定的判定值在所述预设波动区间外,则表征当前数据点为无效数据点,若所述初始数据组中的当前数据点与所述当前数据点的前一数据点确定的判定值在所述预设波动区间内,则表征当前数据点为有效数据点;According to the preset fluctuation interval, it is judged whether the data points in the initial data group after the initial data point are invalid data points. If the determination value determined by a data point is outside the preset fluctuation range, it indicates that the current data point is an invalid data point. If the current data point in the initial data group is determined by the previous data point of the current data point If the determination value is within the preset fluctuation range, it means that the current data point is a valid data point;

若所述初始数据组中存在无效数据点时,将所述无效数据点的值替换为指定数据点的值,以对所述初始数据组进行更新,以得到目标监测数据。If there is an invalid data point in the initial data set, the value of the invalid data point is replaced with the value of the specified data point, so as to update the initial data set to obtain target monitoring data.

本申请实施例提供的监测数据处理方法,首先确定出有效的初始数据点,在确定了有效数据点之后,再逐一确定后续的初始数据中的有效性,从而可以使后续的数据点的判断更准确,从而使目标监测数据能够更好地代表被监测设备的状况。In the monitoring data processing method provided by the embodiment of the present application, the valid initial data points are firstly determined, and after the valid data points are determined, the validity in the subsequent initial data is determined one by one, so that the judgment of the subsequent data points can be made more accurate. Accurate, so that the target monitoring data can better represent the condition of the equipment being monitored.

在可选的实施方式中,所述将所述无效数据点的值替换为指定数据点的值,包括:In an optional implementation manner, the replacing the value of the invalid data point with the value of the specified data point includes:

将所述无效数据点的值替换为与所述无效数据点时间距离最近的一有效数据点的值;或,replacing the value of the invalid data point with the value of a valid data point closest in time to the invalid data point; or,

根据确定出的有效数据点拟合出目标函数,将所述无效数据点的值替换所述目标函数中的值。An objective function is fitted according to the determined valid data points, and the values of the invalid data points are replaced with the values in the objective function.

本申请实施例提供的监测数据处理方法,与所述无效数据点时间距离最近的一有效数据点与无效数据点的真实值可能最接近,因此使用与所述无效数据点时间距离最近的一有效数据点的值替换无效数据点的值,从而可以更好地表示无效数据点处的数据情况,从而可以使最后得到的目标监测数据更有效。或者,使用数据拟合的方式,确定出无效数据点的替换值,从而也可以使替换后的无效数据点的值能够更好地表示被监测设备的状况,从而可以使最后得到的目标监测数据更有效。In the monitoring data processing method provided by the embodiment of the present application, a valid data point with the closest time distance to the invalid data point may be closest to the true value of the invalid data point, so a valid data point with the closest time distance to the invalid data point is used. The value of the data point replaces the value of the invalid data point, so that the data situation at the invalid data point can be better represented, so that the final obtained target monitoring data can be more effective. Alternatively, use data fitting to determine the replacement value of the invalid data point, so that the value of the replaced invalid data point can better represent the condition of the monitored equipment, so that the final target monitoring data can be obtained. More effective.

在可选的实施方式中,所述变化趋势函数为时间与测量参数的函数;所述从所述变化趋势函数中按照设定的时间顺序抽取数据,以形成初始数据组,包括:In an optional implementation manner, the change trend function is a function of time and measurement parameters; and the data is extracted from the change trend function according to a set time sequence to form an initial data group, including:

从所述变化趋势函数中抽取多个时间距离相等的数据点,以形成初始数据组。A plurality of data points with equal time distances are extracted from the change trend function to form an initial data set.

本申请实施例提供的监测数据处理方法,通过把不定步长的检测数据确定为等距的定步长的监测数据,可以确定出监测数据波动范围标准。一般的被监测设备量的变化有其固有的时间常数,其在一定时间内的变化不会超过一个确定的值或者变化速度不会超过一个确定的值。因此,通过等距处理也便于通过监测数据做不同时间周期的均值计算等数据变换。The monitoring data processing method provided by the embodiment of the present application can determine the monitoring data fluctuation range standard by determining the monitoring data of indefinite step length as the monitoring data of equidistant fixed step length. The change of the general monitored equipment quantity has its inherent time constant, and its change within a certain period of time will not exceed a certain value or the change speed will not exceed a certain value. Therefore, equidistant processing also facilitates data transformation such as mean value calculation in different time periods through monitoring data.

在可选的实施方式中,所述根据采集到的被监测设备的监测数据得到所述监测数据对应的变化趋势函数,包括:In an optional implementation manner, obtaining a change trend function corresponding to the monitoring data according to the collected monitoring data of the monitored device, including:

对采集到的监测数据进行数据拟合处理,以得到所述监测数据对应的变化趋势函数。Data fitting processing is performed on the collected monitoring data to obtain a change trend function corresponding to the monitoring data.

在可选的实施方式中,所述对采集到的监测数据进行数据拟合处理,以得到所述监测数据对应的变化趋势函数,包括:In an optional embodiment, the data fitting process is performed on the collected monitoring data to obtain a change trend function corresponding to the monitoring data, including:

将所述采集到的监测数据中的每相邻两个数据点直线连接,以得到包括分段线性函数的变化趋势函数;或者,Connecting every two adjacent data points in the collected monitoring data with a straight line to obtain a change trend function including a piecewise linear function; or,

将所述采集到的监测数据中的各个数据点进行曲线拟合,以得到变化趋势函数。Curve fitting is performed on each data point in the collected monitoring data to obtain a change trend function.

本申请实施例提供的监测数据处理方法,通过上述的各种方式拟合确定出监测数据对应的函数,从而可以使后续抽取初始数据组是基于监测数据的数据,不会脱离监测数据,从而可以使最后确定出的目标监测数据能够较好地表示被监测对象的状况。In the monitoring data processing method provided in the embodiment of the present application, the functions corresponding to the monitoring data are determined by fitting in the above-mentioned various ways, so that the subsequent extraction of the initial data group is based on the data of the monitoring data, and will not be separated from the monitoring data, so that it can be The target monitoring data finally determined can better represent the condition of the monitored object.

在可选的实施方式中,监测数据处理方法还包括:In an optional embodiment, the monitoring data processing method further includes:

根据所述目标监测数据确定所述被监测设备的状态分数;Determine the status score of the monitored equipment according to the target monitoring data;

根据所述状态分数确定出目标报警信号。A target alarm signal is determined based on the state score.

本申请实施例提供的监测数据处理方法,还可以使用处理之后的目标监测数据对被监测设备进行状态的确定,使用处理后的监测数据能够更准确地实现被监测设备的状态的监控。The monitoring data processing method provided by the embodiment of the present application can also use the processed target monitoring data to determine the state of the monitored device, and the processed monitoring data can be used to more accurately monitor the state of the monitored device.

第二方面,本发明实施例提供一种监测数据处理装置,包括:In a second aspect, an embodiment of the present invention provides a monitoring data processing device, including:

得到模块,用于根据采集到的被监测设备的监测数据得到所述监测数据对应的变化趋势函数;an obtaining module for obtaining a change trend function corresponding to the monitoring data according to the collected monitoring data of the monitored equipment;

抽取模块,用于从所述变化趋势函数中按照设定的时间顺序抽取数据,以形成初始数据组;an extraction module, used for extracting data from the change trend function according to a set time sequence to form an initial data group;

处理模块,用于对所述初始数据组中的各个数据点进行有效性处理,以得到目标监测数据。The processing module is configured to perform validity processing on each data point in the initial data set to obtain target monitoring data.

第三方面,本发明实施例提供一种电子设备,包括:处理器、存储器,所述存储器存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述机器可读指令被所述处理器执行时执行如前述实施方式任一所述的方法的步骤。In a third aspect, an embodiment of the present invention provides an electronic device, including: a processor and a memory, where the memory stores machine-readable instructions executable by the processor, and when the electronic device runs, the machine-readable instructions The steps of the method as described in any of the preceding embodiments are performed when executed by the processor.

第四方面,本发明实施例提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行如前述实施方式任一所述的方法的步骤。In a fourth aspect, an embodiment of the present invention provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is run by a processor, the steps of the method described in any of the foregoing embodiments are executed. .

本申请实施例提供的监测数据处理方法、装置、电子设备和计算机可读存储介质的有益效果包括:The beneficial effects of the monitoring data processing method, device, electronic device, and computer-readable storage medium provided by the embodiments of the present application include:

附图说明Description of drawings

为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the embodiments. It should be understood that the following drawings only show some embodiments of the present application, and therefore do not It should be regarded as a limitation of the scope, and for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.

图1为本申请实施例提供的电子设备的方框示意图。FIG. 1 is a schematic block diagram of an electronic device provided by an embodiment of the present application.

图2为本申请实施例提供的监测数据处理方法的流程图。FIG. 2 is a flowchart of a monitoring data processing method provided by an embodiment of the present application.

图3为本申请实施例提供的监测数据处理方法中的数据处理过程中的数据变化趋势示意图。FIG. 3 is a schematic diagram of a data change trend during data processing in the monitoring data processing method provided by the embodiment of the present application.

图4为本申请实施例提供的监测数据处理方法中的步骤203的详细流程图。FIG. 4 is a detailed flowchart of step 203 in the monitoring data processing method provided by the embodiment of the present application.

图5为本申请实施例提供的监测数据处理方法中的数据处理过程中的另一数据变化趋势示意图。FIG. 5 is a schematic diagram of another data change trend in the data processing process in the monitoring data processing method provided by the embodiment of the present application.

图6为本申请实施例提供的监测数据处理方法中的再一数据处理过程中的数据变化趋势示意图。FIG. 6 is a schematic diagram of a data change trend in still another data processing process in the monitoring data processing method provided by the embodiment of the present application.

图7为本申请实施例提供的监测数据处理装置的功能模块示意图。FIG. 7 is a schematic diagram of functional modules of a monitoring data processing apparatus provided in an embodiment of the present application.

具体实施方式Detailed ways

下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行描述。The technical solutions in the embodiments of the present application will be described below with reference to the accompanying drawings in the embodiments of the present application.

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。It should be noted that like numerals and letters refer to like items in the following figures, so once an item is defined in one figure, it does not require further definition and explanation in subsequent figures. Meanwhile, in the description of the present application, the terms "first", "second", etc. are only used to distinguish the description, and cannot be understood as indicating or implying relative importance.

实施例一Example 1

为便于对本实施例进行理解,首先对执行本申请实施例所公开的监测数据处理方法的电子设备进行详细介绍。In order to facilitate understanding of this embodiment, an electronic device that executes the monitoring data processing method disclosed in the embodiment of this application is first introduced in detail.

如图1所示,是电子设备的方框示意图。电子设备100可以包括存储器111、存储控制器112、处理器113、外设接口114、输入输出单元115、显示单元116。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对电子设备100的结构造成限定。例如,电子设备100还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。As shown in FIG. 1, it is a block diagram of an electronic device. The electronic device 100 may include a memory 111 , a memory controller 112 , a processor 113 , a peripheral interface 114 , an input and output unit 115 , and a display unit 116 . Those of ordinary skill in the art can understand that the structure shown in FIG. 1 is only for illustration, and does not limit the structure of the electronic device 100 . For example, the electronic device 100 may also include more or fewer components than shown in FIG. 1 , or have a different configuration than that shown in FIG. 1 .

上述的存储器111、存储控制器112、处理器113、外设接口114、输入输出单元115及显示单元116各元件相互之间直接或间接地电性连接,以实现数据的传输或交互。例如,这些元件相互之间可通过一条或多条通讯总线或信号线实现电性连接。上述的处理器113用于执行存储器中存储的可执行模块。The above-mentioned elements of the memory 111 , the storage controller 112 , the processor 113 , the peripheral interface 114 , the input/output unit 115 and the display unit 116 are directly or indirectly electrically connected to each other to realize data transmission or interaction. For example, these elements may be electrically connected to each other through one or more communication buses or signal lines. The above-mentioned processor 113 is used to execute executable modules stored in the memory.

其中,存储器111可以是,但不限于,随机存取存储器(Random Access Memory,简称RAM),只读存储器(Read Only Memory,简称ROM),可编程只读存储器(ProgrammableRead-Only Memory,简称PROM),可擦除只读存储器(Erasable Programmable Read-OnlyMemory,简称EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-OnlyMemory,简称EEPROM)等。其中,存储器111用于存储程序,所述处理器113在接收到执行指令后,执行所述程序,本申请实施例任一实施例揭示的过程定义的电子设备100所执行的方法可以应用于处理器113中,或者由处理器113实现。Wherein, the memory 111 may be, but not limited to, a random access memory (Random Access Memory, referred to as RAM), a read only memory (Read Only Memory, referred to as ROM), a programmable read only memory (Programmable Read-Only Memory, referred to as PROM) , Erasable Programmable Read-Only Memory (Erasable Programmable Read-Only Memory, referred to as EPROM), Electrically Erasable Read-Only Memory (Electric Erasable Programmable Read-Only Memory, referred to as EEPROM) and so on. The memory 111 is used to store a program, and the processor 113 executes the program after receiving the execution instruction, and the method executed by the electronic device 100 defined by the process disclosed in any of the embodiments of this application can be applied to processing in the processor 113 , or implemented by the processor 113 .

上述的处理器113可能是一种集成电路芯片,具有信号的处理能力。上述的处理器113可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(digital signalprocessor,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The above-mentioned processor 113 may be an integrated circuit chip with signal processing capability. The above-mentioned processor 113 may be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU for short), a network processor (Network Processor, NP for short), etc.; it may also be a digital signal processor (Digital signal processor, DSP for short) , Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components. The methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed. A general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.

上述的外设接口114将各种输入/输出装置耦合至处理器113以及存储器111。在一些实施例中,外设接口114,处理器113以及存储控制器112可以在单个芯片中实现。在其他一些实例中,他们可以分别由独立的芯片实现。The aforementioned peripheral interface 114 couples various input/output devices to the processor 113 and the memory 111 . In some embodiments, peripheral interface 114, processor 113, and memory controller 112 may be implemented in a single chip. In other instances, they may be implemented by separate chips.

上述的输入输出单元115用于从传感器等感知设备输入数据,以及向计算机、服务器等输出处理后的结果数据。所述输入输出单元115可以是,但不限于,通讯端口等。The above-mentioned input and output unit 115 is used for inputting data from sensing devices such as sensors, and outputting processed result data to a computer, a server, or the like. The input and output unit 115 may be, but not limited to, a communication port or the like.

上述的显示单元116在电子设备100与用户之间提供一个交互界面(例如用户操作界面)或用于显示图像数据给用户参考。在本实施例中,所述显示单元可以是液晶显示器或触控显示器。若为触控显示器,其可为支持单点和多点触控操作的电容式触控屏或电阻式触控屏等。支持单点和多点触控操作是指触控显示器能感应到来自该触控显示器上一个或多个位置处同时产生的触控操作,并将该感应到的触控操作交由处理器进行计算和处理。The above-mentioned display unit 116 provides an interactive interface (eg, a user operation interface) between the electronic device 100 and the user or is used to display image data for the user's reference. In this embodiment, the display unit may be a liquid crystal display or a touch display. In the case of a touch display, it can be a capacitive touch screen or a resistive touch screen that supports single-point and multi-touch operations. Supporting single-point and multi-touch operation means that the touch display can sense the touch operation from one or more positions on the touch display at the same time, and hand over the sensed touch operation to the processor. calculation and processing.

本实施例中的电子设备100可以用于执行本申请实施例提供的各个方法中的各个步骤。下面通过几个实施例详细描述监测数据处理方法的实现过程。The electronic device 100 in this embodiment may be used to execute each step in each method provided in this embodiment of the present application. The implementation process of the monitoring data processing method will be described in detail below through several embodiments.

实施例二Embodiment 2

请参阅图2,是本申请实施例提供的监测数据处理方法的流程图。下面将对图2所示的具体流程进行详细阐述。Please refer to FIG. 2 , which is a flowchart of a monitoring data processing method provided by an embodiment of the present application. The specific flow shown in FIG. 2 will be described in detail below.

步骤201,根据采集到的被监测设备的监测数据得到所述监测数据对应的变化趋势函数。Step 201: Obtain a change trend function corresponding to the monitoring data according to the collected monitoring data of the monitored device.

在一种实施方式中,被监测设备是电机时,则上述的监测数据可以包括温度、电流幅值或有效值、电压幅值或有效值、振动位移幅值或有效值、振动速度幅值或有效值、振动加速度幅值或有效值等数据中的一种或多种数据。In one embodiment, when the monitored device is a motor, the above-mentioned monitoring data may include temperature, current amplitude or effective value, voltage amplitude or effective value, vibration displacement amplitude or effective value, vibration velocity amplitude or One or more of data such as effective value, vibration acceleration amplitude or effective value.

以监测数据为一种数据时为例,采样得到监测数据对应的数据序列可以是t0[k0]和x0[k0]。其中,k0=1~m,其中m为大于一的正整数。其中,t0[k0]表示任意一时间点,x0[k0]表示t0[k0]采样的监测数据值。Taking the monitoring data as one kind of data as an example, the data sequences corresponding to the monitoring data obtained by sampling may be t0[k0] and x0[k0]. Wherein, k0=1~m, wherein m is a positive integer greater than one. Among them, t0[k0] represents any point in time, and x0[k0] represents the monitoring data value sampled by t0[k0].

在一个实例中,采样得到监测数据的数据序列t0[k0]和x0[k0],k0=1~m。如果当前采样的监测数据为振动速度幅值。其中,m=8。监测数据的数据序列为如下表1所示。In one example, data sequences t0[k0] and x0[k0] of monitoring data are obtained by sampling, and k0=1˜m. If the currently sampled monitoring data is the vibration velocity amplitude. where m=8. The data sequence of the monitoring data is shown in Table 1 below.

表1Table 1

k0k0 t0[k]t0[k] x0[k]x0[k] 11 00 1.5231.523 22 24twenty four 0.26140.2614 33 5151 0.70870.7087 44 7373 0.69430.6943 55 102102 1.0001.000 66 128128 0.67520.6752 77 148148 0.6790.679 88 175175 0.68010.6801

其中,t0的单位为秒(s),x0的单位为毫米/秒(mm/s)。Wherein, the unit of t0 is second (s), and the unit of x0 is millimeter/second (mm/s).

可选地,对采集到的监测数据进行数据拟合处理,以得到所述监测数据对应的变化趋势函数。Optionally, data fitting processing is performed on the collected monitoring data to obtain a change trend function corresponding to the monitoring data.

在一种实施方式中,将所述采集到的监测数据中的每相邻两个数据点直线连接,以得到包括分段线性函数的变化趋势函数。In an embodiment, every two adjacent data points in the collected monitoring data are connected by a straight line, so as to obtain a change trend function including a piecewise linear function.

以上述实例为例,如图3所示,监测数据的各个数据点使用“○”表示。每两个相邻两个数据点直线连接,可形成一元一次函数。其中,各个一元一次函数的自变量为时间变量,函数的因变量为振动速度幅值变量。Taking the above example as an example, as shown in Figure 3, each data point of the monitoring data is represented by "○". Every two adjacent data points are connected by a straight line to form a one-dimensional linear function. Among them, the independent variable of each one-dimensional linear function is the time variable, and the dependent variable of the function is the vibration velocity amplitude variable.

在另一种实施方式中,将所述采集到的监测数据中的各个数据点进行曲线拟合,以得到变化趋势函数。In another embodiment, curve fitting is performed on each data point in the collected monitoring data to obtain a change trend function.

可选地,可以使用多项式曲线实现对监测数据的曲线拟合。Alternatively, a polynomial curve can be used to achieve a curve fit to the monitoring data.

步骤202,从所述变化趋势函数中按照设定的时间顺序抽取数据,以形成初始数据组。Step 202: Extract data from the change trend function according to a set time sequence to form an initial data group.

可选地,从变化趋势函数中抽取多个时间距离相等的数据点,以形成初始数据组。Optionally, a plurality of data points with equal time distances are extracted from the change trend function to form an initial data set.

示例性地,可以给定一个等距的时间序列t[k],t=1~n,其中,n为大于一的正整数。本实施例中,n的取值可以大于m的取值。Exemplarily, an equidistant time series t[k] may be given, where t=1∼n, where n is a positive integer greater than one. In this embodiment, the value of n may be greater than the value of m.

在一个实例中,t[1]=t0[1],t[n]=t0[m],且t[k]时间序列的间隔为dt=(t[n]-t[1])/(n-1),n≥2。以t[k]为自变量,以数据序列t0[k0]和x[k0]形成的变化趋势函数,得到应变量x[k],从而得到初始数据组的数据序列t[k]和x[k]。In one example, t[1]=t0[1], t[n]=t0[m], and the interval of the t[k] time series is dt=(t[n]-t[1])/( n-1), n≥2. Taking t[k] as the independent variable, and using the change trend function formed by the data series t0[k0] and x[k0], the dependent variable x[k] is obtained, so as to obtain the data series t[k] and x[ of the initial data set k].

在一个实例中,n的取值可以为11,t[1]=t0[1]=0,t[11]=t0[8]=175,时间序列的间隔为dt=175/10=17.5。以数据序列t0[k0]和x0[k0]连线形成的变化趋势函数,得到应变量x[k],从而得到插值后的序列t[k]和x[k]。In an example, the value of n may be 11, t[1]=t0[1]=0, t[11]=t0[8]=175, and the interval of the time series is dt=175/10=17.5. Using the change trend function formed by connecting the data series t0[k0] and x0[k0], the dependent variable x[k] is obtained, thereby obtaining the interpolated series t[k] and x[k].

如图3所示,抽取的初始数据组中的各个数据点使用“△”表示。可以从变化趋势函数上取出t[k]对应的监测数据的值,则可以形成初始数据组。As shown in FIG. 3, each data point in the extracted initial data set is represented by "△". The value of the monitoring data corresponding to t[k] can be extracted from the change trend function, and an initial data group can be formed.

初始数据组的数据序列x[k]可以为,如下表2所示。The data sequence x[k] of the initial data set can be, as shown in Table 2 below.

表2Table 2

kk t[k]t[k] x[k]x[k] 11 00 1.5231.523 22 17.517.5 0.6030.603 33 3535 0.4440.444 44 52.552.5 0.7080.708 55 7070 0.6960.696 66 87.587.5 0.8470.847 77 105105 0.9630.963 88 122.5122.5 0.7440.744 99 140140 0.6770.677 1010 157.5157.5 0.6790.679 1111 175175 0.6800.680

其中,t的单位为秒(s),x的单位为毫米/秒(mm/s)。where t is in seconds (s) and x is in millimeters per second (mm/s).

本实施例中,通过从上述的变化趋势函数抽取初始数据组,从而可以把不定步长的监测数据变为等距的定步长的初始数据组,便于通过抽取后的数据做不同时间周期的均值计算等数据变换。In this embodiment, by extracting the initial data group from the above-mentioned change trend function, the monitoring data of indeterminate step size can be changed into the initial data group of equidistant and fixed step size, which is convenient to do different time periods through the extracted data. Data transformations such as mean calculation.

就被监测设备是电机而言,由于电机健康受损的变化可以认为是一个渐变性的数据变化,以及变化的范围和变化的速率在一定的范围内。电机的各项数据的变化有其固有的时间常数,其在一定时间内的变化不会超过一定的值或者变化速度不会超过一定的值。电机的突然严重故障产生的跳变数据,不适合用于作为对电机故障诊断和预测性维护的数据。因此,可以对初始数据组中的各个数据点进行有效性处理,剔除或替换其中的无效数据点。As far as the monitored device is a motor, the change due to the damage to the motor's health can be considered as a gradual data change, and the range and rate of change are within a certain range. The change of various data of the motor has its inherent time constant, and its change within a certain period of time will not exceed a certain value or the change speed will not exceed a certain value. The jump data generated by the sudden and severe fault of the motor is not suitable for the data of fault diagnosis and predictive maintenance of the motor. Therefore, validity processing can be performed on each data point in the initial data set, and invalid data points in it can be eliminated or replaced.

步骤203,对所述初始数据组中的各个数据点进行有效性处理,以得到目标监测数据。Step 203: Perform validity processing on each data point in the initial data set to obtain target monitoring data.

在一种实施方式中,如图4所示,步骤203可以包括以下步骤。In one embodiment, as shown in FIG. 4 , step 203 may include the following steps.

步骤2031,根据预设的数值限制区间,从所述初始数据组确定出初始数据点。Step 2031: Determine an initial data point from the initial data set according to a preset numerical limit interval.

可选地,上述的数值限制区间可以根据不同的被监测设备设置不同的值。例如,被监测设备是电机时,监测的数据是电机的振动速度幅值时,数值限制区间可以分别包括限制上限和限制下限。例如,限制上限x_max可以为1.0、1.1、1.2等值,限制下限x_min可以为0.3、0.25、0.28、0.32等值。Optionally, the above-mentioned numerical limit interval can be set to different values according to different monitored devices. For example, when the monitored device is a motor and the monitored data is the vibration velocity amplitude of the motor, the numerical limit interval may include an upper limit and a lower limit respectively. For example, the upper limit x_max may be a value such as 1.0, 1.1, 1.2, and the lower limit x_min may be a value such as 0.3, 0.25, 0.28, 0.32, and the like.

本实施例中,上述初始数据点可以是为初始数据组中的第一个有效数据点。In this embodiment, the above-mentioned initial data point may be the first valid data point in the initial data group.

本实施例中,初始数据组中初始数据点之前的数据点则确定为无效数据点。In this embodiment, the data points before the initial data points in the initial data group are determined to be invalid data points.

步骤2032,根据预设波动区间,判断所述初始数据组中在所述初始数据点之后的数据点是否为无效数据点。Step 2032, according to a preset fluctuation interval, determine whether the data points in the initial data group after the initial data point are invalid data points.

其中,初始数据组中的当前数据点与前一数据点的差值在所述预设波动区间外,则表征当前数据点为无效数据点。Wherein, if the difference between the current data point in the initial data set and the previous data point is outside the preset fluctuation range, it indicates that the current data point is an invalid data point.

其中,若所述初始数据组中的当前数据点与所述当前数据点的前一数据点确定的判定值在所述预设波动区间外,则表征当前数据点为无效数据点,若所述初始数据组中的当前数据点与所述当前数据点的前一数据点确定的判定值在所述预设波动区间内,则表征当前数据点为有效数据点。Wherein, if the determination value determined by the current data point in the initial data group and the previous data point of the current data point is outside the preset fluctuation range, it indicates that the current data point is an invalid data point, if the If the determination value determined between the current data point in the initial data set and the previous data point of the current data point is within the preset fluctuation interval, it indicates that the current data point is a valid data point.

可选地,上述的波动区间可以包括数值波动区间、斜率波动区间以及幂函数比值波动区间。Optionally, the above-mentioned fluctuation interval may include a numerical fluctuation interval, a slope fluctuation interval, and a power function ratio fluctuation interval.

其中,幂函数比值可以表示为:km=(x2-x1)^n/(t2-t1)。其中前一数据点表示为(t1,x1),当前数据点表示为(t2,x2),n为大于0的实数。The power function ratio can be expressed as: km=(x2-x1)^n/(t2-t1). The previous data point is represented as (t1, x1), the current data point is represented as (t2, x2), and n is a real number greater than 0.

本实施例中,当前数据点与前一数据点确定的判定值可以是当前数据点的值与前一有效数据点的值的差值;初始数据组中的当前数据点与前一数据点确定的判定值也可以是当前数据点与前一有效数据点形成的线段的斜率。In this embodiment, the determination value determined between the current data point and the previous data point may be the difference between the value of the current data point and the value of the previous valid data point; the current data point in the initial data group and the previous data point are determined The determination value of can also be the slope of the line segment formed by the current data point and the previous valid data point.

可选地,判断当前数据点的值与前一有效数据点的值之差是否在数值波动区间内,如果当前数据点的值与前一有效数据点的值之差在数值波动区间内,则表示当前数据点为有效数据点。Optionally, determine whether the difference between the value of the current data point and the value of the previous valid data point is within the numerical fluctuation range, if the difference between the value of the current data point and the value of the previous valid data point is within the numerical fluctuation range, then Indicates that the current data point is a valid data point.

可选地,判断当前数据点与前一有效数据点形成的线段的斜率是否在斜率波动区间内,如果当前数据点与前一有效数据点形成的线段的斜率在斜率波动区间内,则表示当前数据点为有效数据点。Optionally, determine whether the slope of the line segment formed by the current data point and the previous valid data point is within the slope fluctuation range, and if the slope of the line segment formed by the current data point and the previous valid data point is within the slope fluctuation range, it means that the current Data points are valid data points.

可选地,判断当前数据点与前一有效数据点形成的幂函数比值是否在幂函数比值波动区间内,如果当前数据点与前一有效数据点形成的幂函数比值在幂函数比值波动区间内,则表示当前数据点为有效数据点。Optionally, determine whether the power function ratio formed by the current data point and the previous valid data point is within the power function ratio fluctuation range, if the power function ratio formed by the current data point and the previous valid data point is within the power function ratio fluctuation range. , it means that the current data point is a valid data point.

可选地,判断当前数据点的值与前一有效数据点的值之差是否在数值波动区间内,以及当前数据点与前一有效数据点形成的线段的斜率是否在斜率波动区间内;如果当前数据点的值与前一有效数据点的值之差在数值波动区间内,且当前数据点与前一有效数据点形成的线段的斜率在斜率波动区间内,则表示当前数据点为有效数据点。Optionally, determine whether the difference between the value of the current data point and the value of the previous valid data point is within the numerical fluctuation range, and whether the slope of the line segment formed by the current data point and the previous valid data point is within the slope fluctuation range; if The difference between the value of the current data point and the value of the previous valid data point is within the numerical fluctuation range, and the slope of the line segment formed by the current data point and the previous valid data point is within the slope fluctuation range, indicating that the current data point is valid data point.

可选地,判断当前数据点的值与前一有效数据点的值之差是否在数值波动区间内,以及当前数据点与前一有效数据点形成的幂函数比值是否在幂函数比值波动区间内;如果当前数据点的值与前一有效数据点的值之差在数值波动区间内,且当前数据点与前一有效数据点形成的幂函数比值在幂函数比值波动区间内,则表示当前数据点为有效数据点。Optionally, determine whether the difference between the value of the current data point and the value of the previous valid data point is within the numerical fluctuation range, and whether the power function ratio formed by the current data point and the previous valid data point is within the power function ratio fluctuation range. ;If the difference between the value of the current data point and the value of the previous valid data point is within the numerical fluctuation range, and the power function ratio formed by the current data point and the previous valid data point is within the power function ratio fluctuation range, it means that the current data Points are valid data points.

示例性地,数值波动区间可以包括一个数值上限和一个数值下限。在一个实例中,数值上限表示为xw_max=a,数值下限xw_min=b。其中,a和b的取值根据采集的监测数据的不同,取值也可能不同。例如,采集的监测数据是电机的振动速度幅值时,上述a的取值可以为0.3、0.35、0.4等值,b的取值可以为-0.3、-0.35、-0.4等值。Exemplarily, the numerical fluctuation interval may include an upper numerical limit and a numerical lower limit. In one example, the upper numerical limit is expressed as xw_max=a, and the lower numerical limit is xw_min=b. Among them, the values of a and b may be different according to the collected monitoring data. For example, when the collected monitoring data is the vibration speed amplitude of the motor, the value of the above a can be 0.3, 0.35, 0.4 and the like, and the value of b can be -0.3, -0.35, -0.4 and the like.

示例性地,斜率波动区间可以包括一个斜率上限和一个斜率下限。在一个实例中,斜率上限表示为kxw_max=c,斜率下限kxw_min=d。其中,c和d的取值根据采集的监测数据的不同,取值也可能不同。例如,采集的监测数据是电机的振动速度幅值时,上述c的取值可以为0.01、0.013、0.018、0.015等值,d的取值可以为-0.01、-0.013、-0.018、-0.015等值。Exemplarily, the slope fluctuation interval may include an upper slope limit and a lower slope limit. In one example, the upper slope limit is expressed as kxw_max=c, and the lower slope limit is kxw_min=d. Among them, the values of c and d may be different according to the collected monitoring data. For example, when the collected monitoring data is the vibration velocity amplitude of the motor, the value of c above can be 0.01, 0.013, 0.018, 0.015, etc., and the value of d can be -0.01, -0.013, -0.018, -0.015, etc. value.

可选地,可以通过一记录数组分别记录初始数据组中的各个数据点是否为有效数据点。示例性地,记录数组中的其中一数值被赋值为第一值,则表示该数值对应的数据点为有效数据点;记录数组中的其中一数值被赋值为第二值,则表示该数值对应的数据点为无效数据点。在一个实例中,第一值为非零值;第二值为零。Optionally, whether each data point in the initial data group is a valid data point may be separately recorded through a record array. Exemplarily, if one of the values in the record array is assigned as the first value, it indicates that the data point corresponding to the value is a valid data point; if one of the values in the record array is assigned as the second value, it indicates that the value corresponds to is an invalid data point. In one example, the first value is a non-zero value; the second value is zero.

在一个实例中,记录数组可以为flag[k],k=1~n,flag[k]表示第k个数据的有效性。当flag[k1]=1时,对应的初始数据组中第k1个数据点t[k1]和x[k1]为有效数据点。当flag[k2]=0时,对应的初始数据组中第k2个数据点t[k2]和x[k2]为无效数据点。In one example, the record array may be flag[k], k=1˜n, and flag[k] indicates the validity of the kth data. When flag[k1]=1, the k1th data points t[k1] and x[k1] in the corresponding initial data group are valid data points. When flag[k2]=0, the k2th data points t[k2] and x[k2] in the corresponding initial data group are invalid data points.

步骤2033,若所述初始数据组中存在无效数据点时,将所述无效数据点的值替换为指定数据点的值,以对所述初始数据组进行更新,以得到目标监测数据。Step 2033, if there is an invalid data point in the initial data set, replace the value of the invalid data point with the value of the specified data point, so as to update the initial data set to obtain target monitoring data.

在一种实施方式中,步骤2033可以被实施为:将所述无效数据点的值替换为与所述无效数据点时间距离最近的一有效数据点的值。In one embodiment, step 2033 may be implemented as: replacing the value of the invalid data point with the value of a valid data point whose time distance is closest to the invalid data point.

可选地,可以使用一新的数组存储目标监测数据。例如,可以使用t[k]和y[k]记录目标监测数据。Optionally, a new array can be used to store target monitoring data. For example, target monitoring data can be recorded using t[k] and y[k].

示例性地,当flag[i]=1时,则将y[i]=x[i],其中,i为正整数。示例性地,当flag[j]=0时,则将y[j]=y[j-1],其中,j为大于二的正整数。Exemplarily, when flag[i]=1, then y[i]=x[i], where i is a positive integer. Exemplarily, when flag[j]=0, then y[j]=y[j-1], where j is a positive integer greater than two.

示例性地,当flag[1]=0时,且flag[c]=1;则y[1]=x[c]。其中,c为大于一的正整数,且flag[r]为零,r的取值为1至c-1。Exemplarily, when flag[1]=0, and flag[c]=1; then y[1]=x[c]. Among them, c is a positive integer greater than one, and flag[r] is zero, and r ranges from 1 to c-1.

下面通过一具体逻辑描述上述的步骤2031-2033的处理流程:The processing flow of the above steps 2031-2033 is described below through a specific logic:

p从1到n:如果x_min≤x[p]≤x_max,则x_z=x[p],t_z=t[p],并跳出循环;否则p=p+1继续循环。以此确定出第一个有效数据点,并记录为t_z和x_z,并把t[p]和x[p]标记为有效点,即flag[p]=1。p from 1 to n: if x_min≤x[p]≤x_max, then x_z=x[p], t_z=t[p], and jump out of the loop; otherwise, p=p+1 to continue the loop. In this way, the first valid data point is determined and recorded as t_z and x_z, and t[p] and x[p] are marked as valid points, that is, flag[p]=1.

经过预处理后的数据值为y[k],1~n,初值赋为0。The preprocessed data value is y[k], 1~n, and the initial value is assigned 0.

k从1到p:y[k]=x_z。确定出目标监测数据中的前P个数值。k from 1 to p: y[k]=x_z. Determine the first P values in the target monitoring data.

其中,数据点t_z和x_z为在判断过程中使用的临时变量,用于存储在判断过程中当前有效数据点。Among them, the data points t_z and x_z are temporary variables used in the judgment process, and are used to store the current valid data points in the judgment process.

按照上述的处理流程,以上述表2中的数据,数值限制区间的限制上限和限制下限分别为x_max=1.0和x_min=0.3;数值波动区间的数值上限和数值下限分别为xw_max=0.3,xw_min=-0.3;以及斜率波动区间的斜率上限和斜率下限分别为kxw_max=0.01,kxw_min=-0.01为例进行描述:According to the above processing flow, based on the data in Table 2 above, the upper limit and lower limit of the numerical limit interval are respectively x_max=1.0 and x_min=0.3; the upper limit and lower limit of the numerical value fluctuation interval are respectively xw_max=0.3, xw_min= -0.3; and the upper and lower slope limits of the slope fluctuation range are respectively kxw_max=0.01, kxw_min=-0.01 as an example to describe:

当p=1时,x[1]=1.523,1.523>1.0,继续循环;p=2时,x[2]=0.603,0.3≤0.603≤1.0,则x_z=0.603,t_z=17.5,flag[2]=1,y[1]=x_z=0.603,y[2]=x_z=0.603。因此,可以确定出第二个数据点为初始数据点。When p=1, x[1]=1.523, 1.523>1.0, continue the cycle; when p=2, x[2]=0.603, 0.3≤0.603≤1.0, then x_z=0.603, t_z=17.5, flag[2 ]=1, y[1]=x_z=0.603, y[2]=x_z=0.603. Therefore, the second data point can be determined to be the initial data point.

确定出初始数据点后,可以根据预设波动区间,判断初始数据组中在所述初始数据点之后的数据点是否为无效数据点。示例性地,After the initial data points are determined, it can be determined whether the data points in the initial data group after the initial data points are invalid data points according to the preset fluctuation interval. Illustratively,

然后,令p=p+1,t_n=t[p],x_n=x[p];计算斜率:kxw=(x_n-x_z)/(t_n-t_z);计算偏差:xw=x_n-x_z;当kxw_min≤kxw≤kxw_max以及w_min≤xw≤xw_max时,则t_z=t[p],x_z=x[p],flag[p]=1;否则flag[p]=0,y[p]=x_z。Then, let p=p+1, t_n=t[p], x_n=x[p]; calculate the slope: kxw=(x_n-x_z)/(t_n-t_z); calculate the deviation: xw=x_n-x_z; when When kxw_min≤kxw≤kxw_max and w_min≤xw≤xw_max, then t_z=t[p], x_z=x[p], flag[p]=1; otherwise, flag[p]=0, y[p]=x_z.

按照上述的处理流程,以上述表2中的数据,数值限制区间的限制上限和限制下限分别为x_max=1.0和x_min=0.3;数值波动区间的数值上限和数值下限分别为xw_max=0.3,xw_min=-0.3;以及斜率波动区间的斜率上限和斜率下限分别为kxw_max=0.01,kxw_min=-0.01为例进行描述,对初始数据组中的第二个数据点之后的数据点进行判断处理流程可以表示为:According to the above processing flow, based on the data in Table 2 above, the upper limit and lower limit of the numerical limit interval are respectively x_max=1.0 and x_min=0.3; the upper limit and lower limit of the numerical value fluctuation interval are respectively xw_max=0.3, xw_min= -0.3; and the upper and lower slope limits of the slope fluctuation interval are respectively kxw_max=0.01, kxw_min=-0.01 as an example to describe, the judgment processing flow for the data points after the second data point in the initial data set can be expressed as :

令p=3,t_n=t[3]=35,x_n=x[3]=0.444;Let p=3, t_n=t[3]=35, x_n=x[3]=0.444;

计算斜率:kxw=(x_n-x_z)/(t_n-t_z)=(0.444-0.603)/(35-17.5)=-0.009086;Calculate the slope: kxw=(x_n-x_z)/(t_n-t_z)=(0.444-0.603)/(35-17.5)=-0.009086;

计算偏差:xw=-0.159;Calculated deviation: xw=-0.159;

因为-0.01≤-0.009086≤0.01且-0.3≤-0.159≤0.3成立,所以t_z=t[p]=t[3]-35;x_z=x[p]=x[3]=0.444;flag[p]=flag[3]=1;y[p]=y[3]=x_z=0.444。Because -0.01≤-0.009086≤0.01 and -0.3≤-0.159≤0.3 hold, so t_z=t[p]=t[3]-35; x_z=x[p]=x[3]=0.444; flag[p ]=flag[3]=1; y[p]=y[3]=x_z=0.444.

然后,执行下一个循环:令p=p+1=4,t_n=t[4]=52.5,x_n=x[4]=0.708;Then, execute the next cycle: let p=p+1=4, t_n=t[4]=52.5, x_n=x[4]=0.708;

计算斜率:kxw=(x_n-x_z)/(t_n-t_z)=(0.708-0.444)/(52.5-35)=0.0151;Calculate the slope: kxw=(x_n-x_z)/(t_n-t_z)=(0.708-0.444)/(52.5-35)=0.0151;

计算偏差;xw=0.264;Calculated deviation; xw = 0.264;

因为0.0151≥0.01不成立,所以flag[p]=flag[4]=0;y[p]=y[4]=x_z=0.444;Because 0.0151≥0.01 does not hold, so flag[p]=flag[4]=0; y[p]=y[4]=x_z=0.444;

如此循环直到p>n。And so on until p>n.

以上述的实例为例描述,确定出的flag[k]数组可以为,如下表3所示。Taking the above example as an example, the determined flag[k] array may be as shown in Table 3 below.

表3table 3

Figure BDA0002474289470000151
Figure BDA0002474289470000151

Figure BDA0002474289470000161
Figure BDA0002474289470000161

如图5所示,将表2所示的初始数据组通过上述步骤处理后得到的目标监测数据。其中,图5所示的“○”表示初始数据组中的数据点,图5所示的“△”表示目标监测数据中数据点。As shown in FIG. 5 , the target monitoring data obtained by processing the initial data set shown in Table 2 through the above steps. Among them, the "○" shown in Fig. 5 represents the data point in the initial data set, and the "△" shown in Fig. 5 represents the data point in the target monitoring data.

在另一种实施方式中,步骤2033可以被实施为:根据确定出的有效数据点拟合出目标函数;将所述无效数据点的值替换所述目标函数中的值。In another embodiment, step 2033 may be implemented as: fitting an objective function according to the determined valid data points; and replacing the values in the objective function with the values of the invalid data points.

本实施例中,上述的目标函数可以是直线函数,也可以是曲线函数。In this embodiment, the above-mentioned objective function may be a linear function or a curved function.

下面以初始数据组为表2中的数据为例进行描述:The following description takes the initial data set as the data in Table 2 as an example:

可选地,该实例下的初始数据组中的有效数据点八个,则可以以第二个数据点和第三个数据点,拟合成以第一直线函数;然后根据第一直线函数确定出第一个数据点对应的替换值;Optionally, if there are eight valid data points in the initial data set under this example, the second data point and the third data point can be fitted into a first straight line function; then according to the first straight line The function determines the replacement value corresponding to the first data point;

第五个数据点、第六个数据点和第七个数据点拟合成以第二直线函数,或第五个数据点和第六个数据点拟合成以第二直线函数;然后根据第二直线函数确定出第四个数据点对应的替换值;The fifth data point, the sixth data point and the seventh data point are fitted to the second straight line function, or the fifth data point and the sixth data point are fitted to the second straight line function; The two-line function determines the replacement value corresponding to the fourth data point;

第九个数据点、第十个数据点和第十一个数据点拟合成以第三直线函数,或第九个数据点和第十个数据点拟合成以第三直线函数;然后根据第三直线函数确定出第八个数据点对应的替换值。The ninth data point, the tenth data point and the eleventh data point are fitted to a third straight line function, or the ninth data point and the tenth data point are fitted to a third straight line function; then according to The third line function determines the replacement value corresponding to the eighth data point.

可选地,以第二个数据点、第三个数据点、第五个数据点、第六个数据点、第七个数据点、第九个数据点、第十个数据点和第十一个数据点进行曲线拟合,得到一曲线函数。则可以根据该曲线函数确定出第一个数据点对应的值、第四个数据点对应的值和第八个数据点对应的替换值。Optionally, with the second data point, the third data point, the fifth data point, the sixth data point, the seventh data point, the ninth data point, the tenth data point and the eleventh data point Curve fitting is performed on the data points to obtain a curve function. Then, the value corresponding to the first data point, the value corresponding to the fourth data point, and the replacement value corresponding to the eighth data point can be determined according to the curve function.

如图6所示,将表2所示的初始数据组通过上述步骤处理后得到的目标监测数据。其中,图6所示的“○”表示初始数据组中的有效数据点,图6所示的“△”表示目标监测数据中数据点。As shown in FIG. 6 , the target monitoring data obtained by processing the initial data set shown in Table 2 through the above steps. Among them, "○" shown in Fig. 6 represents the valid data points in the initial data set, and "△" shown in Fig. 6 represents the data points in the target monitoring data.

在另一种实施方式中,步骤203也可以包括以下步骤。In another embodiment, step 203 may also include the following steps.

步骤2034,根据预设波动区间及数值限制区间,判断所述初始数据组中的各个数据点是否为无效数据点。Step 2034: Determine whether each data point in the initial data set is an invalid data point according to a preset fluctuation interval and a numerical limit interval.

示例性地,数值限制区间可以表示初始数据组中的各个数据点的取值的限制。若初始数据组中的各个数据点的值在数值限制区间内,则表示数据点可能为有效数据点。若初始数据组中的各个数据点的值在数值限制区间内,则表示数据点为无效数据点。Exemplarily, the numerical limit interval may represent a limit on the value of each data point in the initial data set. If the value of each data point in the initial data set is within the numerical limit, it means that the data point may be a valid data point. If the value of each data point in the initial data set is within the numerical limit range, it means that the data point is an invalid data point.

可选地,上述的波动区间可以包括数值波动区间以及斜率波动区间。Optionally, the above-mentioned fluctuation interval may include a numerical fluctuation interval and a slope fluctuation interval.

可选地,判断当前数据点的值与前一有效数据点的值之差是否在数值波动区间内,如果当前数据点的值与前一有效数据点的值之差在数值波动区间内,则表示当前数据点为有效数据点。Optionally, determine whether the difference between the value of the current data point and the value of the previous valid data point is within the numerical fluctuation range, if the difference between the value of the current data point and the value of the previous valid data point is within the numerical fluctuation range, then Indicates that the current data point is a valid data point.

可选地,判断当前数据点与前一有效数据点形成的线段的斜率是否在斜率波动区间内,如果当前数据点与前一有效数据点形成的线段的斜率在斜率波动区间内,则表示当前数据点为有效数据点。Optionally, determine whether the slope of the line segment formed by the current data point and the previous valid data point is within the slope fluctuation range, and if the slope of the line segment formed by the current data point and the previous valid data point is within the slope fluctuation range, it means that the current Data points are valid data points.

可选地,判断当前数据点的值是否在数值限制区间内;如果初始数据组中的各个数据点的值在数值限制区间内,则表示数据点为有效数据点。如果初始数据组中的各个数据点的值在数值限制区间内,则表示数据点为无效数据点。Optionally, it is judged whether the value of the current data point is within the numerical limit range; if the value of each data point in the initial data group is within the numerical limit range, it means that the data point is a valid data point. If the value of each data point in the initial data set is within the numerical limit, it means that the data point is invalid.

可选地,判断当前数据点的值与前一有效数据点的值之差是否在数值波动区间内,以及当前数据点与前一有效数据点形成的线段的斜率是否在斜率波动区间内;如果当前数据点的值与前一有效数据点的值之差在数值波动区间内,且当前数据点与前一有效数据点形成的线段的斜率在斜率波动区间内,则表示当前数据点为有效数据点。Optionally, determine whether the difference between the value of the current data point and the value of the previous valid data point is within the numerical fluctuation range, and whether the slope of the line segment formed by the current data point and the previous valid data point is within the slope fluctuation range; if The difference between the value of the current data point and the value of the previous valid data point is within the numerical fluctuation range, and the slope of the line segment formed by the current data point and the previous valid data point is within the slope fluctuation range, indicating that the current data point is valid data point.

可选地,判断当前数据点的值与前一有效数据点的值之差是否在数值波动区间内,当前数据点与前一有效数据点形成的线段的斜率是否在斜率波动区间内,以及当前数据点的值是否在数值限制区间内;如果初始数据组中的各个数据点的值在数值限制区间内,且当前数据点的值与前一有效数据点的值之差在数值波动区间内,且当前数据点与前一有效数据点形成的线段的斜率在斜率波动区间内,则表示当前数据点为有效数据点。Optionally, determine whether the difference between the value of the current data point and the value of the previous valid data point is within the numerical fluctuation range, whether the slope of the line segment formed by the current data point and the previous valid data point is within the slope fluctuation range, and the current Whether the value of the data point is within the numerical limit range; if the value of each data point in the initial data set is within the numerical limit range, and the difference between the value of the current data point and the value of the previous valid data point is within the numerical fluctuation range, And if the slope of the line segment formed by the current data point and the previous valid data point is within the slope fluctuation range, it means that the current data point is a valid data point.

示例性地,数值波动区间可以包括一个数值上限和一个数值下限。在一个实例中,数值上限表示为xw_max=a,数值下限xw_min=b。其中,a和b的取值根据采集的监测数据的不同,取值也可能不同。例如,采集的监测数据是电机的振动速度幅值时,上述a的取值可以为0.3、0.35、0.4等值,b的取值可以为-0.3、-0.35、-0.4等值。Exemplarily, the numerical fluctuation interval may include an upper numerical limit and a numerical lower limit. In one example, the upper numerical limit is expressed as xw_max=a, and the lower numerical limit is xw_min=b. Among them, the values of a and b may be different according to the collected monitoring data. For example, when the collected monitoring data is the vibration speed amplitude of the motor, the value of the above a can be 0.3, 0.35, 0.4 and the like, and the value of b can be -0.3, -0.35, -0.4 and the like.

示例性地,斜率波动区间可以包括一个斜率上限和一个斜率下限。在一个实例中,斜率上限表示为kxw_max=c,斜率下限kxw_min=d。其中,c和d的取值根据采集的监测数据的不同,取值也可能不同。例如,采集的监测数据是电机的振动速度幅值时,上述c的取值可以为0.01、0.013、0.018、0.015等值,d的取值可以为-0.01、-0.013、-0.018、-0.015等值。Exemplarily, the slope fluctuation interval may include an upper slope limit and a lower slope limit. In one example, the upper slope limit is expressed as kxw_max=c, and the lower slope limit is kxw_min=d. The values of c and d may be different according to the collected monitoring data. For example, when the collected monitoring data is the vibration velocity amplitude of the motor, the value of c above can be 0.01, 0.013, 0.018, 0.015, etc., and the value of d can be -0.01, -0.013, -0.018, -0.015, etc. value.

可选地,可以通过一记录数组分别记录初始数据组中的各个数据点是否为有效数据点。示例性地,记录数组中的其中一数值被赋值为第一值,则表示该数值对应的数据点为有效数据点;记录数组中的其中一数值被赋值为第二值,则表示该数值对应的数据点为无效数据点。在一个实例中,第一值为非零值;第二值为零。Optionally, whether each data point in the initial data group is a valid data point may be separately recorded through a record array. Exemplarily, if one of the values in the record array is assigned as the first value, it indicates that the data point corresponding to the value is a valid data point; if one of the values in the record array is assigned as the second value, it indicates that the value corresponds to is an invalid data point. In one example, the first value is a non-zero value; the second value is zero.

在一个实例中,记录数组可以为flag[k],k=1~n,flag[k]表示第k个数据的有效性。当flag[k1]=1时,对应的初始数据组中第k1个数据点t[k1]和x[k1]为有效数据点。当flag[k2]=0时,对应的初始数据组中第k2个数据点t[k2]和x[k2]为无效数据点。In one example, the record array may be flag[k], k=1˜n, and flag[k] indicates the validity of the kth data. When flag[k1]=1, the k1th data points t[k1] and x[k1] in the corresponding initial data group are valid data points. When flag[k2]=0, the k2th data points t[k2] and x[k2] in the corresponding initial data group are invalid data points.

步骤2035,若所述初始数据组中存在无效数据点时,将所述无效数据点的值替换为指定数据点的值,以对所述初始数据组进行更新,以得到目标监测数据。Step 2035, if there is an invalid data point in the initial data set, replace the value of the invalid data point with the value of the specified data point to update the initial data set to obtain target monitoring data.

可选地,可以使用一新的数组存储目标监测数据。例如,可以使用t[k]和y[k]记录目标监测数据。Optionally, a new array can be used to store target monitoring data. For example, target monitoring data can be recorded using t[k] and y[k].

示例性地,当flag[i]=1时,则将y[i]=x[i],其中,i为正整数。示例性地,当flag[j]=0时,则将y[j]=y[j-1],其中,j为大于二的正整数。Exemplarily, when flag[i]=1, then y[i]=x[i], where i is a positive integer. Exemplarily, when flag[j]=0, then y[j]=y[j-1], where j is a positive integer greater than two.

示例性地,当flag[1]=0时,且flag[c]=1;则y[1]=x[c]。其中,c为大于一的正整数,且flag[r]为零,r的取值为1至c-1的正整数。进一步地,若c大于二,则令y[s]=x[c],其中,s的取值为1至c-1的正整数。Exemplarily, when flag[1]=0, and flag[c]=1; then y[1]=x[c]. Among them, c is a positive integer greater than one, and flag[r] is zero, and r is a positive integer ranging from 1 to c-1. Further, if c is greater than two, let y[s]=x[c], where s is a positive integer ranging from 1 to c-1.

通过上述步骤,可以实现对被监测设备的监测数据进行预处理,从而可以使处理后的目标监测数据能够更好地表示被监测设备的状况。Through the above steps, the monitoring data of the monitored equipment can be preprocessed, so that the processed target monitoring data can better represent the condition of the monitored equipment.

本实施例中,还可以根据上述的目标监测数据对被监测设备进行状况的识别。In this embodiment, the status of the monitored device can also be identified according to the above-mentioned target monitoring data.

在步骤203之后,还可以包括:根据所述目标监测数据确定所述被监测设备的状态分数;根据所述状态分数确定出目标报警信号。After step 203, the method may further include: determining a state score of the monitored device according to the target monitoring data; and determining a target alarm signal according to the state score.

示例性地,上述的目标报警信号可以是无报警信号;也可以是不同等级的报警信号。Exemplarily, the above-mentioned target alarm signal may be no alarm signal; or may be alarm signals of different levels.

以被监测设备为电机、监测数据为电机的温升数据T为例,通过下列分段线性评估函数得出评估的分数。Taking the monitored equipment as the motor and the monitoring data as the temperature rise data T of the motor as an example, the evaluation score is obtained by the following piecewise linear evaluation function.

Figure BDA0002474289470000191
Figure BDA0002474289470000191

在一个实例中,其中上述公式中的各个阈值参数T1、T2、T3、T4、T5值和评估分数的对应关系,如下表4所示.In an example, the correspondence between the respective threshold parameters T 1 , T 2 , T 3 , T 4 , T 5 values and evaluation scores in the above formula is shown in Table 4 below.

表4Table 4

阈值参数值Threshold parameter value T<sub>1</sub>T<sub>1</sub> T<sub>2</sub>T<sub>2</sub> T<sub>3</sub>T<sub>3</sub> T<sub>4</sub>T<sub>4</sub> T<sub>5</sub>T<sub>5</sub> 评估分数assessment score 100100 7575 5050 2525 00

在一个实例中,对于一台电机,可以给定阈值参数为下表5所示.In one instance, for one motor, the threshold parameters can be given as shown in Table 5 below.

表5table 5

阈值参数Threshold parameter T<sub>1</sub>T<sub>1</sub> T<sub>2</sub>T<sub>2</sub> T<sub>3</sub>T<sub>3</sub> T<sub>4</sub>T<sub>4</sub> T<sub>5</sub>T<sub>5</sub> 取值value 6060 6565 7070 7575 8080

本实施例中,上述阈值参数的数量,和阈值参数的取值并不以上述举例为限,具体可以根据被监测设备、监测数据确定出阈值参数。In this embodiment, the number of the above threshold parameters and the values of the threshold parameters are not limited to the above examples. Specifically, the threshold parameters can be determined according to the monitored device and monitoring data.

可选地,电机的工作状态可以分为:正常状态,可疑状态,不良状态和危险状态。根据状态的不同,可以输出不同的报警。Optionally, the working state of the motor can be divided into: normal state, suspicious state, bad state and dangerous state. Depending on the state, different alarms can be output.

示例性地,不同的电机的状态,可以对应不同的标准,示例如下:Exemplarily, the states of different motors may correspond to different standards. Examples are as follows:

1)正常状态是指评估分数在75分至100分之间状态,无警报;1) The normal state refers to the state where the evaluation score is between 75 and 100, and there is no alarm;

2)可疑状态是指评估分数在50分至75分(不含75分)之间状态,触发智能预警信号;2) Suspicious status refers to the status of the evaluation score between 50 and 75 (excluding 75), which triggers an intelligent early warning signal;

3)不良状态是指评估分数在25分至50分(不含50分)之间状态,触发普通预警信号;3) Bad state refers to the state where the evaluation score is between 25 and 50 (excluding 50), which triggers an ordinary early warning signal;

4)危险状态是指评估分数在0分至25分(不含25分)之间状态,触发紧急报警信号。4) Dangerous state refers to the state where the evaluation score is between 0 and 25 (excluding 25), and an emergency alarm signal is triggered.

可选地,目标报警信号是不同等级的报警信号时,可以将该目标报警信号发送给服务器,或发送给指定通信账号。Optionally, when the target alarm signal is an alarm signal of different levels, the target alarm signal may be sent to the server, or to a designated communication account.

警报信号应在立即上传到云平台,并通过云平台通知运维人员。The alarm signal should be uploaded to the cloud platform immediately, and the operation and maintenance personnel should be notified through the cloud platform.

通过上述实例,可以知道:From the above examples, we can know that:

对应温升如果在65K及以下,将得到不低于75分的评估分数,无警报;If the corresponding temperature rise is 65K and below, an evaluation score of no less than 75 points will be obtained, and there will be no alarm;

对应温升如果在70K及以下,65K以上(可不含65K),将得到50分~75分(可不含75分)的评估分数,触发智能预警信号;If the corresponding temperature rise is 70K and below, and above 65K (65K may be excluded), an evaluation score of 50 to 75 points (75 may be excluded) will be obtained, triggering an intelligent early warning signal;

对应温升如果在75K及以下,70K以上(不含70K),将得到25分~50分(不含50分)的评估分数,触发普通预警信号;If the corresponding temperature rise is 75K and below, and above 70K (excluding 70K), an evaluation score of 25 to 50 points (excluding 50 points) will be obtained, triggering an ordinary early warning signal;

对应温升如果在80K及以下,75K以上(不含75K),将得到0分~25分(不含25分)的评估分数,触发紧急报警信号。If the corresponding temperature rise is 80K and below, and above 75K (excluding 75K), an evaluation score of 0 to 25 points (excluding 25 points) will be obtained, and an emergency alarm signal will be triggered.

其中,K表示开尔文,国际单位制中的温度单位。where K stands for Kelvin, the unit of temperature in the International System of Units.

可以知道的是,如果温升的监控数据没有经过上述步骤201-203的预处理,那么如果出现温升大于75K的干扰信号,那么就会引起紧急报警等误报警,影响设备的运行。It can be known that if the temperature rise monitoring data has not been preprocessed in the above steps 201-203, if there is an interference signal with a temperature rise greater than 75K, it will cause false alarms such as emergency alarms and affect the operation of the equipment.

进一步地,电机的运维服务系统还可以根据与电机损耗特性有关的评估参数分数的趋势,预测电机应当进行维护的具体时间。Further, the motor operation and maintenance service system can also predict the specific time when the motor should be maintained according to the trend of the evaluation parameter scores related to the motor loss characteristics.

示例性地,与损耗特性有关的评估参数评估分数可以包括电流评估分数、电压评估分数、振动评估分数、温度评估分数等。根据运维服务系统预置的评估分数维护阈值参数,给出下一次维护的具体内容和时间。评估分数维护阈值可以是智能预警阈值与普通预警阈值之间的值。Exemplarily, the evaluation parameter evaluation score related to the loss characteristic may include a current evaluation score, a voltage evaluation score, a vibration evaluation score, a temperature evaluation score, and the like. According to the preset evaluation score maintenance threshold parameter of the operation and maintenance service system, the specific content and time of the next maintenance are given. The evaluation score maintenance threshold can be a value between the smart alert threshold and the normal alert threshold.

其中,评估分数的趋势,是指评估分数的一定时期的变化率,为前一个运行周期的线性回归的斜率。运行周期是指电机工作的主要循环周期,可以是天、周、月、季度、年等周期。The trend of the evaluation score refers to the rate of change of the evaluation score in a certain period, which is the slope of the linear regression of the previous operating cycle. The operating cycle refers to the main cycle of the motor work, which can be days, weeks, months, quarters, years and other cycles.

例如,在电机温升的在线监测中,由于干扰使得电机温升出现一个突然的较高值,就会导致评估分数的一定时期的变化率过大,从而系统会计算得出系统会在很短时间内达到一个较低的分数从而错误地触发报警而进行维护。For example, in the on-line monitoring of motor temperature rise, the motor temperature rise has a sudden high value due to interference, which will cause the rate of change of the evaluation score in a certain period to be too large, so the system will calculate that the system will be in a very short time. Reaching a lower score within the period would falsely trigger an alarm for maintenance.

另外,监测数据突然变大或变小的干扰信号的出现,还会影响到故障诊断。电机的故障诊断将主要根据电机的监测数据和预定的阈值参数之间的比较结果。一旦出现非正常的过大或过小信号,都会使得电机的故障诊断误判断。例如,由于干扰导致的过高温升会被判断为电机出现缺相、过载、风路阻塞、风扇损坏或者匝间短路等故障。In addition, the occurrence of interference signals that suddenly increase or decrease in monitoring data will also affect fault diagnosis. The fault diagnosis of the motor will mainly be based on the comparison result between the monitoring data of the motor and the predetermined threshold parameters. Once an abnormally large or too small signal appears, it will make the fault diagnosis of the motor misjudged. For example, excessive temperature rise caused by interference will be judged as failure of the motor such as phase loss, overload, air blockage, fan damage or inter-turn short circuit.

通过本申请实施例中的监测数据处理方法,可以排除非电机故障引起的异常,例如,由于采集和传输设备因干扰、电源断电或通讯中断等故障所引起的无效数据,从而可以提高目标监测数据的有效性。Through the monitoring data processing method in the embodiment of the present application, abnormalities not caused by motor faults can be eliminated, for example, invalid data caused by interference, power failure or communication interruption of the acquisition and transmission equipment, thereby improving target monitoring. data validity.

实施例三Embodiment 3

基于同一申请构思,本申请实施例中还提供了与监测数据处理方法对应的监测数据处理装置,由于本申请实施例中的装置解决问题的原理与前述的监测数据处理方法实施例相似,因此本实施例中的装置的实施可以参见上述方法的实施例中的描述,重复之处不再赘述。Based on the same application concept, the embodiment of the present application also provides a monitoring data processing device corresponding to the monitoring data processing method. For the implementation of the apparatus in the embodiment, reference may be made to the description in the embodiment of the foregoing method, and repeated descriptions will not be repeated.

请参阅图7,是本申请实施例提供的监测数据处理装置的功能模块示意图。本实施例中的监测数据处理装置中的各个模块用于执行上述方法实施例中的各个步骤。监测数据处理装置包括得到模块301、抽取模块302、处理模块303;其中,Please refer to FIG. 7 , which is a schematic diagram of functional modules of a monitoring data processing apparatus provided by an embodiment of the present application. Each module in the monitoring data processing apparatus in this embodiment is used to execute each step in the foregoing method embodiment. The monitoring data processing device includes a obtaining module 301, an extraction module 302, and a processing module 303; wherein,

得到模块301,用于根据采集到的被监测设备的监测数据得到所述监测数据对应的变化趋势函数;Obtaining module 301 is used to obtain a change trend function corresponding to the monitoring data according to the collected monitoring data of the monitored equipment;

抽取模块302,用于从所述变化趋势函数中按照设定的时间顺序抽取数据,以形成初始数据组;Extraction module 302, for extracting data according to the set time sequence from the change trend function to form an initial data group;

处理模块303,用于对所述初始数据组中的各个数据点进行有效性处理,以得到目标监测数据。The processing module 303 is configured to perform validity processing on each data point in the initial data set to obtain target monitoring data.

一种可能的实施方式中,处理模块303包括:第一判断单元以及第一替换单元;In a possible implementation, the processing module 303 includes: a first judgment unit and a first replacement unit;

第一判断单元,用于根据预设波动区间及数值限制区间,判断所述初始数据组中的各个数据点是否为无效数据点,其中,若所述初始数据组中的当前数据点与所述当前数据点的前一数据点确定的判定值在所述预设波动区间外,则表征当前数据点为无效数据点,若所述初始数据组中的当前数据点与所述当前数据点的前一数据点确定的判定值在所述预设波动区间内,则表征当前数据点为有效数据点;The first judgment unit is used for judging whether each data point in the initial data group is an invalid data point according to a preset fluctuation interval and a numerical limit interval, wherein, if the current data point in the initial data group and the If the determination value determined by the previous data point of the current data point is outside the preset fluctuation range, it indicates that the current data point is an invalid data point. A determination value determined by a data point is within the preset fluctuation range, indicating that the current data point is a valid data point;

第一替换单元,用于若所述初始数据组中存在无效数据点时,将所述无效数据点的值替换为指定数据点的值,以对所述初始数据组进行更新,以得到目标监测数据。The first replacement unit is used to replace the value of the invalid data point with the value of the specified data point if there is an invalid data point in the initial data set, so as to update the initial data set to obtain the target monitoring data.

一种可能的实施方式中,第一替换单元,用于:In a possible implementation, the first replacement unit is used for:

将所述无效数据点的值替换为与所述无效数据点时间距离最近的一有效数据点的值。The value of the invalid data point is replaced with the value of a valid data point whose time distance is closest to the invalid data point.

一种可能的实施方式中,第一替换单元,用于:In a possible implementation, the first replacement unit is used for:

根据确定出的有效数据点拟合出目标函数;Fit the objective function according to the determined valid data points;

将所述无效数据点的值替换所述目标函数中的值。Replace the value of the invalid data point with the value in the objective function.

一种可能的实施方式中,处理模块303包括:确定单元,第二判断单元以及第二替换单元:In a possible implementation, the processing module 303 includes: a determination unit, a second judgment unit and a second replacement unit:

确定单元,用于根据预设的数值限制区间,从所述初始数据组确定出初始数据点;a determining unit, configured to determine an initial data point from the initial data group according to a preset numerical limit interval;

第二判断单元,用于根据预设波动区间,判断所述初始数据组中在所述初始数据点之后的数据点是否为无效数据点,其中,若所述初始数据组中的当前数据点与所述当前数据点的前一数据点确定的判定值在所述预设波动区间外,则表征当前数据点为无效数据点,若所述初始数据组中的当前数据点与所述当前数据点的前一数据点确定的判定值在所述预设波动区间内,则表征当前数据点为有效数据点;A second judging unit, configured to judge, according to a preset fluctuation interval, whether a data point in the initial data group after the initial data point is an invalid data point, wherein, if the current data point in the initial data group is the same as the The determination value determined by the previous data point of the current data point is outside the preset fluctuation range, indicating that the current data point is an invalid data point. If the current data point in the initial data group is the same as the current data point If the determination value determined by the previous data point of , is within the preset fluctuation interval, it means that the current data point is a valid data point;

第二替换单元,用于若所述初始数据组中存在无效数据点时,将所述无效数据点的值替换为指定数据点的值,以对所述初始数据组进行更新,以得到目标监测数据。The second replacement unit is configured to replace the value of the invalid data point with the value of the specified data point if there is an invalid data point in the initial data set, so as to update the initial data set to obtain the target monitoring data.

一种可能的实施方式中,第二替换单元,用于:In a possible implementation, the second replacement unit is used for:

将所述无效数据点的值替换为与所述无效数据点时间距离最近的一有效数据点的值。The value of the invalid data point is replaced with the value of a valid data point whose time distance is closest to the invalid data point.

一种可能的实施方式中,第二替换单元,用于:In a possible implementation, the second replacement unit is used for:

根据确定出的有效数据点拟合出目标函数;Fit the objective function according to the determined valid data points;

将所述无效数据点的值替换所述目标函数中的值。Replace the value of the invalid data point with the value in the objective function.

一种可能的实施方式中,抽取模块302,用于从所述变化趋势函数中抽取多个时间距离相等的数据点,以形成初始数据组。In a possible implementation, the extraction module 302 is configured to extract a plurality of data points with equal time distances from the change trend function to form an initial data set.

一种可能的实施方式中,得到模块301,用于对采集到的监测数据进行数据拟合处理,以得到所述监测数据对应的变化趋势函数。In a possible implementation manner, the obtaining module 301 is configured to perform data fitting processing on the collected monitoring data to obtain a change trend function corresponding to the monitoring data.

一种可能的实施方式中,得到模块301,用于:In a possible implementation, the module 301 is obtained for:

将所述采集到的监测数据中的每相邻两个数据点直线连接,以得到包括分段线性函数的变化趋势函数;或者,Connecting every two adjacent data points in the collected monitoring data with a straight line to obtain a change trend function including a piecewise linear function; or,

将所述采集到的监测数据中的各个数据点进行曲线拟合,以得到变化趋势函数。Curve fitting is performed on each data point in the collected monitoring data to obtain a change trend function.

一种可能的实施方式中,监测数据处理装置还可以包括:In a possible implementation, the monitoring data processing device may further include:

第一确定模块,用于根据所述目标监测数据确定所述被监测设备的状态分数;a first determining module, configured to determine the state score of the monitored device according to the target monitoring data;

第二确定模块,用于根据所述状态分数确定出目标报警信号。The second determination module is configured to determine the target alarm signal according to the state score.

此外,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述方法实施例中所述的监测数据处理方法的步骤。In addition, an embodiment of the present application further provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is run by a processor, the monitoring data processing method described in the above method embodiment is executed. step.

本申请实施例所提供的监测数据处理方法的计算机程序产品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的指令可用于执行上述方法实施例中所述的监测数据处理方法的步骤,具体可参见上述方法实施例,在此不再赘述。The computer program product of the monitoring data processing method provided by the embodiments of the present application includes a computer-readable storage medium storing program codes, and the instructions included in the program codes can be used to execute the monitoring data processing methods described in the above method embodiments. For details, refer to the above method embodiments, which will not be repeated here.

在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。In the several embodiments provided in this application, it should be understood that the disclosed apparatus and method may also be implemented in other manners. The apparatus embodiments described above are merely illustrative, for example, the flowcharts and block diagrams in the accompanying drawings illustrate the architectures, functions and possible implementations of apparatuses, methods and computer program products according to various embodiments of the present application. operate. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more functions for implementing the specified logical function(s) executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented in dedicated hardware-based systems that perform the specified functions or actions , or can be implemented in a combination of dedicated hardware and computer instructions.

另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。In addition, each functional module in each embodiment of the present application may be integrated together to form an independent part, or each module may exist independently, or two or more modules may be integrated to form an independent part.

所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。If the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution. The computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes . It should be noted that, in this document, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element defined by the phrase "comprises" does not preclude the presence of additional identical elements in a process, method, article, or device that includes the element.

以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, the present application may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application. It should be noted that like numerals and letters refer to like items in the following figures, so once an item is defined in one figure, it does not require further definition and explanation in subsequent figures.

以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present application, but the protection scope of the present application is not limited to this. should be covered within the scope of protection of this application. Therefore, the protection scope of the present application shall be subject to the protection scope of the claims.

Claims (10)

1. A method for processing monitoring data, comprising:
obtaining a variation trend function corresponding to the monitoring data according to the collected monitoring data of the monitored equipment;
extracting data from the change trend function according to a set time sequence to form an initial data set;
and carrying out effectiveness processing on each data point in the initial data set to obtain target monitoring data.
2. The method of claim 1, wherein the validation processing of each data point in the initial data set to obtain target monitoring data comprises:
judging whether each data point in the initial data set is an invalid data point or not according to a preset fluctuation interval and a numerical limit interval;
and if an invalid data point exists in the initial data set, replacing the value of the invalid data point with the value of a designated data point so as to update the initial data set to obtain target monitoring data.
3. The method of claim 1, wherein the validation processing of each data point in the initial data set to obtain target monitoring data comprises:
determining an initial data point from the initial data set according to a preset numerical limit interval;
judging whether a data point after the initial data point in the initial data set is an invalid data point or not according to a preset fluctuation interval, wherein if a judgment value determined by a current data point in the initial data set and a previous data point of the current data point is outside the preset fluctuation interval, the current data point is represented as an invalid data point, and if the judgment value determined by the current data point in the initial data set and the previous data point of the current data point is within the preset fluctuation interval, the current data point is represented as an effective data point;
and if an invalid data point exists in the initial data set, replacing the value of the invalid data point with the value of a designated data point so as to update the initial data set to obtain target monitoring data.
4. The method of claim 2 or 3, wherein replacing the value of the invalid data point with the value of the designated data point comprises:
replacing the value of the invalid data point with the value of a valid data point that is closest in time distance to the invalid data point; or,
and fitting an objective function according to the determined valid data points, and replacing the values of the invalid data points with the values in the objective function.
5. The method of claim 1, wherein the trend function is a function of time and a measured parameter; the extracting data from the variation trend function according to the set time sequence to form an initial data group comprises the following steps:
and extracting a plurality of data points with equal time distance from the variation trend function to form an initial data set.
6. The method according to claim 1, wherein the obtaining a variation trend function corresponding to the monitoring data according to the collected monitoring data of the monitored equipment comprises:
linearly connecting every two adjacent data points in the collected monitoring data to obtain a variation trend function comprising a piecewise linear function; or,
and performing curve fitting on each data point in the collected monitoring data to obtain a variation trend function.
7. The method of claim 1, further comprising:
determining a status score of the monitored equipment according to the target monitoring data;
and determining a target alarm signal according to the state score.
8. A monitoring data processing apparatus, comprising:
the obtaining module is used for obtaining a change trend function corresponding to the monitoring data according to the collected monitoring data of the monitored equipment;
the extraction module is used for extracting data from the change trend function according to a set time sequence to form an initial data set;
and the processing module is used for carrying out effectiveness processing on each data point in the initial data set so as to obtain target monitoring data.
9. An electronic device, comprising: a processor, a memory storing machine-readable instructions executable by the processor, the machine-readable instructions when executed by the processor performing the steps of the method of any of claims 1 to 7 when the electronic device is run.
10. A computer-readable storage medium, characterized in that a computer program is stored on the computer-readable storage medium, which computer program, when being executed by a processor, performs the steps of the method of any one of claims 1 to 7.
CN202010359888.3A 2020-04-29 2020-04-29 Monitoring data processing method, device and electronic equipment Pending CN111538723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010359888.3A CN111538723A (en) 2020-04-29 2020-04-29 Monitoring data processing method, device and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010359888.3A CN111538723A (en) 2020-04-29 2020-04-29 Monitoring data processing method, device and electronic equipment

Publications (1)

Publication Number Publication Date
CN111538723A true CN111538723A (en) 2020-08-14

Family

ID=71967658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010359888.3A Pending CN111538723A (en) 2020-04-29 2020-04-29 Monitoring data processing method, device and electronic equipment

Country Status (1)

Country Link
CN (1) CN111538723A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363672A (en) * 2020-11-09 2021-02-12 北京大豪科技股份有限公司 Data processing method, device and equipment
CN113309990A (en) * 2021-05-28 2021-08-27 深圳四维集思技术服务有限公司 Pipeline detection early warning method and system
CN113378350A (en) * 2021-04-28 2021-09-10 中国地震局地质研究所 Temperature change trend determination method and device and electronic equipment
CN113449795A (en) * 2021-06-29 2021-09-28 国网北京市电力公司 Power utilization data processing method and device and electronic equipment
CN116049502A (en) * 2023-01-31 2023-05-02 广东中设智控科技股份有限公司 Method and device for processing read data of accumulated industrial instrument

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184267A (en) * 2011-04-14 2011-09-14 上海同岩土木工程科技有限公司 Abnormal data filtration method for interference elimination of automatic data acquisition system
CN110070205A (en) * 2019-03-13 2019-07-30 中交广州航道局有限公司 Trend prediction method, device, computer equipment and the storage medium of ship machine dredge pump
CN110501460A (en) * 2019-08-23 2019-11-26 成都星时代宇航科技有限公司 Atmospheric monitoring method, apparatus and electronic equipment
CN110929751A (en) * 2019-10-16 2020-03-27 福建和盛高科技产业有限公司 Current transformer unbalance warning method based on multi-source data fusion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184267A (en) * 2011-04-14 2011-09-14 上海同岩土木工程科技有限公司 Abnormal data filtration method for interference elimination of automatic data acquisition system
CN110070205A (en) * 2019-03-13 2019-07-30 中交广州航道局有限公司 Trend prediction method, device, computer equipment and the storage medium of ship machine dredge pump
CN110501460A (en) * 2019-08-23 2019-11-26 成都星时代宇航科技有限公司 Atmospheric monitoring method, apparatus and electronic equipment
CN110929751A (en) * 2019-10-16 2020-03-27 福建和盛高科技产业有限公司 Current transformer unbalance warning method based on multi-source data fusion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363672A (en) * 2020-11-09 2021-02-12 北京大豪科技股份有限公司 Data processing method, device and equipment
CN113378350A (en) * 2021-04-28 2021-09-10 中国地震局地质研究所 Temperature change trend determination method and device and electronic equipment
CN113309990A (en) * 2021-05-28 2021-08-27 深圳四维集思技术服务有限公司 Pipeline detection early warning method and system
CN113309990B (en) * 2021-05-28 2023-01-03 深圳四维集思技术服务有限公司 Pipeline detection early warning method and system
CN113449795A (en) * 2021-06-29 2021-09-28 国网北京市电力公司 Power utilization data processing method and device and electronic equipment
CN116049502A (en) * 2023-01-31 2023-05-02 广东中设智控科技股份有限公司 Method and device for processing read data of accumulated industrial instrument

Similar Documents

Publication Publication Date Title
CN111538723A (en) Monitoring data processing method, device and electronic equipment
US8988238B2 (en) Change detection system using frequency analysis and method
US20200012270A1 (en) Computer system and method for monitoring the technical state of industrial process systems
CN107908744B (en) Anomaly detection and elimination method for big data cleaning
CN109387303B (en) Detection method and device of shaft temperature sensor
EP3399376A1 (en) Plant-abnormality-monitoring method and computer program for plant abnormality monitoring
CN110906508B (en) Fault detection method and system for air conditioner sensor
CN113312804B (en) Temperature early warning method, device, equipment and storage medium of transformer
CN108369416B (en) Abnormality diagnosis system
CN110068435B (en) Vibration analysis system and method
CN110727533A (en) A method, apparatus, device and medium for alerting
CN106652393B (en) False alarm determination method and device
US20160140822A1 (en) System and Method of Airflow Monitoring for Variable Airflow Environments
JP5565357B2 (en) Equipment diagnostic device, equipment diagnostic method, equipment diagnostic program, and computer-readable recording medium recording the same
JP5918661B2 (en) Equipment diagnostic device and setting change reminding method
JP2011065337A (en) Traceability system and manufacturing process failure detecting method
CN113792090A (en) Steel rolling data monitoring method, system, medium and electronic terminal
JP7396361B2 (en) Abnormality determination device and abnormality determination method
US20220011738A1 (en) Process management device, process management method, and process management program storage medium
JP6459345B2 (en) Fluctuation data management system and its specificity detection method
JP2020018208A (en) Management device of silo
US20220334030A1 (en) Time series data processing method
JP2022173848A (en) Abnormality Diagnosis System, Abnormality Diagnosis Method, and Abnormality Diagnosis Program
US20220121191A1 (en) Time-series data processing method
CN111176931A (en) Operation monitoring method, operation monitoring device, server and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200814