CN111536006B - 一种降低霍尔推力器热负荷的方法 - Google Patents

一种降低霍尔推力器热负荷的方法 Download PDF

Info

Publication number
CN111536006B
CN111536006B CN202010385432.4A CN202010385432A CN111536006B CN 111536006 B CN111536006 B CN 111536006B CN 202010385432 A CN202010385432 A CN 202010385432A CN 111536006 B CN111536006 B CN 111536006B
Authority
CN
China
Prior art keywords
energy loss
energy
temperature
wall surface
hall thruster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010385432.4A
Other languages
English (en)
Other versions
CN111536006A (zh
Inventor
李保平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donggang Zhike Industrial Park Co ltd
Original Assignee
Hangzhou Qicheng Science & Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Qicheng Science & Technology Co ltd filed Critical Hangzhou Qicheng Science & Technology Co ltd
Priority to CN202010385432.4A priority Critical patent/CN111536006B/zh
Publication of CN111536006A publication Critical patent/CN111536006A/zh
Application granted granted Critical
Publication of CN111536006B publication Critical patent/CN111536006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0031Thermal management, heating or cooling parts of the thruster
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma Technology (AREA)

Abstract

本发明属于霍尔推进器技术领域,尤其涉及一种降低霍尔推力器热负荷的方法。它主要包括有如下步骤:建立热平衡模型;求解霍尔推力器的放电室能量损耗;确定热传导的边界条件;确定散热片内径大小;基于温度对磁场的影响,对磁场的性能进行评估。采用本发明的磁屏热优化方法,可以在磁场强度达到一定值的基础上,降低霍尔推力器的热负荷、优化磁屏温度分布与热流走向,在相关研究中为霍尔推力器的热磁相关性分析奠定了一定理论与实践基础。

Description

一种降低霍尔推力器热负荷的方法
所属技术领域
本发明属于霍尔推进器技术领域,尤其涉及一种降低霍尔推力器热负荷的方法。
背景技术
本申请为分案申请,母案申请号为:CN201810585807.4。
霍尔推力器是一种先进的电推进装置,其被广泛应用于卫星位置保持和姿态控制领域,并以其结构简单、高比冲、高效率等优点成为未来空间飞行器的首选推进装置。霍尔推力器通过在推力器中的推进剂被电场加速,并将电子约束在磁场中,利用电子电离推进剂,加速离子产生推力,并中和羽流中的离子。
然而,对于高功率霍尔推力器来说,若磁屏具有较高的热负荷,磁畴的排列也将受到不良影响,甚至使铁磁材料变为顺磁材料,从而大大降低推力器的效率。现有技术中并未给出相关的热优化方法或策略,因此,如何降低霍尔推力器的热负荷、优化磁屏温度分布与热流走向便成为本发明的主要解决的问题。
发明内容
为解决现有技术中的上述缺陷,本发明公开一种降低霍尔推力器热负荷的方法,它是采用以下技术方案来实现的。
一种降低霍尔推力器热负荷的方法,其特征在于:包括有如下步骤:
1)建立热平衡模型;霍尔推力器的能量损耗主要包括有放电室能量损耗、阴极能量损耗和励磁线圈能量损耗,其中,所述放电室能量损耗主要来源于离子能、阳极能、等离子体对壁面能量沉积、气体电离能、辐射能损耗等;
2)根据上述热平衡模型,求解霍尔推力器的放电室能量损耗,以及各项能量损耗占总能量损耗的占比,确定为放电室壁面能量损耗占比最高;
3)采用有限元分析方法建立放电室壁面热传导模型,结合傅里叶导热定律和能量守恒定律,对所述热传导模型中的各离散节点建立热流量平衡方程,同时确定上述热传导的边界条件,并通过实验验证基于该边界条件所得到的上述热传导的误差范围;若上述误差范围在所允许的误差范围阈值区间内,则判定认为仿真模型具有描述推力器温度分布的能力,若否,则重新确定边界条件,直到上述误差范围在所允许的误差范围阈值区间内;
4)分析散热片的内径大小对导磁组件温度分布的影响规律,确定散热片内径大小,但若考虑增强温度摊平的幅度和温降程度,在此基础上可适当增加散热片的内径尺寸,其中,R0为散热片与回转中心轴距离的最大值;
5)采用磁屏材料为纯铁,基于温度对磁场的影响,对磁场的性能进行评估;分别选取一定温度区间内各离散温度点值测量磁屏材料在同一位置处的磁场强度;其中,温度设置为200K左右对磁屏材料的磁场增强具有最大贡献。
作为本技术的进一步改进,所述步骤1)中,离子能量损耗Pb=IbVb,Ib为束电流,Vb一般为放电电压的90%以上;
其中,等离子体对壁面的能量沉积Piw=IiwΔViw,其中,壁面入射离子电流
Figure BDA0002483634310000021
ni为离子密度,e为电子数,vi为离子玻姆速度,A为放电室壁面有效面积,k为玻尔兹曼常数,Te为电子温度,M为电子质量;
其中,阳极能损耗为Pa=IaΔVa,Ia为阳极入射电流,ΔVa为入射电子在阳极的平均能量损耗;
其中,气体电离能为Pion=(Ib+Iiw)U+,U+表示离子平均电离电压;而辐射能损耗Prad为一常数。
作为本技术的进一步改进,所述步骤3)中的误差范围阈值区间设置为(9%,9.5%);
作为本技术的进一步改进,所述步骤4)中优选散热片内径大小为0.45R0-0.55R0
作为本技术的进一步改进,所述步骤5)中的一定温度区间内的各离散温度点值具体为100K、200K、300K、…、800K的温度。
采用本发明的磁屏热优化方法,可以在磁场强度达到一定值的基础上,降低霍尔推力器的热负荷、优化磁屏温度分布与热流走向,在相关研究中为霍尔推力器的热磁相关性分析奠定了理论与实践基础。
附图说明
图1是霍尔推进器能量总损耗分布示意图。
图2是放电室能量损耗各项损耗分布图。
图3是计算的变界条件。
图4是放电室内外壁的热流密度。
图5是阳极壁面的热流密度。
具体实施方式
如图1、2所示,霍尔推力器的能量损耗主要包括有放电室能量损耗、阴极能量损耗和励磁线圈能量损耗,其中,所述放电室能量损耗又主要来源于离子能、阳极能、等离子体对壁面能量沉积、气体电离能、辐射能损耗,这些能量损耗占整个放电室能量损耗的95%,因此,分析上述能量损耗对于分析霍尔推力器的能量损耗占比具有重大意义,也可为后续的热平衡方程的建立及变界条件的获取提供了基础。
如图3所示,离子对放电室壁面的热流密度和电子对阳极壁面的热流密度是通过PIC/MCC计算结果获取,关于PIC/MCC算法、壁面壳层模型和阳极电子沉积模型均可参考本领域内的关于霍尔推力器的粒子模拟算法。图4与图5分别为放电室内外壁的热流密度和阳极壁面的热流密度,其均取决于内/外壁面或阳极壁面的相关方向上的纵长。
本申请的具体实施例如下:
一种降低霍尔推力器热负荷的方法,其特征在于:包括有如下步骤:
1)建立热平衡模型;霍尔推力器的能量损耗主要包括有放电室能量损耗、阴极能量损耗和励磁线圈能量损耗,其中,所述放电室能量损耗主要来源于离子能、阳极能、等离子体对壁面能量沉积、气体电离能、辐射能损耗等;
2)根据上述热平衡模型,求解霍尔推力器的放电室能量损耗,以及各项能量损耗占总能量损耗的占比,确定为放电室壁面能量损耗占比最高;
3)采用有限元分析方法建立放电室壁面热传导模型,结合傅里叶导热定律和能量守恒定律,对所述热传导模型中的各离散节点建立热流量平衡方程,同时确定上述热传导的边界条件,并通过实验验证基于该边界条件所得到的上述热传导的误差范围;若上述误差范围在所允许的误差范围阈值区间内,则判定认为仿真模型具有描述推力器温度分布的能力,若否,则重新确定边界条件,直到上述误差范围在所允许的误差范围阈值区间内;
4)分析散热片的内径大小对导磁组件温度分布的影响规律,确定散热片内径大小,但若考虑增强温度摊平的幅度和温降程度,在此基础上可适当增加散热片的内径尺寸,其中,R0为散热片与回转中心轴距离的最大值;
5)采用磁屏材料为纯铁,基于温度对磁场的影响,对磁场的性能进行评估;分别选取一定温度区间内各离散温度点值测量磁屏材料在同一位置处的磁场强度;其中,温度设置为200K左右对磁屏材料的磁场增强具有最大贡献。
作为本技术的进一步改进,所述步骤1)中,离子能量损耗Pb=IbVb,Ib为束电流,Vb一般为放电电压的90%以上;
其中,等离子体对壁面的能量沉积Piw=IiwΔViw,其中,壁面入射离子电流
Figure BDA0002483634310000041
ni为离子密度,e为电子数,vi为离子玻姆速度,A为放电室壁面有效面积,k为玻尔兹曼常数,Te为电子温度,M为电子质量;
其中,阳极能损耗为Pa=IaΔVa,Ia为阳极入射电流,ΔVa为入射电子在阳极的平均能量损耗;
其中,气体电离能为Pion=(Ib+Iiw)U+,U+表示离子平均电离电压;而辐射能损耗Prad为一常数。
作为本技术的进一步改进,所述步骤3)中的误差范围阈值区间设置为(9%,9.5%);
作为本技术的进一步改进,所述步骤4)中优选散热片内径大小为0.45R0-0.55R0
作为本技术的进一步改进,所述步骤5)中的一定温度区间内的各离散温度点值具体为100K、200K、300K、…、800K的温度。
以上所述实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (3)

1.一种降低霍尔推力器热负荷的方法,其特征在于:包括有如下步骤:
1)建立热平衡模型;霍尔推力器的能量损耗主要包括有放电室能量损耗、阴极能量损耗和励磁线圈能量损耗,其中,所述放电室能量损耗主要来源于离子能、阳极能、等离子体对壁面能量沉积、气体电离能、辐射能损耗;
2)根据上述热平衡模型,求解霍尔推力器的放电室能量损耗,以及各项能量损耗占总能量损耗的占比,确定为放电室壁面能量损耗占比最高;
3)采用有限元分析方法建立放电室壁面热传导模型,结合傅里叶导热定律和能量守恒定律,对所述热传导模型中的各离散节点建立热流量平衡方程,其中,离子对放电室壁面的热流密度随着内/外壁面长度的增加而逐渐增加,但当所述热流密度增加至最高值时,所述热流密度则随着内/外壁面的长度的继续增加而逐渐降低;同时确定上述热传导的边界条件,并通过实验验证基于该边界条件所得到的上述热传导的误差范围;若上述误差范围在所允许的误差范围阈值区间内,则判定认为仿真模型具有描述推力器温度分布的能力,若否,重新确定边界条件,直到上述误差范围在所允许的误差范围阈值区间内,所述误差范围阈值区间为(9%,9.5%);
4)分析散热片的内径大小对导磁组件温度分布的影响规律,确定散热片内径大小,但若考虑增强温度摊平的幅度和温降程度,在此基础上可适当增加散热片的内径尺寸,最终得到所述散热片内径大小具体为0.45R0-0.55R0,其中,R0为散热片与回转中心轴距离的最大值;
5)采用磁屏材料为纯铁,基于温度对磁场的影响,对磁场的性能进行评估;分别选取一定温度区间内各离散温度点值测量磁屏材料在同一位置处的磁场强度;其中,温度设置为200K左右对磁屏材料的磁场增强具有最大贡献。
2.根据权利要求1所述的一种降低霍尔推力器热负荷的方法,其特征在于:所述步骤1)中,离子能量损耗Pb=IbVb,Ib为束电流,Vb一般为放电电压的90%以上;
其中,等离子体对壁面的能量沉积Piw=IiwΔViw,其中,壁面入射离子电流
Figure DEST_PATH_IMAGE002
ni为离子密度,e为电子数,vi为离子玻姆速度,A为放 电室壁面有 效面积,k为玻尔兹曼常数,Te为电子温度,M为电子质量;
其中,阳极能损耗为Pa=IaΔVa,Ia为阳极入射电流,ΔVa为入射电子在阳极的平均能量损耗,ΔViw为入射离子平均能量损耗;
其中,气体电离能为Pion=(Ib+Iiw)U+,U+表示离子平均电离电压。
3.根据权利要求1所述的一种降低霍尔推力器热负荷的方法,其特征在于:所述步骤5)中的一定温度区间内的各离散温度点值具体为100K、200K、300K、或800K的温度。
CN202010385432.4A 2018-06-08 2018-06-08 一种降低霍尔推力器热负荷的方法 Active CN111536006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010385432.4A CN111536006B (zh) 2018-06-08 2018-06-08 一种降低霍尔推力器热负荷的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010385432.4A CN111536006B (zh) 2018-06-08 2018-06-08 一种降低霍尔推力器热负荷的方法
CN201810585807.4A CN108799033B (zh) 2018-06-08 2018-06-08 一种降低霍尔推力器热负荷的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201810585807.4A Division CN108799033B (zh) 2018-06-08 2018-06-08 一种降低霍尔推力器热负荷的方法

Publications (2)

Publication Number Publication Date
CN111536006A CN111536006A (zh) 2020-08-14
CN111536006B true CN111536006B (zh) 2021-02-12

Family

ID=64087820

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201810585807.4A Active CN108799033B (zh) 2018-06-08 2018-06-08 一种降低霍尔推力器热负荷的方法
CN202010385432.4A Active CN111536006B (zh) 2018-06-08 2018-06-08 一种降低霍尔推力器热负荷的方法
CN202010385673.9A Active CN111536007B (zh) 2018-06-08 2018-06-08 一种降低霍尔推力器热负荷的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201810585807.4A Active CN108799033B (zh) 2018-06-08 2018-06-08 一种降低霍尔推力器热负荷的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010385673.9A Active CN111536007B (zh) 2018-06-08 2018-06-08 一种降低霍尔推力器热负荷的方法

Country Status (1)

Country Link
CN (3) CN108799033B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116907716B (zh) * 2023-09-13 2024-01-26 国科大杭州高等研究院 基于热噪声抑制扭摆式微推力测量装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010088741A (ko) * 2001-08-28 2001-09-28 윤정웅 유기 이엘 표시장치
CN2930182Y (zh) * 2006-07-05 2007-08-01 苏朝明 电热水袋
CN105889006A (zh) * 2016-05-03 2016-08-24 哈尔滨工业大学 一种霍尔推力器陶瓷散热支架

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2724165A1 (en) * 2010-12-02 2012-06-02 Alternative Heating Systems Inc. Electrical safety grounding system
CN104632565B (zh) * 2014-12-22 2017-10-13 兰州空间技术物理研究所 一种霍尔推力器磁路结构
US9980361B2 (en) * 2016-06-16 2018-05-22 The United States Of America, As Represented By The Secretary Of The Navy Thermally isolated thermionic hollow cathodes
CN208441979U (zh) * 2018-06-19 2019-01-29 河南理工大学 一种用于等离子推进装置的电磁加速结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010088741A (ko) * 2001-08-28 2001-09-28 윤정웅 유기 이엘 표시장치
CN2930182Y (zh) * 2006-07-05 2007-08-01 苏朝明 电热水袋
CN105889006A (zh) * 2016-05-03 2016-08-24 哈尔滨工业大学 一种霍尔推力器陶瓷散热支架

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
龙建飞等.霍尔推力器热模型研究.《强激光与粒子束》.2014,第26卷(第12期), *

Also Published As

Publication number Publication date
CN108799033A (zh) 2018-11-13
CN108799033B (zh) 2020-07-24
CN111536007A (zh) 2020-08-14
CN111536007B (zh) 2021-02-12
CN111536006A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
Hofer et al. High-specific impulse Hall thrusters, part 2: efficiency analysis
US20150128560A1 (en) Magnetically shielded miniature hall thruster
Hofer et al. Characterizing vacuum facility backpressure effects on the performance of a Hall thruster
US6208080B1 (en) Magnetic flux shaping in ion accelerators with closed electron drift
JP4816004B2 (ja) ホールスラスタ及び宇宙航行体
US7621115B2 (en) Hall-type electric propulsion
Ding et al. Effect of oblique channel on discharge characteristics of 200-W Hall thruster
Inutake et al. Characteristics of a supersonic plasma flow in a magnetic nozzle
Kim et al. Magnetic field configurations on thruster performance in accordance with ion beam characteristics in cylindrical Hall thruster plasmas
Ding et al. Performance characteristics of no-wall-losses Hall thruster
Simmonds et al. Ion acceleration in a wall-less Hall thruster
Dannenmayer et al. Measurement of plasma parameters in the far-field plume of a Hall effect thruster
Ding et al. Effect of matching between the magnetic field and channel length on the performance of low sputtering Hall thrusters
CN111536006B (zh) 一种降低霍尔推力器热负荷的方法
Borah et al. Effect of E× B electron drift and plasma discharge in dc magnetron sputtering plasma
Fan et al. Effects of unsymmetrical magnetic field on discharge characteristics of Hall thruster with large height-radius ratio
Xu et al. Plume characterization of an ion-focusing Hall thruster
EP1082540B1 (en) Magnetic flux shaping in ion accelerators with closed electron drift
Gondol et al. Development and characterization of a miniature hall-effect thruster using permanent magnets
CN114753981A (zh) 一种基于环形轰击阴极的微推进器
Rawlin et al. Status of Ion Engine Development for High Power, High Specific Impulse Missions
Diamant et al. Segmented electrode Hall thruster
Mikellides et al. Numerical simulations of a 20-kW class Hall thruster using the magnetic-field-aligned-mesh code Hall2De
Mazouffre et al. Optimization of magnetic field topology and anode geometry for a wall-less Hall thruster
Komurasaki et al. Channel length and thruster performance of Hall thrusters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221116

Address after: No. 99, Gangcheng Road, Dongying Port Economic Development Zone, Dongying City, Shandong Province 257237

Patentee after: Donggang Zhike Industrial Park Co.,Ltd.

Address before: 310012 Room 401, 2 unit 155, Ma Shi street, Shangcheng District, Hangzhou, Zhejiang.

Patentee before: HANGZHOU QICHENG SCIENCE & TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right