CN111537468B - 柠檬酸生产中的小麦淀粉乳总糖的nir检测方法 - Google Patents

柠檬酸生产中的小麦淀粉乳总糖的nir检测方法 Download PDF

Info

Publication number
CN111537468B
CN111537468B CN202010490176.5A CN202010490176A CN111537468B CN 111537468 B CN111537468 B CN 111537468B CN 202010490176 A CN202010490176 A CN 202010490176A CN 111537468 B CN111537468 B CN 111537468B
Authority
CN
China
Prior art keywords
layer
weighted
nir
variable
citric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010490176.5A
Other languages
English (en)
Other versions
CN111537468A (zh
Inventor
赵忠盖
张萌
苗茂栋
金赛
孙福新
刘飞
胡志杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Guoxin Xielian Energy Co ltd
Jiangnan University
Original Assignee
Jiangsu Guoxin Xielian Energy Co ltd
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Guoxin Xielian Energy Co ltd, Jiangnan University filed Critical Jiangsu Guoxin Xielian Energy Co ltd
Priority to CN202010490176.5A priority Critical patent/CN111537468B/zh
Publication of CN111537468A publication Critical patent/CN111537468A/zh
Application granted granted Critical
Publication of CN111537468B publication Critical patent/CN111537468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法。本发明对柠檬酸发酵液NIR光谱数据进行预处理,并将其作为输入变量,计算输入变量和目标理化值得到相关系数,并基于所述相关系数建立加权目标函数,对第一层加权受限玻尔兹曼机进行训练。本发明的有益效果:本发明采用NIR光谱技术对小麦乳的总糖进行实时在线检测。实际柠檬酸生产过程中,小麦淀粉乳的检测周期长、检测滞后大,并且检测工作量非常大,是影响后续发酵生产的瓶颈之一。NIR光谱不影响小麦淀粉乳正常生产,具有采样周期短、检测精度高等特点。

Description

柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法
技术领域
本发明涉及NIR检测领域,具体涉及一种柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法。
背景技术
柠檬酸是一种重要的有机酸,广泛用于食品、医药、日化等行业。我国是世界上最大的柠檬酸生产国,年产量达70余万吨,占世界的65%左右。目前,全球柠檬酸出现供大于求的状况,迫切需要将柠檬酸生产向精细化、多元化、系列化方向发展。但是,在柠檬酸生产中,检测手段的不足一直制约柠檬酸发展的瓶颈问题。小麦是柠檬酸生产的主要原料之一,小麦淀粉乳的总糖等关键工艺参数直接影响着柠檬酸培养基的质量,进而影响着柠檬酸的得率。但是,总糖、的检测主要采用人工取样、离线分析的方法获得,具有采样周期大、滞后时间长等缺点,给培养基的质量控制带来了困难。目前培养基多是以人工控制为主,自动化水平低,生产效率低,不利于企业的升级改造。
近红外(NIR)光谱检测通过扫描样品的NIR光谱,可以得到样品中有机分子含氢基团的特征信息,具有简单、无损、绿色、快速等特点,广泛应用于石油、化工等众多领域,并逐渐在发酵过程推广应用。但是,NIR光谱分析方法是一种间接的分析方法,根据NIR光谱通过被检测物后产生的反射光谱或透过光谱间接地反映出理化值。因此,NIR光谱技术的关键在于构建准确有效的NIR光谱到理化值之间的回归模型。NIR光谱具有变量多、冗余大等特点,对NIR光谱进行压缩,从而获得与目标值相关的特征信息,是构建回归模型的关键。目前,NIR光谱中常用的建模方法是偏最小二乘(PLS),在保证与理化值相关性最大的情况下,提取光谱的特征,光谱通过特征信息与理化值建立联系,实现简单方便,目前在主流的NIR光谱仪的软件中均配备有PLS软件包。但是PLS是一种线性模型,而实际生产中,光谱受很多因素的影响,光谱与理化值之间严格意义上满足非线性关系。深度学习模型通过多层神经网络结构从数据中学习由低层具体特征到高层抽象特征提取,在工业大数据的分析中具有巨大的应用潜力。但是,常规深度信念网络在提取光谱数据特征信息时只关注光谱本身特征,没有考虑光谱与理化值之间的相关关系,因此可能造成与总糖和总氮相关的光谱有用信息丢失,进而影响到总糖和总氮的检测精度。
发明内容
本发明要解决的技术问题是提供一种柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法,总糖是发酵罐小麦淀粉乳的重要工艺参数,采用NIR光谱对总糖进行检测的前提是建立一个有效准确的模型。本发明采用深度信念网络构建校正模型,用于检测总糖,并对深度信念网络进行改进,以提升检测精度。主要解决以下两个方面的问题。一方面,将深度信念网络用于柠檬酸小麦淀粉乳的总糖检测。在柠檬酸小麦淀粉乳中,对总糖的检测一般采用的是人工取样分析的方法,本发明将NIR光谱技术引入到柠檬酸小麦淀粉乳的检测中,并针对现有NIR光谱软件仅包含PLS模型的缺点,引入深度信念网络,能够解决光谱变量多、冗余大,且与总糖之间为非线性相关的建模问题。另一方面,解决深度信念网络的特征提取中没考虑与总糖的相关性,从而导致NIR光谱检测精度降低的问题。深度信念网络由多层受限玻尔兹曼机构成,采取的是一种无监督预训练机制,学习的特征中可能包含大量与总糖无关的信息。为了充分利用总糖的信息,提高预测精度,则必须将深度信念网络改进为监督预训练机制。通过解决以上两个方面的问题,本发明可以根据与总糖的相关性,提取光谱中的非线性特征信息,并建立非线性校正模型,提高总糖的检测精度和检测实时性,为企业产业升级改造提供可能。
本发明的目的在于提供一种基于变量加权深度信念网络的柠檬酸小麦淀粉乳总糖的NIR光谱建模方法,解决了现有技术中的深度信念网络模型只关注输入光谱数据本身特征表示,而忽略了与总糖相关的特征提取,从而不能保证所提取特征与总糖之间的相关性的问题。所述方法包括以下步骤:
步骤1使用布鲁克MATRIX-F型傅里叶NIR光谱仪(OPUS分析软件包,德国Bruker公司)对柠檬酸小麦淀粉乳进行扫描,获取训练样本集的NIR光谱数据;
步骤2对获取的NIR光谱数据采用Savitzky-Golay卷积平滑法进行预处理,得到若干个训练样本。Savitzky-Golay卷积平滑又称多项式平滑,是通过多项式来对窗口之内的波谱点进行多项式最小二乘拟合,一般采用下式表示窗口移动多项式二乘最小二乘拟合法的通式:
Figure BDA0002520766130000031
其中,xk,smooth为波长k处经平滑后的平均值,H为归一化因子,
Figure BDA0002520766130000032
hi为平滑系数,每一测量值乘以平滑系数hi的目的是尽可能减少平滑对有用信息的影响。hi可基于最小二乘原理,用多项式拟合求得。;
步骤3计算输出变量与各层受限玻尔兹曼机可视层变量之间的相关系数,构造变量加权重构目标函数,对每一层变量加权受限玻尔兹曼机进行预训练;并将上一层变量加权受限玻尔兹曼机的隐藏层数据作为下一层变量加权受限玻尔兹曼机的输入层数据,逐层对加权受限玻尔兹曼机进行预训练;
步骤4利用目标总糖通过梯度下降算法对整个网络模型进行参数微调;构造基于加权深度信念网络的校正模型;并将NIR光谱数据集输入校正模型,进行预测。
步骤5计算输出变量与各层受限玻尔兹曼机变量之间的Pearson相关系数,并根据此相关系数设计相应的加权特征学习目标函数,具体如下:
计算输出变量与各层受限玻尔兹曼机变量之间的Pearson相关系数,计算式如下:
Figure BDA0002520766130000041
其中,T为样品数,j为输入维度,
Figure BDA0002520766130000042
为第j个输入的均值,
Figure BDA0002520766130000046
为目标变量均值。
根据相关系数设计权重函数,计算式如下:
Figure BDA0002520766130000043
设计新的变量加权特征学习目标函数:
Figure BDA0002520766130000044
其中,θ表示加权受限玻尔兹曼机中的网络参数合集,P(v)表示训练RBM的似然函数。
步骤6逐层对加权受限玻尔兹曼机进行预训练。将预处理后的光谱数据作为输入,通过新的变量加权特征学习目标函数,对加权受限玻尔兹曼机进行训练,并将上一层加权受限玻尔兹曼机的隐藏层作为下一层的输入层;一层一层由上而下对所有加权受限玻尔兹曼机进行训练。
步骤7对所有受限玻尔兹曼机完成训练之后,基于最终输出层输出变量构建收敛目标函数,通过所述收敛目标函数对所述深度学习模型进行参数微调整,直至满足预设收敛条件。收敛目标函数为:
Figure BDA0002520766130000045
其中,n为最终输出层样本个数,yi为光谱数据对应目标理化值,
Figure BDA0002520766130000047
为模型最终输出层输出目标理化值。
基于同样的发明构思,本申请还提供一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现任一项所述方法的步骤。
基于同样的发明构思,本申请还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现任一项所述方法的步骤。
基于同样的发明构思,本申请还提供一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行任一项所述的方法。
本发明的有益效果:
本发明采用NIR光谱技术对小麦乳的总糖进行实时在线检测。实际柠檬酸生产过程中,小麦淀粉乳的检测周期长、检测滞后大,并且检测工作量非常大,是影响后续发酵生产的瓶颈之一。NIR光谱不影响小麦淀粉乳正常生产,具有采样周期短、检测精度高等特点。
相比于传统的NIR光谱的PLS模型,只能描述光谱与总糖之间的线性相关,本发明引入了深度信念网络建立校正模型,能够描述非线性关系,更符合实际光谱数据与总糖之间的相关性。
在深度信念网络的基础上,给出一种基于变量加权深度信念网络的NIR校正模型,该模型对传统深度信念网络的训练机制进行改进,使光谱的特征提取过程受总糖的监督,能够包含更多的有用信息,提高预测精度。
附图说明
图1是本发明柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法中的柠檬酸小麦淀粉乳校正模型流程图。
图2是本发明柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法中的柠檬酸小麦淀粉乳光谱图,其中,(a)是原始光谱,(b)是预处理后光谱。
图3是本发明柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法中的小麦淀粉乳总糖预测效果对比图,其中,(a)是DBN模型,(b)是加权DBN模型。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
对柠檬酸发酵液NIR光谱数据进行预处理,并将其作为输入变量,计算输入变量和目标理化值得到相关系数,并基于所述相关系数建立加权目标函数,对第一层加权受限玻尔兹曼机进行训练,其具体计算如下:
计算输出变量与第一层输入变量之间的Pearson相关系数,计算式如下:
Figure BDA0002520766130000061
其中,T为样品数,j为输入维度,
Figure BDA0002520766130000062
为第j个输入的均值,
Figure BDA0002520766130000063
为目标变量均值。
根据相关系数设计权重函数,计算式如下:
Figure BDA0002520766130000064
设计新的变量加权特征学习目标函数:
Figure BDA0002520766130000065
其中,θ表示加权受限玻尔兹曼机中的网络参数合集,P(v)表示训练RBM的似然函数。
将训练后的第一层变量加权受限玻尔兹曼机的隐藏层特征作为第二层受限玻尔兹曼机的输入变量,计算该输入变量与目标理化值之间的相关系数,建立加权目标函数,对第二层加权受限玻尔兹曼机进行训练;
对整个加权深度信念网络模型的微调包括:基于最终输出层输出变量构建收敛目标函数,通过所述收敛目标函数对所述深度学习模型进行参数微调整,直至满足预设收敛条件。收敛目标函数为:
Figure BDA0002520766130000071
其中,n为最终输出层样本个数,yi为光谱数据对应目标理化值,
Figure BDA0002520766130000072
为模型最终输出层输出目标理化值。
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
图1示出了一种基于加权深度信念网络的柠檬酸发酵液NIR光谱建模方法,包括:
使用NIR光谱仪获取训练柠檬酸发酵液样本集的NIR光谱数据,对获取的NIR光谱数据进行预处理,得到若干个训练样本;
计算输出变量与各层受限玻尔兹曼机可视层变量之间的相关系数,构造变量加权重构目标函数,对每一层变量加权受限玻尔兹曼机进行预训练;并将上一层变量加权受限玻尔兹曼机的隐藏层数据作为下一层变量加权受限玻尔兹曼机的输入层数据,逐层对加权受限玻尔兹曼机进行预训练;
利用目标总糖通过梯度下降算法对整个网络模型进行参数微调;构造基于加权深度信念网络的校正模型;并将NIR光谱数据集输入校正模型,进行预测。
具体的,在本实施例中,所述深度信念网络模型包括两层加权受限玻尔兹曼机,且在训练深度信念网络模型过程中,所述第一层加权受限玻尔兹曼机的输入变量为预处理后的NIR光谱数据,输出变量为相应的柠檬酸发酵液含糖量;所述第二层加权受限玻尔兹曼机的输入变量为训练后的所述第一层加权受限玻尔兹曼机的隐藏层特征数据,输出变量为相应的柠檬酸发酵液含糖量;在本实施例中,每一个加权受限玻尔兹曼机在训练过程中,通过计算输入变量和输出变量的相关系数,并基于相关系数建立对应的加权目标函数,进而对在加权目标函数下的受限玻尔兹曼机进行训练,再通过梯度下降算法对整个网络模型进行参数微调;构造基于加权深度信念网络的预测模型。利用多个加权受限玻尔兹曼机堆栈成深度信念网络模型,能够逐步获得由低层次到高层次的深度输出相关特征,强化质量指标相关的特征,提供准确的预测值。
所述的对光谱数据进行预处理为Savitzky-Golay卷积平滑法,包括:
Figure BDA0002520766130000081
其中xk,smooth为波长k处经平滑后的平均值,H为归一化因子,
Figure BDA0002520766130000082
hi为平滑系数,每一测量值乘以平滑系数hi的目的是尽可能减少平滑对有用信息的影响。hi可基于最小二乘原理,用多项式拟合求得。
将训练样本输入数据xi=[xi1,xi2,...,xim]T,i=1,2,…,n作为第一层加权受限玻尔兹曼机的输入,记第一层加权受限玻尔兹曼机的隐藏层为
Figure BDA0002520766130000083
i=1,2,…,n,计算第一层各个输入变量x(j)和目标理化值y之间的相关系数
Figure BDA0002520766130000084
Figure BDA0002520766130000085
Figure BDA0002520766130000086
较大,说明该变量与质量变量之间存在较强关联性,从而在进行特征表示时,应使得特征能够较好地重构该变量维度的数据;反之亦然。为此,在本实施例中,根据所述相关系数构建变量加权目标函数:
Figure BDA0002520766130000087
Figure BDA0002520766130000088
可以得到加权受限玻尔兹曼机中的网络参数合集θ1={w1,b1},并计算得到第一层加权受限玻尔兹曼机的隐藏层
Figure BDA0002520766130000089
将第一层加权受限玻尔兹曼机的隐藏层
Figure BDA0002520766130000091
i=1,2,…,n作为第二层加权受限玻尔兹曼机的输入数据。记第二层加权受限玻尔兹曼机的隐藏层为
Figure BDA0002520766130000092
i=1,2,…,n,第二层加权受限玻尔兹曼机的参数记为θ1={w2,b2}。
第二层加权受限玻尔兹曼机的训练方式与第一层加权受限玻尔兹曼机的训练方式类似,将所述第一层加权受限玻尔兹曼机的隐藏层作为第二层加权受限玻尔兹曼机的输入,计算第二层加权受限玻尔兹曼机的输入变量和目标理化值之间的相关系数
Figure BDA0002520766130000093
构建变量加权目标函数:
Figure BDA0002520766130000094
得到所述第二层加权受限玻尔兹曼机的网络参数θ2={w2,b2},并计算得到所述第第二层加权受限玻尔兹曼机的隐含层特征数据
Figure BDA0002520766130000095
将第二层加权受限玻尔兹曼机预训练完成后,在最后一层设置一层BP网络,接收RBM的输出特征向量作为它的输入特征向量,对整个训练网络进行有监督地参数微调。
在用BP算法对整个网络进行参数微调之后,在最后层隐藏层上连接最终输出层,输出层数据由柠檬酸发酵液含糖量yi(i=1,2,…,n)构成,通过以下目标函数,微调整个加权深度信念网络模型的参数θ={w1,b1,w2,b2,w,b},直至满足收敛条件。
Figure BDA0002520766130000096
其中,n为最终输出层样本个数,yi为光谱数据对应目标理化值,
Figure BDA0002520766130000097
为模型最终输出层输出目标理化值。
以上对本发明提供的柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法做了详细的描述,还有以下几点需要说明:
基于NIR光谱的柠檬酸小麦淀粉乳总糖的在线实时检测方法。现有的方法主要采用人工取样、离线分析的方法得到。
需要建立柠檬酸小麦淀粉乳总糖的校正模型,基于深度信念网络的柠檬酸小麦淀粉乳总糖校正模型建立方法,通过深度学习的方法建立了光谱与总糖之间的非线性模型。
在基于深度信念网络的柠檬酸小麦淀粉乳总糖校正模型的建立过程中,提出一种基于加权深度信念网络的NIR光谱建模方法。将预处理后的NIR光谱数据作为加权深度信念网络的输入层,训练加权深度信念网络模型,对目标理化值进行预测。所述深度信念网络模型包括至少两个变量加权受限玻尔兹曼机,且在训练深度信念网络模型时,每相邻的两个变量加权受限玻尔兹曼机中,将排列在前的变量加权受限玻尔兹曼机的隐藏层特征数据作为排列在后的变量加权受限玻尔兹曼机的输入变量,对排列在后的变量加权受限玻尔兹曼机进行训练;利用反向误差传播算法对整个网络进行参数微调;在最后层加权受限玻尔兹曼机的隐藏层上连接最终输出回归层对总糖进行预测。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

1.一种柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法,其特征在于,包括:
步骤1对柠檬酸小麦淀粉乳进行扫描,获取训练样本集的NIR光谱数据;
步骤2对获取的NIR光谱数据进行预处理,得到若干个训练样本;
步骤3计算输出变量与各层受限玻尔兹曼机可视层变量之间的相关系数,构造变量加权重构目标函数,对每一层变量加权受限玻尔兹曼机进行预训练;并将上一层变量加权受限玻尔兹曼机的隐藏层数据作为下一层变量加权受限玻尔兹曼机的输入层数据,逐层对加权受限玻尔兹曼机进行预训练;
步骤4利用目标总糖通过梯度下降算法对整个网络模型进行参数微调;构造基于加权深度信念网络的校正模型;并将NIR光谱数据集输入校正模型,进行预测;
步骤5计算输出变量与各层受限玻尔兹曼机变量之间的Pearson相关系数,并根据此相关系数设计相应的加权特征学习目标函数;
步骤6逐层对加权受限玻尔兹曼机进行预训练;将预处理后的光谱数据作为输入,通过新的变量加权特征学习目标函数,对加权受限玻尔兹曼机进行训练,并将上一层加权受限玻尔兹曼机的隐藏层作为下一层的输入层;一层一层由上而下对所有加权受限玻尔兹曼机进行训练;
步骤7对所有受限玻尔兹曼机完成训练之后,基于最终输出层输出变量构建收敛目标函数,通过所述收敛目标函数对深度学习模型进行参数微调整,直至满足预设收敛条件。
2.如权利要求1所述的柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法,其特征在于,步骤1中,使用NIR光谱仪对柠檬酸小麦淀粉乳进行扫描。
3.如权利要求1所述的柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法,其特征在于,使用布鲁克MATRIX-F型傅里叶NIR光谱仪对柠檬酸小麦淀粉乳进行扫描。
4.如权利要求1所述的柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法,其特征在于,步骤2中,对获取的NIR光谱数据采用Savitzky-Golay卷积平滑法进行预处理;Savitzky-Golay卷积平滑又称多项式平滑,是通过多项式来对窗口之内的波谱点进行多项式最小二乘拟合,采用下式表示窗口移动多项式二乘最小二乘拟合法的通式:
Figure FDA0002807522450000021
其中,xk,smooth为波长k处经平滑后的平均值,H为归一化因子,
Figure FDA0002807522450000022
hi为平滑系数,每一测量值乘以平滑系数hi的目的是尽可能减少平滑对有用信息的影响;hi基于最小二乘原理,用多项式拟合求得。
5.如权利要求1所述的柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法,其特征在于,步骤7中,收敛目标函数为:
Figure FDA0002807522450000023
其中,n为最终输出层样本个数,yi为光谱数据对应目标理化值,
Figure FDA0002807522450000024
为模型最终输出层输出目标理化值。
6.如权利要求1所述的柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法,其特征在于,步骤5具体如下:
计算输出变量与各层受限玻尔兹曼机变量之间的Pearson相关系数,计算式如下:
Figure FDA0002807522450000025
其中,T为样品数,j为输入维度,
Figure FDA0002807522450000026
为第j个输入的均值,
Figure FDA0002807522450000027
为目标变量均值;
根据相关系数设计权重函数,计算式如下:
Figure FDA0002807522450000031
设计新的变量加权特征学习目标函数:
Figure FDA0002807522450000032
其中,θ表示加权受限玻尔兹曼机中的网络参数合集,P(v)表示训练RBM的似然函数。
7.如权利要求1所述的柠檬酸生产中的小麦淀粉乳总糖的NIR检测方法,其特征在于,步骤4中,所述模型包括两层加权受限玻尔兹曼机,且在训练深度信念网络模型过程中,第一层加权受限玻尔兹曼机的输入变量为预处理后的NIR光谱数据,输出变量为相应的柠檬酸发酵液含糖量;第二层加权受限玻尔兹曼机的输入变量为训练后的所述第一层加权受限玻尔兹曼机的隐藏层特征数据,输出变量为相应的柠檬酸发酵液含糖量;每一个加权受限玻尔兹曼机在训练过程中,通过计算输入变量和输出变量的相关系数,并基于相关系数建立对应的加权目标函数,进而对在加权目标函数下的受限玻尔兹曼机进行训练,再通过梯度下降算法对整个网络模型进行参数微调;构造基于加权深度信念网络的预测模型;利用多个加权受限玻尔兹曼机堆栈成深度信念网络模型,能够逐步获得由低层次到高层次的深度输出相关特征,强化质量指标相关的特征,提供准确的预测值。
8.一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现权利要求1到7任一项所述方法的步骤。
9.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1到7任一项所述方法的步骤。
10.一种处理器,其特征在于,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1到7任一项所述的方法。
CN202010490176.5A 2020-06-02 2020-06-02 柠檬酸生产中的小麦淀粉乳总糖的nir检测方法 Active CN111537468B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010490176.5A CN111537468B (zh) 2020-06-02 2020-06-02 柠檬酸生产中的小麦淀粉乳总糖的nir检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010490176.5A CN111537468B (zh) 2020-06-02 2020-06-02 柠檬酸生产中的小麦淀粉乳总糖的nir检测方法

Publications (2)

Publication Number Publication Date
CN111537468A CN111537468A (zh) 2020-08-14
CN111537468B true CN111537468B (zh) 2021-03-30

Family

ID=71980741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010490176.5A Active CN111537468B (zh) 2020-06-02 2020-06-02 柠檬酸生产中的小麦淀粉乳总糖的nir检测方法

Country Status (1)

Country Link
CN (1) CN111537468B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834920A (zh) * 2015-05-25 2015-08-12 成都通甲优博科技有限责任公司 一种无人机多光谱图像的智能林火识别方法及装置
CN107957410A (zh) * 2016-10-17 2018-04-24 南京农业大学 一种基于荧光光谱的稻种发芽率无损检测方法
CN107423670A (zh) * 2017-04-20 2017-12-01 上海交通大学 基于深度置信网络的modis雾监测方法
CN107219188B (zh) * 2017-06-02 2019-09-20 中国计量大学 一种基于改进dbn的近红外光谱分析纺织品棉含量的方法
CN108152235B (zh) * 2018-03-21 2020-09-22 中南大学 一种联合土壤室内外光谱的重金属含量反演方法

Also Published As

Publication number Publication date
CN111537468A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
CN109493287B (zh) 一种基于深度学习的定量光谱数据分析处理方法
CN111768000A (zh) 在线自适应微调深度学习的工业过程数据建模方法
CN112669915A (zh) 一种基于神经网络与近红外光谱的梨无损检测方法
CN111855608A (zh) 基于融合特征波长选择算法的苹果酸度近红外无损检测方法
CN108875118A (zh) 一种高炉铁水硅含量预测模型准确度评价方法和设备
US20230243744A1 (en) Method and system for automatically detecting and reconstructing spectrum peaks in near infrared spectrum analysis of tea
CN112001115A (zh) 一种半监督动态软测量网络的软测量建模方法
CN111537468B (zh) 柠檬酸生产中的小麦淀粉乳总糖的nir检测方法
Reis et al. Prediction of profiles in the process industries
CN113177578A (zh) 一种基于lstm的农产品品质分类方法
CN117455320A (zh) 基于qgmvpn模型的多釜聚合过程熔体质量指标在线预测方法
CN110879873B (zh) 一种基于哈密顿蒙特卡洛采样的vine copula相关性描述的软测量方法及系统
CN116662925A (zh) 一种基于加权稀疏神经网络工业过程软测量方法
CN114330089B (zh) 一种稀土元素含量变化预测方法及系统
Bi et al. Apple internal quality fusion prediction by multi-pattern recognition technology and evidence theory
Zhao et al. Based on vis-NIR combined with ANN for on-line detection of bacterial concentration during kombucha fermentation
CN111914214B (zh) 一种基于缩减kpls模型的pta生产过程软测量方法
Huang et al. Neural network for classification of Chinese zither panel wood via near-infrared spectroscop
CN113686810A (zh) 一种基于卷积神经网络的近红外光谱波长选择方法
CN113390821B (zh) 一种智能制造炼蜜过程质量的实时监测装备与方法
CN118366035B (zh) 一种纺织面料高光谱成分感知方法、装置
Ren et al. An improved approach of cars for Longjing tea detection based on near infrared spectra
Li et al. Prediction Method of Biological Fermentation Data Based on Deep Neural Network
Zhou et al. Wine Quality Detection Based on Improved Stacking Ensemble Learning
Zhao et al. Quantitative analysis of reducing sugars in solid‐state fermentation based on NIR combined with GA‐AdaBoost

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant