CN111510207A - 量子密钥分发系统中源端光强波动测试方法 - Google Patents

量子密钥分发系统中源端光强波动测试方法 Download PDF

Info

Publication number
CN111510207A
CN111510207A CN202010295269.2A CN202010295269A CN111510207A CN 111510207 A CN111510207 A CN 111510207A CN 202010295269 A CN202010295269 A CN 202010295269A CN 111510207 A CN111510207 A CN 111510207A
Authority
CN
China
Prior art keywords
light intensity
distribution
state
quantum key
intensity fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010295269.2A
Other languages
English (en)
Other versions
CN111510207B (zh
Inventor
黄安琪
郭瀚泽
吴俊杰
袁夏龙
许容嘉
罗懿文
孙源辰
徐平
强晓刚
丁江放
邓明堂
付祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202010295269.2A priority Critical patent/CN111510207B/zh
Publication of CN111510207A publication Critical patent/CN111510207A/zh
Application granted granted Critical
Publication of CN111510207B publication Critical patent/CN111510207B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了量子密钥分发系统中源端光强波动测试方法,目的是解决真空态、诱骗态和信号态光脉冲强度区间浮动不可知的问题,实现对三种状态光脉冲强度波动的测量。技术方案是先构建由光电转换器与示波器组成的量子密钥传输光强波动测量系统,光电转换器与示波器、光强调制器相连;统计量子密钥传输光强波动测量系统的噪声分布;对真空态、诱骗态和信号态光强度波动区间进行测量;对真空态、诱骗态和信号态光强度波动区间测量结果、噪声进行高斯函数拟合,使用高斯分布分解的方法对三个状态的高斯函数去噪,获得三个状态真实的光强波动分布。采用本发明可实现对光脉冲强度的实时准确探测,提高密钥传输的安全性。

Description

量子密钥分发系统中源端光强波动测试方法
技术领域
本发明涉及一种量子密钥分发系统中用于测量真空态、诱骗态和信号态光脉冲强度波动的方法,真空态指理想情况下无光子的真空脉冲,诱骗态指用于监测和估计量子信道参数的辅助态脉冲,信号态指传输量子密钥的光脉冲。
背景技术
偏振编码的量子密钥分发系统(Quantum KeyDistribution,以下简称QKD系统)由激光器、光强调制器、和包含光衰减器的后续实验设备组成,其工作原理如下:量子密钥发送方每次从光子的四种偏振态:水平偏振、竖直偏振、45度偏振、135度偏振中随机选择一种,并制备单光子脉冲,通过量子信道发送给量子密钥接收方。接收方接收到发送方传输的单光子脉冲后,从两组测量基:水平和竖直偏振测量基、45度和135度偏振测量基中随机选择一个,对接收到的光子的偏振态进行测量,将发送方发送来的偏振态投影至测量基中的一个偏振态。随后,接收方通过经典信道告知发送方在哪些时刻使用了哪一个测量基获得了测量结果。发送方在接收到接收方发送的测量基选择信息后,与自己在相应时刻发送的量子态所在的基矢进行比对,并通知接收方在哪些时刻双方选择了同样的基矢。发送方和接收方丢弃测量基选择不一致的部分,并保留使用了同一基矢的光子偏振信息。理想无窃听的情况下,发送方和接收方保留下的光子偏振信息是完全一致的,可作为密钥。该过程完成了密钥在发送方和接收方的分发共享。
在实际QKD系统中,发送方通过光衰减器将相干光脉冲弱化至单光子级别,制备成量子态,但相干光脉冲的光子不一定一直为单光子,可能存在多光子脉冲的可能。攻击者可以利用这一点,从多光子脉冲中截取单个光子,并保留下来,待发送方和接收方公布测量基矢时,攻击者利用同样的基矢测量截取的单光子,从而获得量子态的信息。这种攻击方式称为光子数分束攻击(photon-number-splittingattack,以下简称PNS攻击)。为了应对PNS攻击方式,引入诱骗态量子密钥分发协议,即在传输信号的光脉冲中加入监测量子信道参数的辅助诱骗态光脉冲及真空态光脉冲。诱骗态光脉冲是与传输密钥的信号态光脉冲具有同样性质但光强不同的光脉冲,通过对诱骗态光脉冲的监测可以防止攻击者通过PNS攻击窃取信息。
在理想化的QKD系统中,可以通过激光器、光强调制器和光衰减器完成对特定强度的光脉冲的精确制备。但实际设备运行过程中,光脉冲的制备过程可能存在波动,并不能得到强度完全一致且无偏差的光脉冲。光脉冲强度调制的波动,会对QKD系统的运行和密钥生成结果造成很大影响,使得生成密钥量的判断不准确,密钥率是指生成密钥中安全密钥的比率。密钥率的计算详情见2019年发表于NPJ Quantum Information杂志的《基于非独立量子态选择光源的量子密钥分发系统》一文第5-7页。以往的相关测量方法是利用光功率计测量发送方端的平均光功率,只能得到光脉冲强度的平均值,无法准确获知每个光脉冲的准确强度以及光脉冲的分布情况,导致无法准确得到QKD系统生成的密钥率,进而导致对生成的密钥安全性有过高的判断,存在极大安全隐患。
发明内容
本发明要解决的技术问题是:提供一种测量光脉冲强度波动分布的方法,解决量子密钥分发系统真空态、诱骗态和信号态光脉冲强度区间浮动不可知的问题,实现对三种状态光脉冲强度波动范围的测量,强度调制的波动将降低量子密钥分发系统生成的密钥量。因此,在实际量子密钥分发系统中,需考虑强度调制器的实际调制性能。为了保证在实际使用中量子密钥分发系统生成密钥的准确性和安全性,必须获知强度调制波动的实时数据,进而提高量子密钥分发系统的实际安全性。
本发明解决其技术问题所采用的技术方案是:
第一步,构建量子密钥传输光强波动测量系统。量子密钥传输光强波动测量系统由光电转换器与示波器组成,光电转换器与示波器、QKD系统中发送方的光强调制器相连。光电转换器与QKD系统中发送方的光强调制器相连后,QKD系统中的光强调制器和激光器构成的光脉冲制备模块成为量子密钥传输光强波动测量系统的被测对象。光电转换器与示波器均要求带宽在1GHz以上。
第二步,统计量子密钥传输光强波动测量系统的噪声分布,得到噪声分布图像:在被测对象通电但不启动QKD协议运行的情况下,开启量子密钥传输光强波动测量系统中的光电转换器和示波器,利用示波器的统计功能,统计并积累测量系统本身的噪声分布(利用示波器的统计功能可以完成以上步骤),并在示波器上保存噪声分布图像。
第三步,对三种状态光强度波动区间进行测量,得到的真空态、诱骗态和信号态光强波动分布图像,方法:
3.1将光电转换器和示波器开启至工作状态;
3.2三种状态光脉冲的产生。开启被测对象至偏振编码QKD系统运行的状态,使QKD系统随机产生真空态、诱骗态和信号态。
3.3利用光电转换器处理光脉冲信号。光电转换器探测被测对象的光强调制器输出的光强,并将光脉冲信号转换成同比例的电信号,将电信号输出给示波器。
3.4运用示波器对电信号进行统计,并根据电信号获得光强波动分布图像,方法是:利用示波器的统计功能统计由光电转换器传输的电信号强度分布,光脉冲强度与电信号强度呈线性关系,满足公式(一)
光脉冲强度=电信号强度/转化系数 公式(一)
转化系数为光电转换器转化系数(由选用的光电转换器型号决定),依据公式(一)根据电信号强度计算出光脉冲强度,从而依据电信号强度分布得到光脉冲强度分布,得到光脉冲强度分布图像,也即光强波动分布图像。
第四步,光强分布数据处理。其具体步骤为:
4.1三种光的强度分布数据处理。第三步中通过测量得到了被测对象的QKD系统激光发射和调制模块在运行过程中的产生的真空态、诱骗态和信号态的光强波动分布图像,将光强波动分布图像以柱状图形式呈现,其结果近似满足高斯分布。其中高斯分布的均值μ和方差σ2满足表达式
Figure BDA0002451949570000031
将得到的光强波动分布图像做高斯函数拟合,得到光脉冲强度波动对应的强度分布函数f1(x)、f2(x)、f3(x),三者分别为真空态、诱骗态和信号态的光强分布函数,x为光子强度。
4.2噪声强度分布数据处理。对第二步获得的测量系统本身的噪声分布图像以柱状图形式呈现,其结果也近似满足高斯分布。将得到的噪声分布图像做高斯函数拟合,得到噪声分布函数f4(x)。
4.3去除噪声处理。由于高斯分布的叠加(加或减)仍呈高斯分布曲线,使用高斯分布分解的方法对f1(x)、f2(x)、f3(x)去除噪声,获得真空态、诱骗态、信号态本身真实的光强波动分布。将步骤4.1结果f1(x)、f2(x)、f3(x)减去噪声分布函数f4(x)即为降噪后的光强分布结果。
即:
4.3.1使用4.1中获得的曲线f1(x)减去4.2中获得的曲线f4(x)得到真空态光强分布模型g1(x)。即g1(x)=f1(x)-f4(x)。
4.3.2使用4.1中获得的曲线f2(x)减去4.2中获得的曲线f4(x)得到诱骗态光强分布模型g2(x)。即g2(x)=f2(x)-f4(x)。
4.3.3使用4.1中获得的曲线f3(x)减去4.2中获得的曲线f4(x)得到信号态光强分布模型g3(x)。即g3(x)=f3(x)-f4(x)。
g1(x)、g2(x)、g3(x)即为降噪后的光强分布结果。
利用背景技术中所述的密钥率计算方法,可以通过得到的g1(x)、g2(x)、g3(x)计算出准确的密钥率,得到对安全密钥量的准确判断,提高密钥传输的安全性。
采用本发明可以达到以下技术效果:
1.考虑到需要得到较为精确的强度波动区间,采用光电转换器探测光强调制器输出的光脉冲,输出的电信号与光强调制器输出的光脉冲强度呈线性关系,可实现对光脉冲强度的实时准确探测。
2.由于QKD系统发射端的光衰减器(包含在后续实验设备中)仅提供线性衰减,不影响光强分布,本发明测量进入光衰减器前的光脉冲信号,以获得更大光强。测试的经典光强的分布与经过光衰减器之后的弱相干光脉冲的光强分布一致。
3.通过实验数据统计并进行高斯分布处理,得到光脉冲强度的波动区间,相较以往测量方法得到的平均值,在精确程度上有了较大的提升。
4.通过对测量系统的噪声进行累积统计并获得噪声的高斯分布图像,经过高斯函数处理得到噪声的强度分布函数,利用高斯分布的可减性对得到的真空态、诱骗态、信号态光强分布数据进行处理,可以有效去除噪声的干扰,获得真实的光强波动分布,从而计算出准确的密钥率,得到真实的密钥量,提高密钥传输的安全性。
附图说明
图1是第一步构建的测试系统逻辑结构图。
图2是本发明总体流程图。
具体实施方式
本发明的具体流程如图2所示,包括以下步骤:
第一步,构建量子密钥传输光强波动测量系统。量子密钥传输光强波动测量系统如图1所示,由光电转换器与示波器组成,光电转换器与示波器、QKD系统中发送方的光强调制器相连。光电转换器与QKD系统中发送方的光强调制器相连后,QKD系统中的光强调制器和激光器构成的光脉冲制备模块成为量子密钥传输光强波动测量系统的被测对象。图1中的后续实验设备主要指光衰减器。光电转换器与示波器均要求带宽在1GHz以上。
第二步,统计量子密钥传输光强波动测量系统的噪声分布,得到噪声分布图像:在被测对象通电但不启动QKD协议运行的情况下,开启量子密钥传输光强波动测量系统中的光电转换器和示波器,利用示波器的统计功能,统计并积累测量系统本身的噪声分布,并在示波器上保存噪声分布图像。
第三步,对三种状态光强度波动区间进行测量,得到的真空态、诱骗态和信号态光强波动分布图像,方法:
3.1将光电转换器和示波器开启至工作状态;
3.2三种状态光脉冲的产生。开启被测对象至偏振编码QKD系统运行的状态,使QKD系统随机产生真空态、诱骗态和信号态。
3.3利用光电转换器处理光脉冲信号。光电转换器探测被测对象的光强调制器输出的光强,并将光脉冲信号转换成同比例的电信号,将电信号输出给示波器。
3.4运用示波器对电信号进行统计,并根据电信号获得光强波动分布图像,方法是:利用示波器的统计功能统计由光电转换器传输的电信号强度分布,光脉冲强度与电信号强度呈线性关系,满足公式(一)
光脉冲强度=电信号强度/转化系数 公式(一)
转化系数为光电转换器转化系数,依据公式(一)根据电信号强度计算出光脉冲强度,从而依据电信号强度分布得到光脉冲强度分布,得到光脉冲强度分布图像,也即光强波动分布图像。
第四步,光强分布数据处理。其具体步骤为:
4.1三种光的强度分布数据处理。将第三步得到的真空态、诱骗态和信号态光强波动分布图像以柱状图形式呈现,其结果近似满足高斯分布。其中高斯分布的均值μ和方差σ2满足表达式
Figure BDA0002451949570000051
将得到的光强波动分布图像做高斯函数拟合,得到光脉冲强度波动对应的强度分布函数f1(x)、f2(x)、f3(x),三者分别为真空态、诱骗态和信号态的光强分布函数,x为光子强度。
4.2噪声强度分布数据处理。对第二步获得的测量系统本身的噪声分布图像以柱状图形式呈现,其结果也近似满足高斯分布。将得到的噪声分布图像做高斯函数拟合,得到噪声分布函数f4(x)。
4.3去除噪声处理。使用高斯分布分解的方法对f1(x)、f2(x)、f3(x)去除噪声,获得真空态、诱骗态、信号态本身真实的光强波动分布。将步骤4.1结果f1(x)、f2(x)、f3(x)减去噪声分布函数f4(x)即为降噪后的光强分布结果。
即:
4.3.1使用4.1中获得的曲线f1(x)减去4.2中获得的曲线f4(x)得到真空态光强分布模型g1(x)。即g1(x)=f1(x)-f4(x)。
4.3.2使用4.1中获得的曲线f2(x)减去4.2中获得的曲线f4(x)得到诱骗态光强分布模型g2(x)。即g2(x)=f2(x)-f4(x)。
4.3.3使用4.1中获得的曲线f3(x)减去4.2中获得的曲线f4(x)得到信号态光强分布模型g3(x)。即g3(x)=f3(x)-f4(x)。
g1(x)、g2(x)、g3(x)即为降噪后的光强分布结果。

Claims (2)

1.一种量子密钥分发系统中源端光强波动测试方法,其特征在于包括以下步骤:
第一步,构建量子密钥传输光强波动测量系统:量子密钥传输光强波动测量系统由光电转换器与示波器组成,光电转换器与示波器、QKD系统中发送方的光强调制器相连;光电转换器与QKD系统中发送方的光强调制器相连后,QKD系统中的光强调制器和激光器构成的光脉冲制备模块成为量子密钥传输光强波动测量系统的被测对象;
第二步,统计量子密钥传输光强波动测量系统的噪声分布,得到噪声分布图像:在被测对象通电但不启动QKD协议运行的情况下,开启量子密钥传输光强波动测量系统中的光电转换器和示波器,利用示波器的统计功能,统计并积累量子密钥传输光强波动测量系统本身的噪声分布,并在示波器上保存噪声分布图像;
第三步,对真空态、诱骗态和信号态光强度波动区间进行测量,得到的真空态、诱骗态和信号态光强波动分布图像,方法:
3.1将光电转换器和示波器开启至工作状态;
3.2开启被测对象至偏振编码QKD系统运行的状态,使QKD系统随机产生真空态、诱骗态和信号态;
3.3光电转换器探测被测对象的光强调制器输出的光强,并将光脉冲信号转换成同比例的电信号,将电信号输出给示波器;
3.4运用示波器对电信号进行统计,并根据电信号获得光强波动分布图像,方法是:利用示波器的统计功能统计由光电转换器传输的电信号强度分布,光脉冲强度与电信号强度呈线性关系,满足公式(一)
光脉冲强度=电信号强度/转化系数公式(一)
转化系数为光电转换器转化系数,依据公式(一)根据电信号强度计算出光脉冲强度,从而依据电信号强度分布得到光脉冲强度分布,得到光脉冲强度分布图像,也即光强波动分布图像;
第四步,光强分布数据处理,方法为:
4.1将真空态、诱骗态和信号态光强波动分布图像以柱状图形式呈现,其结果近似满足高斯分布;将光强波动分布图像做高斯函数拟合,得到光脉冲强度波动对应的强度分布函数f1(x)、f2(x)、f3(x),三者分别为真空态、诱骗态和信号态的光强分布函数,x为光子强度;
4.2对量子密钥传输光强波动测量系统本身的噪声分布图像以柱状图形式呈现,其结果近似满足高斯分布,将得到的噪声分布图像做高斯函数拟合,得到噪声分布函数f4(x);
4.3使用高斯分布分解的方法对f1(x)、f2(x)、f3(x)去除噪声,获得真空态、诱骗态、信号态本身真实的光强波动分布,方法是:
4.3.1使用f1(x)减去f4(x)得到真空态光强分布模型g1(x),即g1(x)=f1(x)-f4(x);
4.3.2使用f2(x)减去f4(x)得到诱骗态光强分布模型g2(x),即g2(x)=f2(x)-f4(x);
4.3.3使用f3(x)减去f4(x)得到信号态光强分布模型g3(x),即g3(x)=f3(x)-f4(x)。
2.如权利要求1所述的一种量子密钥分发系统中源端光强波动测试方法,其特征在于第一步构建的量子密钥传输光强波动测量系统中的光电转换器与示波器均要求带宽在1GHz以上。
CN202010295269.2A 2020-04-15 2020-04-15 量子密钥分发系统中源端光强波动测试方法 Active CN111510207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010295269.2A CN111510207B (zh) 2020-04-15 2020-04-15 量子密钥分发系统中源端光强波动测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010295269.2A CN111510207B (zh) 2020-04-15 2020-04-15 量子密钥分发系统中源端光强波动测试方法

Publications (2)

Publication Number Publication Date
CN111510207A true CN111510207A (zh) 2020-08-07
CN111510207B CN111510207B (zh) 2023-03-21

Family

ID=71871007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010295269.2A Active CN111510207B (zh) 2020-04-15 2020-04-15 量子密钥分发系统中源端光强波动测试方法

Country Status (1)

Country Link
CN (1) CN111510207B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113079007A (zh) * 2021-04-14 2021-07-06 中国科学技术大学 一种稳定诱骗态脉冲的强度调制方法及强度调制器
CN114499685A (zh) * 2022-01-28 2022-05-13 中国科学技术大学 信号处理方法、发射端系统、电子设备及存储介质
CN114614976A (zh) * 2020-12-03 2022-06-10 科大国盾量子技术股份有限公司 针对量子密钥分发的成码率计算方法及装置
CN114665958A (zh) * 2020-12-23 2022-06-24 科大国盾量子技术股份有限公司 一种测量qkd设备中信号态/诱骗态比例的装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101176298A (zh) * 2005-05-17 2008-05-07 朗迅科技公司 在多信道量子通信系统内的相位锁定
JP2012044310A (ja) * 2010-08-16 2012-03-01 Nec Corp 量子暗号装置および暗号鍵評価方法
GB201218391D0 (en) * 2012-10-12 2012-11-28 Toshiba Res Europ Ltd A system and method for intensity monitoring
CN103618598A (zh) * 2013-12-13 2014-03-05 上海朗研光电科技有限公司 高速偏振编码的诱骗态量子光源制备方法及装置
US20140337400A1 (en) * 2011-12-07 2014-11-13 Quintessencelabs Pty Ltd. Integrated quantum-random noise generator using quantum vacuum states of light
CN204759398U (zh) * 2015-06-30 2015-11-11 中国科学技术大学先进技术研究院 基于激光相位波动的超高速量子随机数发生器
CN106290287A (zh) * 2016-09-23 2017-01-04 山西大学 一种基于单量子点产生双光子辐射的方法
GB201802891D0 (en) * 2018-02-22 2018-04-11 Toshiba Kk A transmitter for a quantum communication system, a quantum communication system and a method of generating intensity modulated Photon pulses
CN108123799A (zh) * 2017-12-06 2018-06-05 国家电网公司 一种针对诱骗态协议量子密钥分发系统的攻击方法及系统
CN108199768A (zh) * 2017-12-29 2018-06-22 华南师范大学 一种基于w态的测量设备无关量子密钥分发系统及方法
US20180260191A1 (en) * 2015-03-04 2018-09-13 Carol Y. Scarlett Generation of Random Numbers Through the Use of Quantum-Optical Effects within a Multi-Layered Birefringent Structure
US20180294961A1 (en) * 2017-04-06 2018-10-11 Shanxi University One-dimensional modulation continuous-variable quantum key distribution method
CN109462478A (zh) * 2018-12-29 2019-03-12 中国科学技术大学 基于自发辐射光源的量子密钥分发光源
CN109743165A (zh) * 2019-02-19 2019-05-10 中国电子科技集团公司第三十研究所 一种高斯调制量子光信号产生装置及方法
JP2019219298A (ja) * 2018-06-20 2019-12-26 日本電信電話株式会社 光周波数多重型コヒーレントotdr、試験方法、信号処理装置、及びプログラム

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101176298A (zh) * 2005-05-17 2008-05-07 朗迅科技公司 在多信道量子通信系统内的相位锁定
JP2012044310A (ja) * 2010-08-16 2012-03-01 Nec Corp 量子暗号装置および暗号鍵評価方法
US20140337400A1 (en) * 2011-12-07 2014-11-13 Quintessencelabs Pty Ltd. Integrated quantum-random noise generator using quantum vacuum states of light
GB201218391D0 (en) * 2012-10-12 2012-11-28 Toshiba Res Europ Ltd A system and method for intensity monitoring
CN103618598A (zh) * 2013-12-13 2014-03-05 上海朗研光电科技有限公司 高速偏振编码的诱骗态量子光源制备方法及装置
US20180260191A1 (en) * 2015-03-04 2018-09-13 Carol Y. Scarlett Generation of Random Numbers Through the Use of Quantum-Optical Effects within a Multi-Layered Birefringent Structure
CN204759398U (zh) * 2015-06-30 2015-11-11 中国科学技术大学先进技术研究院 基于激光相位波动的超高速量子随机数发生器
CN106290287A (zh) * 2016-09-23 2017-01-04 山西大学 一种基于单量子点产生双光子辐射的方法
US20180294961A1 (en) * 2017-04-06 2018-10-11 Shanxi University One-dimensional modulation continuous-variable quantum key distribution method
CN108123799A (zh) * 2017-12-06 2018-06-05 国家电网公司 一种针对诱骗态协议量子密钥分发系统的攻击方法及系统
CN108199768A (zh) * 2017-12-29 2018-06-22 华南师范大学 一种基于w态的测量设备无关量子密钥分发系统及方法
GB201802891D0 (en) * 2018-02-22 2018-04-11 Toshiba Kk A transmitter for a quantum communication system, a quantum communication system and a method of generating intensity modulated Photon pulses
JP2019219298A (ja) * 2018-06-20 2019-12-26 日本電信電話株式会社 光周波数多重型コヒーレントotdr、試験方法、信号処理装置、及びプログラム
CN109462478A (zh) * 2018-12-29 2019-03-12 中国科学技术大学 基于自发辐射光源的量子密钥分发光源
CN109743165A (zh) * 2019-02-19 2019-05-10 中国电子科技集团公司第三十研究所 一种高斯调制量子光信号产生装置及方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ZHENG ZHAO; DEWEN LI; GUOQING LIU; FUXIANG WU; JINJUN SUI: "An Improved Dust-Concentration Measurement Algorithm Based on Multifeature Fusion of β-Ray Intensity Fluctuations", 《TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT》 *
崔树民等: "大数定理的测量设备无关量子密钥分配统计波动分析", 《空军工程大学学报(自然科学版)》 *
杜海彬等: "量子密钥分发的高速诱骗态量子光源", 《信息安全研究》 *
陈平形,吴伟,吴春旺,吴俊杰,唐玉华: "量子计算的研究现状和发展动向", 《国防科技》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614976A (zh) * 2020-12-03 2022-06-10 科大国盾量子技术股份有限公司 针对量子密钥分发的成码率计算方法及装置
CN114614976B (zh) * 2020-12-03 2024-02-13 科大国盾量子技术股份有限公司 成码率计算方法、装置、存储介质及电子设备
CN114665958A (zh) * 2020-12-23 2022-06-24 科大国盾量子技术股份有限公司 一种测量qkd设备中信号态/诱骗态比例的装置
CN114665958B (zh) * 2020-12-23 2024-05-28 科大国盾量子技术股份有限公司 一种测量qkd设备中信号态/诱骗态比例的装置
CN113079007A (zh) * 2021-04-14 2021-07-06 中国科学技术大学 一种稳定诱骗态脉冲的强度调制方法及强度调制器
CN114499685A (zh) * 2022-01-28 2022-05-13 中国科学技术大学 信号处理方法、发射端系统、电子设备及存储介质
CN114499685B (zh) * 2022-01-28 2023-10-20 中国科学技术大学 信号处理方法、发射端系统、电子设备及存储介质

Also Published As

Publication number Publication date
CN111510207B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
CN111510207B (zh) 量子密钥分发系统中源端光强波动测试方法
CN107508668B (zh) 连续变量量子密钥分发关键参数实时监控方法
US7233962B2 (en) Optical error simulation system
CN107979411B (zh) 一种光纤链路的监测方法及装置
US9882637B2 (en) Methods and apparatus for monitoring and controlling the performance of optical communication systems
CN110535640B (zh) 一种探测器控制攻击的检测方法及系统
CN108737089B (zh) 量子通信系统发送端的单光子水平检测系统、方法及装置
JP5738955B2 (ja) 強度モニタリングのためのシステム及び方法
CN110518973B (zh) 一种基于机器学习的光纤窃听监测方法及相关设备
CN106033996B (zh) 光信噪比的监测装置以及接收机
CN109617576B (zh) 联合效应影响下大气光mimo系统平均容量的近似计算方法
Bosco et al. Long-distance effectiveness of MLSE IMDD receivers
CN112689288A (zh) 一种基于wann的射频指纹提取和识别方法
CN112929163A (zh) 测量装置无关的连续变量量子密钥分发方法及系统
CN113452523B (zh) 针对连续变量量子密钥分发过程的异常通信检测方法
CN110880971A (zh) 基于啁啾的连续变量量子密钥分发方法及分发系统
CN102546116B (zh) 基于压缩感知的跳频信号盲检测方法
CN114665958B (zh) 一种测量qkd设备中信号态/诱骗态比例的装置
CA2519392A1 (en) Bit error rate monitoring method and device
Yang et al. Time delay estimation based on the second correlation algorithm and wavelet transformation
CN116232597B (zh) 基于不可信源的即插即用测量设备无关量子数字签名方法
DE102004050402A1 (de) Verfahren und Vorrichtung zum Erkennen eines Störeffekts in einem Nachrichtenkanal
EP1058978B1 (de) Messung der signalqualität in digitalen optischen glasfaserübertragungsnetzen durch auswertung des signalhistogramms
Peksinski et al. Estimation of BER Bit Error Rate Using Digital Smoothing Filters
Losev et al. Dead time duration and active reset influence on the afterpulse probability of InGaAs/InP SPAD based SPDs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant