CN111523224B - 基于粒子群优化算法的无人机应急抢险下的充电管理方法 - Google Patents

基于粒子群优化算法的无人机应急抢险下的充电管理方法 Download PDF

Info

Publication number
CN111523224B
CN111523224B CN202010316880.9A CN202010316880A CN111523224B CN 111523224 B CN111523224 B CN 111523224B CN 202010316880 A CN202010316880 A CN 202010316880A CN 111523224 B CN111523224 B CN 111523224B
Authority
CN
China
Prior art keywords
unmanned aerial
aerial vehicle
battery
charging
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010316880.9A
Other languages
English (en)
Other versions
CN111523224A (zh
Inventor
林火煅
沈滨
孙嫱
张志林
洪景阳
陈杰
薛骅淳
汤奕琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Fujian Electric Power Co Ltd
Zhangzhou Power Supply Co of State Grid Fujian Electric Power Co Ltd
Original Assignee
State Grid Fujian Electric Power Co Ltd
Zhangzhou Power Supply Co of State Grid Fujian Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Fujian Electric Power Co Ltd, Zhangzhou Power Supply Co of State Grid Fujian Electric Power Co Ltd filed Critical State Grid Fujian Electric Power Co Ltd
Priority to CN202010316880.9A priority Critical patent/CN111523224B/zh
Publication of CN111523224A publication Critical patent/CN111523224A/zh
Application granted granted Critical
Publication of CN111523224B publication Critical patent/CN111523224B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Development Economics (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Computing Systems (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种基于粒子群优化算法的无人机应急抢险下的充电管理方法,包括:计算得巡检无人机电池剩余续航时间T0i;计算正在充电的备用更换电池预计充满时间Tcj;基于粒子群优化算法在满足约束条件式min(T0i)>min(Tcj)下,求目标函数
Figure DDA0002459732820000011
的最小值,得出备用更换电池的充电电流的最优解;它具有如下优点:保证应急抢险下巡检无人机电池供应的同时,实现优化充电方式实现对无人机电池的损害降到最低。

Description

基于粒子群优化算法的无人机应急抢险下的充电管理方法
技术领域
本发明涉及一种基于粒子群优化算法的无人机应急抢险下的充电管理方法。
背景技术
随着无人机技术和人工智能技术的发展,无人机巡检获得相关电力部门的重视,也是近几年的研究热点。相比传统的人工巡查方式,无人机巡检具有迅速快捷、不受地形环境限制等优点。但无人机巡检续航能力较差,一般小型的无人机电池续航能力为15-30min。在自然灾害(如台风、地震等)发生后,又急需无人机进行高强度、高频次巡检。但电网工作人员在外出巡检时,只能携带一定数量的电池,且无人机电池日常不能满电保存,现有一些车载快速充电装置可实现对无人机电池快速充电,但通常采用快速充电模式对无人机电池充电,不仅会造成电池容量的迅速衰退,损害电池使用寿命,严重还可能使电池报废。因此,如何在应急抢险现场,根据巡检无人机电池使用情况与备用电池充电电流设置,达到无人机电池使用和快速充电损害最小的动态配合,成为了无人机电池应急充电要考虑的关键问题之一。
正如上面所提到的,应急抢险下无人机电池使用和快速充电损害最小的动态配合是在设计灾后巡检无人机应急充电管理系统需要考虑的关键问题之一。在灾后巡检无人机应急充电管理系统的设计中,大多通过牺牲电池使用寿命来实现快速充电,从而满足灾后高强度、高频次的无人机巡检的需要。而在灾备现场,巡检无人机电池的使用是动态变化的,备用电池电量和数量也是动态变化的,若对所有的无人机电池统一采用最高速率充电,将会对电池的损害达到最大化,因此在满足应急抢险下巡检无人机电池供应的同时,实现由快速充电对无人机电池的损害降到最低,这是目前需要解决的一大难点。
发明内容
本发明提供了一种基于粒子群优化算法的无人机应急抢险下的充电管理方法,其克服了背景技术中所述的现有技术的问题。
本发明解决其技术问题所采用的技术方案是:
基于粒子群优化算法的无人机应急抢险下的充电管理方法,
通过式(2)计算得巡检无人机电池剩余续航时间T0i
Figure BDA0002459732800000021
式中:Q0i(t)为巡检无人机当前电量,单位为Ah;I0i(t)为电池实时放电电流,单位为A;T0i为巡检无人机电池剩余飞行时间,单位为min;δ为确保无人机巡检的安全性所控制的无人机最低电池剩余容量,SOC为电池当前荷电状态且通过式(2)计算:
Figure BDA0002459732800000022
式中:Qn(t)为电池充满电后,在一定温度下以恒定电流In放电所能放出的有效电量,Δtn为相应恒流的采集周期;
通过式(3)计算正在充电的备用更换电池预计充满时间Tcj
Figure BDA0002459732800000023
式中:Qj为备用更换电池总容量,单位为mAh;Qcj(t)为可直接采集的正在充电的备用更换电池当前电量;K为比例系数;mj为备用更换电池的充电电流,单位为mA;Tc为预计充满时间,单位为min;
建立目标函数式(5),基于粒子群优化算法在满足约束条件式(4)下,求目标函数的最小值,得出备用更换电池的充电电流的最优解;
min(T0i)>min(Tcj) 1≤i≤N,1≤j≤M-N (4)
Figure BDA0002459732800000031
式中:M为无人机电池总数;N为无人机的总数;
一实施例之中:该δ的取值为5%。
一实施例之中:K的取值范围如表1所示:
表1:
取值条件 K的取值
m<sub>j</sub>&lt;Q<sub>n</sub>(t)×5% 1.6
Q<sub>j</sub>×5%≤m<sub>j</sub>&lt;Q<sub>j</sub>×10% 1.5
Q<sub>j</sub>×10%≤充电电流&lt;Q<sub>j</sub>×15% 1.3
Q<sub>j</sub>×15%≤充电电流&lt;Q<sub>j</sub>×20% 1.2
Q<sub>j</sub>×20%≤m<sub>j</sub> 1.1
本技术方案与背景技术相比,它具有如下优点:
本发明克服现有应急充电电源管理系统的局限性,基于优化求解的思想,建立了应急抢险下无人机充电电流最优化数学模型,通过巡检无人机远程回传的电量及放电电流,结合抢险所带无人机数量、电池数量、应急充电装置数量及其获取的当前充电电池电量,运用典型的进化算法——粒子群算法对目标函数进行寻优,得到最优的电池充电电流,从而在保证应急抢险下巡检无人机电池供应的同时,实现优化充电方式实现对无人机电池的损害降到最低。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1为基于粒子群优化算法的无人机应急抢险下的充电管理系统示意图。
具体实施方式
请查阅图1,基于粒子群优化算法的无人机应急抢险下的充电管理方法,
通过式(2)计算得巡检无人机电池剩余续航时间T0i
Figure BDA0002459732800000041
式中:Q0i(t)为巡检无人机当前电量,单位为Ah;I0i(t)为电池实时放电电流,单位为A;T0i为巡检无人机电池剩余飞行时间,单位为min;δ为确保无人机巡检的安全性所控制的无人机最低电池剩余容量,SOC为电池当前荷电状态且通过式(2)计算:
Figure BDA0002459732800000042
式中:Qn(t)为电池充满电后,在一定温度下以恒定电流In放电所能放出的有效电量,Δtn为相应恒流的采集周期;
通过式(3)计算正在充电的备用更换电池预计充满时间Tcj
Figure BDA0002459732800000043
式中:Qj为备用更换电池总容量,单位为mAh;Qcj(t)为可直接采集的正在充电的备用更换电池当前电量;K为比例系数;mj为备用更换电池的充电电流,单位为mA;Tc为预计充满时间,单位为min;
建立目标函数式(5),基于粒子群优化算法在满足约束条件式(4)下,求目标函数的最小值,得出备用更换电池的充电电流的最优解;
min(T0i)>min(Tcj) 1≤i≤N,1≤j≤M-N (4)
Figure BDA0002459732800000051
式中:M为无人机电池总数;N为无人机的总数;
本实施例中,该δ的取值为5%。
优选地,该K的取值范围如表1所示:
表1:
取值条件 K的取值
m<sub>j</sub>&lt;Q<sub>n</sub>(t)×5% 1.6
Q<sub>j</sub>×5%≤m<sub>j</sub>&lt;Q<sub>j</sub>×10% 1.5
Q<sub>j</sub>×10%≤充电电流&lt;Q<sub>j</sub>×15% 1.3
Q<sub>j</sub>×15%≤充电电流&lt;Q<sub>j</sub>×20% 1.2
Q<sub>j</sub>×20%≤m<sub>j</sub> 1.1
基于上述的方法,本发明实施的粒子群的无人机应急抢险下的充电优化管理技术的具体步骤为:
步骤,1:应急抢险出发时,将所携带的无人机数N、无人机电池数M及其对应的备用更换电池总容量Qj输入智能充电模块中。
步骤2:应急巡检时,正在巡检的无人机将实时电量Q0i(t)和当前放电电流I0i(t)远程回传至智能充电模块,同时智能充电模块采集备用更换电池的当前实际电量Qcj(t)和当前充电电流mj,其中1≤i≤N,1≤j≤M-N;
步骤3:利用SOC估计方法计算公式(2)正在巡检的各无人机剩余续航时间T0i,同时利用公式(3)计算正在充电的备用更换电池所需充满剩余时间Tcj
步骤4:运用粒子群算法对目标函数
Figure BDA0002459732800000061
进行优化,寻得最小值;所述粒子群优化算法为已知的现有算法;包括:
步骤41,初始化,初始设置种群大小,随机初始化每个粒子的初始位置x(m1,m2…mM-N)和初始速度v(m1,m2…mM-N);
步骤42,计算目标函数
Figure BDA0002459732800000062
得到全局最小值;
步骤43,判断是否满足结束条件;若否执行步骤43,若是,则将当前的位置x作为得到的最优解;
步骤43,更新粒子的位置x和速度v,并返回步骤42;
步骤5:输出充电电流最优解mj
以携带4架无人机、8块无人机电池(其中4块备用替换电池)为例,根据正在巡检的无人机远程回传的当前电量Q0i(t)和当前放电电流I0i(t),其中1≤i≤4,利用SOC估算方法计算得巡检无人机电池剩余续航时间T0i。根据智能充电模块采集的备用替换电池的当前电量Qcj(t)和充电电流mj,其中1≤j≤4,进而估算充电完成时间Tcj。从而将应急抢险下无人机电池使用和快速充电损害最小的动态配合问题转化为了在满足约束条件式(4)下,求目标函数y(式(5))最小值的数学优化模型。
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (3)

1.基于粒子群优化算法的无人机应急抢险下的充电管理方法,其特征在于:
通过式(1)计算得巡检无人机电池剩余续航时间T0i
Figure FDA0003621508930000011
式中:Q0i(t)为巡检无人机当前电量,单位为Ah;I0(t)为电池实时放电电流,单位为A;T0i为巡检无人机电池剩余飞行时间,单位为min;δ为确保无人机巡检的安全性所控制的无人机最低电池剩余容量,SOC为电池当前荷电状态且通过式(2)计算:
Figure FDA0003621508930000012
式中:Qn(t)为电池充满电后,以恒定电流In放电所能放出的有效电量,Δtn为相应恒流的采集周期;
通过式(3)计算正在充电的备用更换电池预计充满时间Tcj
Figure FDA0003621508930000013
式中:Qj为备用更换电池总容量,单位为mAh;Qcj(t)为可直接采集的正在充电的备用更换电池当前电量;k为比例系数;mj为备用更换电池的充电电流,单位为mA;Tcj为预计充满时间,单位为min;
建立目标函数式(5),基于粒子群优化算法在满足约束条件式(4)下,求目标函数的最小值,得出备用更换电池的充电电流的最优解;
min(T0i)>min(Tcj) 1≤i≤N,1≤j≤M-N (4)
Figure FDA0003621508930000014
式中:M为无人机电池总数;N为无人机的总数,i为无人机的编号,j为备用更换电池的编号。
2.根据权利要求1所述的基于粒子群优化算法的无人机应急抢险下的充电管理方法,其特征在于:该δ的取值为5%。
3.根据权利要求1所述的基于粒子群优化算法的无人机应急抢险下的充电管理方法,其特征在于:
表1:
取值条件 k的取值 m<sub>j</sub>&lt;Q<sub>n</sub>(t)×5% 1.6 Q<sub>j</sub>×5%≤m<sub>j</sub>&lt;Q<sub>j</sub>×10% 1.5 Q<sub>j</sub>×10%≤充电电流&lt;Q<sub>j</sub>×15% 1.3 Q<sub>j</sub>×15%≤充电电流&lt;Q<sub>j</sub>×20% 1.2 Q<sub>j</sub>×20%≤m<sub>j</sub> 1.1
k的取值范围如表1所示。
CN202010316880.9A 2020-04-21 2020-04-21 基于粒子群优化算法的无人机应急抢险下的充电管理方法 Active CN111523224B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010316880.9A CN111523224B (zh) 2020-04-21 2020-04-21 基于粒子群优化算法的无人机应急抢险下的充电管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010316880.9A CN111523224B (zh) 2020-04-21 2020-04-21 基于粒子群优化算法的无人机应急抢险下的充电管理方法

Publications (2)

Publication Number Publication Date
CN111523224A CN111523224A (zh) 2020-08-11
CN111523224B true CN111523224B (zh) 2022-08-16

Family

ID=71910927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010316880.9A Active CN111523224B (zh) 2020-04-21 2020-04-21 基于粒子群优化算法的无人机应急抢险下的充电管理方法

Country Status (1)

Country Link
CN (1) CN111523224B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107139762A (zh) * 2017-06-05 2017-09-08 吉林大学 一种电动汽车优化充电控制方法及其系统
US10405810B1 (en) * 2015-05-22 2019-09-10 Cerner Innovation, Inc. Noninvasive tool for assessing hydration status
CN110380481A (zh) * 2019-07-25 2019-10-25 中国电子科技集团公司第四十八研究所 一种无人机电池充电方法、装置、介质及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405810B1 (en) * 2015-05-22 2019-09-10 Cerner Innovation, Inc. Noninvasive tool for assessing hydration status
CN107139762A (zh) * 2017-06-05 2017-09-08 吉林大学 一种电动汽车优化充电控制方法及其系统
CN110380481A (zh) * 2019-07-25 2019-10-25 中国电子科技集团公司第四十八研究所 一种无人机电池充电方法、装置、介质及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Reliability optimization of smart grid based on optimal allocation of protective devices, distributed energy resources, and electric vehicle/ plug-in hybrid electric vehicle charging stations;Ali-Mohammad Hariri等;《Journal of Power Sources》;20190716;第436卷;第1-15页 *
改善配电网负荷特性的充电站有序充电优化策略;杨玉青 等;《电力系统保护与控制》;20140401;第42卷(第7期);第60-66页 *

Also Published As

Publication number Publication date
CN111523224A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
CN111929596B (zh) 获取电池容量的方法、装置、存储介质和电子设备
US20030015993A1 (en) Battery charging system with electronic logbook
CN107359378B (zh) 电池充电方法、装置和设备
CN101740837B (zh) 一种用于电动汽车车载充电和快速充电的控制方法
CN107196371B (zh) 电池充电方法、装置、设备和存储介质
CN112886665B (zh) 电池充电控制方法、系统、车辆、可读存储介质及设备
US20050156577A1 (en) Method for charge control for extending Li-Ion battery life
JP5038258B2 (ja) 残容量推定方法および残容量推定装置
CN111137168A (zh) 一种换电站电池充电方法及系统
CN108583305B (zh) 充电精度诊断方法、装置和芯片
CN112531828A (zh) 一种电化学储能电站bms协同控制系统及方法
Lu et al. Modeling discharge characteristics for predicting battery remaining life
CN115946572B (zh) 电池模组的容量计算及补电控制方法、系统、设备和介质
CN214672736U (zh) 一种集成通讯的蓄电池组在线智能修复和均衡延寿系统
CN109655753B (zh) 一种电池组soc的估算方法
CN110154822A (zh) 一种应用于电动汽车智能电池管理系统的充放电控制方法
CN112737009B (zh) 一种智能充电方法及其实现智能充电的移动终端
CN115101836B (zh) 一种云-端融合的电池系统管理方法及装置
EP4231412A1 (en) Power battery charging method and battery management system
CN111523224B (zh) 基于粒子群优化算法的无人机应急抢险下的充电管理方法
CN210201546U (zh) 锂电池的充电电流控制装置和电动牙刷
KR20170059337A (ko) 데이터 송신 장치 및 방법과, 데이터 수신 장치 및 방법
CN116134694B (zh) 动力电池充电的方法和电池管理系统
CN114084045B (zh) 一种动力电池生命周期管理方法
CN114089203B (zh) 一种电化学储能系统自动标定及soc估算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant