CN111537987A - 一种基于遗传算法的非相干散射雷达数据反演方法 - Google Patents

一种基于遗传算法的非相干散射雷达数据反演方法 Download PDF

Info

Publication number
CN111537987A
CN111537987A CN202010375758.9A CN202010375758A CN111537987A CN 111537987 A CN111537987 A CN 111537987A CN 202010375758 A CN202010375758 A CN 202010375758A CN 111537987 A CN111537987 A CN 111537987A
Authority
CN
China
Prior art keywords
ionospheric
parameter
samples
fitness
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010375758.9A
Other languages
English (en)
Other versions
CN111537987B (zh
Inventor
王俊逸
乐新安
赵必强
丁锋
万卫星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geology and Geophysics of CAS
Original Assignee
Institute of Geology and Geophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geology and Geophysics of CAS filed Critical Institute of Geology and Geophysics of CAS
Priority to CN202010375758.9A priority Critical patent/CN111537987B/zh
Publication of CN111537987A publication Critical patent/CN111537987A/zh
Application granted granted Critical
Publication of CN111537987B publication Critical patent/CN111537987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及一种基于遗传算法的非相干散射雷达数据反演方法,根据非相干散射雷达探测得到的电离层散射信号自相关函数,结合信号的调制与滤波包络,对系统进行积分离散化,完成电离层多参量反演系统建模,确定适应度评价函数;将一个电离层参量作为一个元素,依次排列组成一个电离层参量样本,根据遗传算法设定的样本个数,产生电离层参量样本的初始集合,并根据适应度评价完成父代筛选;通过对父代电离层参量样本集合的交叉和变异计算,循环得到适应度最好的电离层参量样本即为最终电离层各个目标参量的反演结果。本发明具有结果准确且可靠性高,输入信息少、鲁棒性好等优点,可用于非相干散射雷达系统的数据处理、空间物理和空间天气研究等。

Description

一种基于遗传算法的非相干散射雷达数据反演方法
技术领域
本发明涉及一种基于遗传算法的非相干散射雷达数据反演方法,可用于非相干散射雷达系统的数据处理,进行如电离层多参量监测、空间天气研究等。
背景技术
电离层是地表以上60km到1000km的部分电离等离子体区域,它上接磁层、下连大气,是日地空间的重要组成。电离层通过各种能量过程与上下圈层紧密耦合在一起,磁层乃至太阳表面的各种能量爆发过程都能在电离层里有所响应,因此它被称作空间天气的显示屏。同时由于电离层对电波传播的影响,它也是与人类活动关系最为密切的关键层,对电离层状态的时空连续探测对空间天气研究、卫星导航与定位、无线电通讯等都具有重要意义。
地基非相干散射雷达作为现今最先进的电离层探测设备,可以实现电离层多参量同时探测,且兼具高度范围覆盖大、分辨率高等优点,在电离层探测中占有主导地位。而要实现基于非相干散射雷达测量的电离层多参量探测,其数据反演方法是实现这一功能的技术核心之一。传统的最小二乘法需要其他来源的参量初始信息输入,同时要对非线性系统进行一阶马尔科夫近似,容易引入误差影响反演精度。遗传算法(genetic algorithm,GA)是一种效仿生物界“适者生存”演化法则的进化算法,它通过隐含并行性和全局搜索最优解的能力解决了传统方法的局限性,被广泛应用于最优化问题的求解中。
发明内容
本发明的技术解决问题是:针对非相干散射雷达的数据反演问题,克服现有技术的不足,提供一种基于遗传算法的非相干散射雷达数据反演方法,解决了利用非相干散射雷达数据进行电离层多参量反演的问题,获得鲁棒性和可靠性高的电离层参量结果。
本发明的技术解决方案为:一种基于遗传算法的非相干散射雷达数据反演方法,其特征在于包括以下步骤:
首先,根据非相干散射雷达探测得到电离层散射信号的自相关函数,已知信号的调制和滤波方法,对电离层多参量反演系统进行积分离散化,完成系统建模,确定适应度评价函数;其次,将电离层的多个参量作为元素排列成一个电离层参量样本向量,根据遗传算法设定的样本个数,产生电离层参量样本的初始集合,并由适应度评估完成父代筛选;最后,通过对电离层参量样本集合的交叉和变异计算,循环筛选出适应度高的电离层参量样本,得到电离层多个参量的反演结果。具体步骤如下:
第一步,构建系统模型和适应度评价函数:
根据非相干散射雷达的探测原理,当调制信号由电离层散射后被接收,经滤波处理获得的雷达信号的表达式为:
Figure BDA0002479970160000021
其中,p(t)为信号接收机的滤波器包络,
Figure BDA0002479970160000022
为接收信号,env(t)为调制信号的包络,e(t,d3r)是在t时刻r处单位体积内电子的随机散射信号,r是探测目标距雷达的距离,s(r)是信号从发射到接收的传播时间。则非相干散射雷达探测得到的电离层散射信号自相关函数为:
Figure BDA0002479970160000023
其中,
Figure BDA0002479970160000024
是与雷达硬件和几何相关的参量(R为接收机阻抗、
Figure BDA0002479970160000025
为单个电子散射截面,χ为极化角、Pt为发射功率、G0(r),G1(r)为r处的发射和接收天线增益、R0,R1为探测目标到发射和接收天线的距离、λ为雷达波长),σ(ω,r,a)是电离层等离子体散射功率谱;
Figure BDA0002479970160000026
称为谱距离模糊函数,它是通过对时延距离模糊函数进行傅里叶变换计算获得,时延距离模糊函数的计算式为:
Figure BDA0002479970160000031
其中,
Figure BDA0002479970160000032
为距离幅度模糊函数,其不同采样时间的傅里叶变换乘积等于谱距离模糊函数。根据积分运算的定义,在一定区间内的积分值等于直角坐标内函数曲线与变量区间所围的面积值。记谱模糊函数
Figure BDA0002479970160000033
带入式(2)中并将频率积分按积分区间做n段分割,积分值近似等于被划分出的n个以每段内函数值为长,区间段为宽的矩形面积之和,得到式(2)积分离散化后的表达式为:
Figure BDA0002479970160000034
令Yi=z(t)z*(t')表示接收信号的自相关函数,t'=t+i△t,i=1,2,...,m,△t为单位时延,m为信号自相关函数的总时延个数,Hij=P0i×Wt,t+i△tj)表示由雷达系数和谱模糊函数计算得到的系统矩阵,S(a)j=σ(ωj,a),j=1,2,...,n表示某一距离门的等离子体散射功率谱,ω为谱的频率坐标,n为谱的频点个数,a=[Ne,Ti,Te,V]为由电离层的参量组成的矢量,Ne为电子密度、Ti为离子温度、Te为电子温度、V为等离子体漂移速度,这四个参量为反演的目标参量;等离子体散射功率谱由电离层的状态决定,一组电离层参量值计算得到对应的等离子体散射理论谱,具体计算公式如下:
Figure BDA0002479970160000035
其中,常值物理量λD=0.0037798为电子德拜长度,
Figure BDA0002479970160000036
k为雷达波矢,它由雷达探测性能决定;Pi表示离子成分比例,collin为等离子体碰撞频率,它们是根据电离层不同高度的情况由理论模型给出;另外自行设定用于辅助计算的常值系数为
Figure BDA0002479970160000041
κ=1.380658×10-23J/K为波尔兹常数。由此,得到非相干散射雷达的电离层多参量反演系统模型为:
Ym=Hm×nS(a)n (6)
非相干散射雷达的数据反演是一个通过信号自相关函数求解电离层多个参量的非线性最优化问题。根据贝叶斯定理和高斯概率分布假设,将自相关函数的残差作为该最优化问题的设计目标,把它作为电离层参数样本的适应度评价函数,适应度评价函数值越小表示该电离层参数样本的适应度越高,适应度评价函数的计算式为:
F(a)=∑(Y-HS(a))2 (7)
第二步,产生初代电离层参量样本并完成父代筛选:
将一个电离层参量作为一个元素,将各个参量相连组成一个电离层参量样本向量,设定初始样本的个数后,根据电离层参量的上下限计算代表电离层参量信息的初代样本集合
Figure BDA0002479970160000042
由式(6)选定的适应度评价函数得到各电离层参量样本的适应度。
接着,设定要保留的优秀电离层参量样本个数ngr和需要进行交叉运算的样本比例pcr,即可分别得到交叉子代ncr和变异子代的个数nch
Figure BDA0002479970160000043
并确定用于产生交叉和变异子代的父代电离层参数样本个数:
nf=2×ncr+nch (9)
然后依据优胜劣汰的遗传原理,为使得适应度高的电离层参量信息能通过遗传得到保留,利用适应度函数值对各个电离层参量样本进行排序,并采用对赌的方法使适应度值高的电离层参量样本在父代中更多地存在,具体计算如下:
Figure BDA0002479970160000051
其中,p0为电离层参数样本的适应度概率,pF为电离层参数样本适应度概率的累加值,pc为选择父代电离层参数样本的适应度概率,rand为范围在[0,1]产生的随机数。
第三步,完成新一代电离层参量样本集合的计算:
在遗传过程中通过对父代电离层参量样本的交叉和变异计算来获得新的电离层参量信息,其中交叉计算是基于筛选出的父代电离层参量样本进行随机截断,然后交换两个样本在该处的电离层参量信息,而变异计算则是通过引入新的电离层参量值替换原位置的电离层参量值,最终得到该次遗传产生的子代电离层参量样本集合。最后,通过设定的遗传结束约束决定新的电离层参量样本集合是否继续进行遗传,若不符合遗传结束条件则进入下一子代遗传的循环,直到遗传结束搜索得到电离层参量样本集合中适应度最佳的电离层参量样本,该样本由电离层参量排列组成,各参量的值即为电离层多个参量的反演结果。
本发明与现有技术相比的优点在于:
(1)相较于传统的最小二乘法,本发明采用的遗传算法不再需要对非线性系统进行一阶马尔科夫近似,也不需要通过理论模型计算目标电离层参量的初值,减少了模型近似引入的误差,同时简化了计算的输入信息,提高非相干散射雷达数据反演精度和计算简洁性。
(2)对电离层多参量的同步反演采用遗传算法,基于并行计算的原理进行全局最优解的搜索,而不是基于初值信息进行局部最优的解算。遗传算法具有内在的隐并行性和更好的全局寻优能力,它采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则,一定程度降低了外部输入信息准确度对反演结果精度的影响,提高了结果的可靠性。
附图说明
图1为本发明一种基于遗传算法的非相干散射雷达数据反演方法的处理流程图。
具体实施方式
下面结合附图及实施例对本发明进行详细说明。
如图1所示,本发明具体实现步骤如下:
根据非相干散射雷达的探测原理,当调制信号由电离层散射后被接收,经滤波处理获得的雷达信号的表达式为:
Figure BDA0002479970160000061
其中,p(t)为信号接收机的滤波器包络,
Figure BDA0002479970160000062
为接收信号,env(t)为调制信号的包络,e(t,d3r)是在t时刻r处单位体积内电子的随机散射信号,r是探测目标距雷达的距离,s(r)是信号从发射到接收的传播时间。则非相干散射雷达探测得到的电离层散射信号自相关函数为:
Figure BDA0002479970160000063
其中,
Figure BDA0002479970160000064
是与雷达硬件和几何相关的参量(R为接收机阻抗、
Figure BDA0002479970160000065
为单个电子散射截面,χ为极化角、Pt为发射功率、G0(r),G1(r)为r处的发射和接收天线增益、R0,R1为探测目标到发射和接收天线的距离、λ为雷达波长),σ(ω,r,a)是电离层等离子体散射功率谱;
Figure BDA0002479970160000066
称为谱距离模糊函数,它是通过对时延距离模糊函数进行傅里叶变换计算获得,时延距离模糊函数的计算式为:
Figure BDA0002479970160000071
其中,
Figure BDA0002479970160000072
为距离幅度模糊函数,其不同采样时间的傅里叶变换乘积等于谱距离模糊函数;根据积分运算的定义,在一定区间内的积分值等于直角坐标内函数曲线与变量区间所围的面积值。记谱模糊函数Wt,t'(ω)=∫rd3rWt,t'(ω,s(r)),带入式(2)中并将频率积分按积分区间做n段分割,积分值近似等于被划分出的n个以每段内函数值为长,区间段为宽的矩形面积之和,得到式(2)积分离散化后的表达式为:
Figure BDA0002479970160000073
令Yi=z(t)z*(t')表示接收信号的自相关函数,t'=t+i△t,i=1,2,...,m,△t为单位时延,m为信号自相关函数的总时延个数,Hij=P0i×Wt,t+i△tj)表示由雷达系数和谱模糊函数计算得到的系统矩阵,S(a)j=σ(ωj,a),j=1,2,...,n表示某一距离门的等离子体散射功率谱,ω为谱的频率坐标,n为谱的频点个数,a=[Ne,Ti,Te,V]为由电离层的参量组成的矢量,Ne为电子密度、Ti为离子温度、Te为电子温度、V为等离子体漂移速度,这四个参量为反演的目标参量;等离子体散射功率谱由电离层的状态决定,一组电离层参量值计算得到对应的等离子体散射理论谱,具体计算公式如下:
Figure BDA0002479970160000074
其中,常值物理量λD=0.0037798为电子德拜长度,
Figure BDA0002479970160000075
以频率为500MHz的反向散射雷达为例,雷达波矢k=20.958,电离层离子成分比例Pi和等离子体碰撞频率collin由国际电离层模型(IRI)给定。另外自行设定用于辅助计算的系数为T0=300K、N0=1011/m3、m0=30.5、ω0=8476.2Hz。综上,非相干散射雷达的电离层多参量反演系统模型为:
Ym=Hm×nS(a)n (6)
非相干散射雷达数据反演是一个通过信号自相关函数求解电离层的多个参量的非线性最优化问题。根据贝叶斯定理和高斯概率分布假设,将自相关函数的残差作为该最优化问题的设计目标,把它作为电离层参数样本的适应度评价函数,适应度评价函数值越小表示该电离层参数样本的适应度越高,即适应度评价函数为:
F(a)=∑(Y-HS(a))2 (7)
接着,以电子密度、离子温度、电子温度和等离子体漂移速度从前至后的顺序将这四个电离层参量作为四个元素组成一个向量,称作一个电离层参量样本,设定样本总个数为150组,根据电离层参量的取值限制,计算处代表电离层参量信息的样本集合初值,并根据式(7)的适应度评价函数计算各电离层参量样本的适应度评价值。
设定的需要保留的优秀电离层参量样本个数为8,交叉运算的样本比例为80%,可分别得到交叉样本个数ncr和变异样本个数nch
Figure BDA0002479970160000081
并确定用于产生交叉和变异样本的父代电离层参量样本个数:
nf=2×ncr+nch (9)
然后依据“优胜劣汰”的遗传原理,根据适应度评价函数值升序对电离层参量样本集合进行排列,并采用对赌的方法使适应度评价函数值低的电离层参量样本在父代中更多地存在,具体的计算如下:
Figure BDA0002479970160000091
其中,p0为电离层参数样本的适应度概率,pF为电离层参数样本适应度概率的累加值,pc为选择父代电离层参数样本的适应度概率,rand为范围在[0,1]产生的随机数。
最后,在遗传过程中通过对父代电离层参量样本的交叉和变异计算来获得新的电离层参量信息,其中交叉计算是基于筛选出的父代电离层参量样本随机选择需要交叉的电离层参量,然后对两个样本的该参量值进行交换,而变异计算则是引入新的电离层参量值替换原位置的电离层参量值,最终得到该次遗传产生的子代电离层参量样本集合。设定的遗传结束条件为:电离层参数样本集合遗传的最大代数、最优适应度的电离层样本停滞的最大代数和最优适应度评价函数值改变的最小阈值,根据新一代遗传产生的电离层参量样本集合判断遗传结束条件,决定是否继续进行新的遗传,若不符合遗传结束条件则进入下一子代遗传的循环,直到遗传结束搜索得到电离层参量样本集合中适应度最佳的电离层参量样本,该样本中各个电离层参量的值即为电离层多个参量的反演结果。
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (3)

1.一种基于遗传算法的非相干散射雷达数据反演方法,其特征在于,包括以下步骤:
第一步,根据非相干散射雷达探测得到电离层散射信号的自相关函数和信号的调制与滤波,对电离层多参量反演系统进行积分离散化,完成系统建模并确定适应度评价函数;
第二步,将电离层多参量反演系统中的目标电离层参量作为元素组成电离层的参量样本向量,根据遗传算法设定的样本个数,产生表示电离层特征的参量样本初始集合,并根据适应度评价完成父代筛选;最后,通过对父代电离层参量样本集合的交叉和变异,循环计算出适应度最高的电离层参数样本,得到电离层多个参量的最终反演结果。
2.根据权利要求1所述基于遗传算法的非相干散射雷达数据反演方法,其特征在于:所述第一步具体实现如下:
(1)根据非相干散射雷达的探测原理,当调制信号由电离层散射后被接收,经滤波处理获得的雷达信号的表达式为:
Figure FDA0002479970150000011
其中,p(t)为信号接收机的滤波器包络,
Figure FDA0002479970150000012
为接收信号,env(t)为调制信号包络,e(t,d3r)是在t时刻r处单位体积内电子的随机散射信号,r是探测目标距雷达的距离,s(r)是信号从发射到接收的传播时间;则非相干散射雷达探测得到的电离层散射信号自相关函数为:
Figure FDA0002479970150000013
其中,
Figure FDA0002479970150000014
是与雷达硬件和几何相关的参量(R为接收机阻抗、
Figure FDA0002479970150000015
为单个电子散射截面,χ为极化角、Pt为发射功率、G0(r),G1(r)为r处的发射和接收天线增益、R0,R1为探测目标到发射和接收天线的距离、λ为雷达波长),σ(ω,r,a)是电离层等离子体散射功率谱;
Figure FDA0002479970150000021
称为谱距离模糊函数,它是通过对时延距离模糊函数进行傅里叶变换计算获得,时延距离模糊函数的计算式为:
Figure FDA0002479970150000022
其中,Wt A(μ,s(r))=p(t-μ)env(μ-s(r))为距离幅度模糊函数,其不同采样时间的傅里叶变换乘积等于谱距离模糊函数;
(2)记谱模糊函数Wt,t'(ω)=∫rd3rWt,t'(ω,s(r)),带入式(2)中并将频率积分按积分区间做n段分割,积分值近似等于被划分出的n个以每段内函数值为长,区间段为宽的矩形面积之和,得到式(2)积分离散化后的表达式为:
Figure FDA0002479970150000023
令Yi=z(t)z*(t')表示接收信号的自相关函数,t'=t+i△t,i=1,2,...,m,△t为单位时延,m为信号自相关函数的总时延个数,Hij=P0i×Wt,t+i△tj)表示由雷达系数和谱模糊函数计算得到的系统矩阵,S(a)j=σ(ωj,a),j=1,2,...,n表示某一距离门的等离子体散射功率谱,ω为谱的频率坐标,n为谱的频点个数,a=[Ne,Ti,Te,V]为由电离层的参量组成的矢量,Ne为电子密度、Ti为离子温度、Te为电子温度、V为等离子体漂移速度,这四个参量为反演的目标参量;等离子体散射功率谱由电离层的状态决定,一组电离层参量值计算得到对应的等离子体散射理论谱,具体计算公式如下:
Figure FDA0002479970150000031
其中,常值物理量λD=0.0037798为电子德拜长度,σ0=4πr0 2≈10-28m2;k为雷达波矢,它由雷达探测性能决定;Pi表示离子成分比例,collin为等离子体碰撞频率,它们是根据电离层不同高度的情况由理论模型给出;另外自行设定用于辅助计算的常值系数为T0,N0,m0,
Figure FDA0002479970150000032
κ=1.380658×10-23J/K为波尔兹曼常数;由此,得到非相干散射雷达的电离层多参量反演系统模型为:
Ym=Hm×nS(a)n (6)
该系统通过探测得到的信号自相关函数反演电离层的参量,目标参量包括电子密度、离子温度、电子温度和等离子体漂移速度;
(3)上述反演过程是一个非线性的最优化问题,根据贝叶斯定理和高斯概率分布假设,将自相关函数的残差最小作为该最优化问题的目标,把它作为电离层参数样本的适应度评价函数,适应度评价函数值越小表示该电离层参数样本的适应度越高,适应度评价函数的计算式为:
F(a)=∑(Y-HS(a))2 (7)。
3.根据权利要求1所述基于遗传算法的非相干散射雷达数据反演方法,其特征在于:所述第二步,采用遗传算法(GA)对电离层多参量反演系统模型进行求解,该方法不需输入各个反演的电离层目标参量的初值,而是通过并行计算随机搜索电离层参量的最优解,具体实现如下:
(1)首先,把一个电离层参量作为一个元素依次排列组成一个电离层的参量样本向量,根据设定的样本个数np和电离层参量的取值限制:[min,max]4×1,表示电离层多参量反演系统中的四个目标电离层参量,即电子密度、离子温度、电子温度和漂移速度的取值上下限,计算代表电离层参量信息的样本集合初值
Figure FDA0002479970150000041
并根据适应度评价函数计算各组电离层参量样本的适应度值,即观测的信号自相关函数和理论求得的信号自相关函数间的残差和;
(2)根据设定的优秀电离层参量样本保留个数ngr和交叉样本比例pcr,分别计算交叉和变异样本的个数:
Figure FDA0002479970150000042
其中,ncr为交叉产生电离层参量新样本的个数,nch为变异产生电离层参量新样本个数;从携带电离层参量信息的初始样本中挑选出用于产生交叉和变异子代的父代样本,其个数为:
nf=2×ncr+nch (9)
最后,采用对赌的方法从按适应度函数值排序的电离层参量样本中产生父代,具体的计算如下:
Figure FDA0002479970150000043
其中,p0为电离层参数样本的适应度概率,pF为电离层参数样本适应度概率的累加值,pc为选择父代电离层参数样本的适应度概率,rand为范围在[0,1]产生的随机数;
(3)通过对父代电离层参数样本的交叉和变异计算来获得新的电离层参量信息,其中交叉计算是对筛选出的父代电离层参量样本,随机选择某个电离层参量,然后对两个样本的该电离层参量值进行互换,而变异计算则是通过在原有父代中随机选定一个要变异的电离层参量,对其值进行改变,来更新原来样本中带有的电离层信息,最终得到该次遗传产生的子代电离层参量样本集合,通过设定的遗传结束约束决定新的电离层参量样本是否继续进行遗传,若不符合遗传结束条件则进入下一子代遗传的循环,直到遗传结束搜索得到电离层参量样本集合中适应度最佳的样本,其中各参量的值即为电离层各个参量的反演结果。
CN202010375758.9A 2020-05-07 2020-05-07 一种基于遗传算法的非相干散射雷达数据反演方法 Active CN111537987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010375758.9A CN111537987B (zh) 2020-05-07 2020-05-07 一种基于遗传算法的非相干散射雷达数据反演方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010375758.9A CN111537987B (zh) 2020-05-07 2020-05-07 一种基于遗传算法的非相干散射雷达数据反演方法

Publications (2)

Publication Number Publication Date
CN111537987A true CN111537987A (zh) 2020-08-14
CN111537987B CN111537987B (zh) 2021-07-13

Family

ID=71967768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010375758.9A Active CN111537987B (zh) 2020-05-07 2020-05-07 一种基于遗传算法的非相干散射雷达数据反演方法

Country Status (1)

Country Link
CN (1) CN111537987B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112213704A (zh) * 2020-09-16 2021-01-12 西安空间无线电技术研究所 一种目标散射截面计算方法及装置
CN112946656A (zh) * 2021-02-01 2021-06-11 航天新气象科技有限公司 基于改进遗传算法的气象雷达探测模式识别方法及系统
CN112986989A (zh) * 2021-02-01 2021-06-18 西安电子科技大学 基于遗传算法的正交相位编码信号抑制距离模糊的方法
CN113567948A (zh) * 2021-08-17 2021-10-29 南昌大学 一种基于信赖域法的非相干散射雷达数据处理方法
CN114895256A (zh) * 2022-03-29 2022-08-12 中国人民解放军国防科技大学 基于包络反演的分布式宽带自适应相干信号生成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060229813A1 (en) * 2005-03-30 2006-10-12 Tobiska William K Ionospheric forecast system (IFS)
JP2011179964A (ja) * 2010-03-01 2011-09-15 National Institute Of Information & Communication Technology イオノグラム電離圏エコーの自動偏波分離、及び自動読取方法
CN104331739A (zh) * 2014-10-31 2015-02-04 国网重庆市电力公司电力科学研究院 基于遗传算法的太空发电接收站无功补偿控制方法及系统
CN104360335A (zh) * 2014-11-21 2015-02-18 武汉大学 基于ais目标指示的电离层参数反演方法
CN106842191A (zh) * 2017-01-13 2017-06-13 武汉工程大学 一种电离层参数的获取方法
CN110927687A (zh) * 2019-11-09 2020-03-27 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于非相干散射雷达的流星探测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060229813A1 (en) * 2005-03-30 2006-10-12 Tobiska William K Ionospheric forecast system (IFS)
JP2011179964A (ja) * 2010-03-01 2011-09-15 National Institute Of Information & Communication Technology イオノグラム電離圏エコーの自動偏波分離、及び自動読取方法
CN104331739A (zh) * 2014-10-31 2015-02-04 国网重庆市电力公司电力科学研究院 基于遗传算法的太空发电接收站无功补偿控制方法及系统
CN104360335A (zh) * 2014-11-21 2015-02-18 武汉大学 基于ais目标指示的电离层参数反演方法
CN106842191A (zh) * 2017-01-13 2017-06-13 武汉工程大学 一种电离层参数的获取方法
CN110927687A (zh) * 2019-11-09 2020-03-27 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于非相干散射雷达的流星探测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E. BENITO 等: "Inversion of Backscatter Ionograms Optimization by using Simulated Annealing and Genetic Algorithms", <IGARSS 2008 - 2008 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM> *
宋鹏 等: "基于遗传算法斜向探测电离层参数反演研究", 《现代电子技术》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112213704A (zh) * 2020-09-16 2021-01-12 西安空间无线电技术研究所 一种目标散射截面计算方法及装置
CN112213704B (zh) * 2020-09-16 2024-04-09 西安空间无线电技术研究所 一种目标散射截面计算方法及装置
CN112946656A (zh) * 2021-02-01 2021-06-11 航天新气象科技有限公司 基于改进遗传算法的气象雷达探测模式识别方法及系统
CN112986989A (zh) * 2021-02-01 2021-06-18 西安电子科技大学 基于遗传算法的正交相位编码信号抑制距离模糊的方法
CN112986989B (zh) * 2021-02-01 2023-02-24 西安电子科技大学 基于遗传算法的正交相位编码信号抑制距离模糊的方法
CN112946656B (zh) * 2021-02-01 2024-03-29 航天新气象科技有限公司 基于改进遗传算法的气象雷达探测模式识别方法及系统
CN113567948A (zh) * 2021-08-17 2021-10-29 南昌大学 一种基于信赖域法的非相干散射雷达数据处理方法
CN113567948B (zh) * 2021-08-17 2023-07-28 南昌大学 一种基于信赖域法的非相干散射雷达数据处理方法
CN114895256A (zh) * 2022-03-29 2022-08-12 中国人民解放军国防科技大学 基于包络反演的分布式宽带自适应相干信号生成方法
CN114895256B (zh) * 2022-03-29 2024-05-24 中国人民解放军国防科技大学 基于包络反演的分布式宽带自适应相干信号生成方法

Also Published As

Publication number Publication date
CN111537987B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN111537987B (zh) 一种基于遗传算法的非相干散射雷达数据反演方法
Vasudevan et al. Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter
Feroz et al. Use of the MULTINEST algorithm for gravitational wave data analysis
Baleisis et al. Searching for large-scale structure in deep radio surveys
CN108462545B (zh) 一种基于单接收站的电离层foF2参数重构方法
CN109633654A (zh) 一种用于太赫兹雷达的卷云微物理参数计算方法
Wu et al. Retrieval of ocean wave heights from spaceborne SAR in the Arctic Ocean with a neural network
Zamarayev et al. Estimating shadow-zone parameters of tropospheric refraction from the radiation of remote sources. Part I: Model
Wang et al. A new GNSS-R altimetry algorithm based on machine learning fusion model and feature optimization to improve the precision of sea surface height retrieval
Yao et al. Machine learning methodology review for computational electromagnetics
Lavygin et al. Identifying ground scatter and ionospheric scatter signals by using their fine structure at Ekaterinburg Decametre Coherent Radar
Jacobson et al. Full‐wave reflection of lightning long‐wave radio pulses from the ionospheric D region: Comparison with midday observations of broadband lightning signals
Hysell et al. A multistatic HF beacon network for ionospheric specification in the Peruvian sector
Douvenot et al. Real time refractivity from clutter using a best fit approach improved with physical information
Wen et al. Modeling of correlated complex sea clutter using unsupervised phase retrieval
de Sá et al. Lightning distance estimation using LF lightning Radio signals via analytical and machine-learned models
CN115859167A (zh) 一种改进生成对抗网络的天波雷达地海杂波半监督分类模型构建方法
Plaisier et al. Reconstructing the arrival direction of neutrinos in deep in-ice radio detectors
Tournadre et al. Cloud and rain effects on AltiKa/SARAL Ka-band radar altimeter—Part II: Definition of a rain/cloud flag
CN112666528B (zh) 一种基于卷积神经网络的多站雷达系统干扰鉴别方法
Li et al. Significant wave height extraction using a low‐frequency HFSWR system under low sea state
Kunduri et al. An examination of SuperDARN backscatter modes using machine learning guided by Ray‐tracing
Xiong et al. Radar target detection method based on cross‐correlation singularity power spectrum
Anand et al. Rain/no-rain classification from combined radar-Radiometer data using machine learning
Song et al. Magnetospheric active wave measurements

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant