CN111510100A - A piezoelectric resonator based on gallium oxide thin film and its preparation method - Google Patents
A piezoelectric resonator based on gallium oxide thin film and its preparation method Download PDFInfo
- Publication number
- CN111510100A CN111510100A CN202010382773.6A CN202010382773A CN111510100A CN 111510100 A CN111510100 A CN 111510100A CN 202010382773 A CN202010382773 A CN 202010382773A CN 111510100 A CN111510100 A CN 111510100A
- Authority
- CN
- China
- Prior art keywords
- piezoelectric
- gallium oxide
- thin film
- film
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001195 gallium oxide Inorganic materials 0.000 title claims abstract description 46
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 239000010409 thin film Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000010408 film Substances 0.000 claims abstract description 56
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 15
- 238000005530 etching Methods 0.000 claims description 6
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 238000001312 dry etching Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000001039 wet etching Methods 0.000 claims description 4
- 238000001259 photo etching Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 abstract description 5
- 238000010168 coupling process Methods 0.000 abstract description 5
- 238000005859 coupling reaction Methods 0.000 abstract description 5
- 230000007547 defect Effects 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 230000002349 favourable effect Effects 0.000 abstract description 2
- 238000009776 industrial production Methods 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000010356 wave oscillation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/171—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H2003/023—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
本发明公开了一种基于氧化镓薄膜的压电谐振器及其制备方法,涉及半导体技术。针对现有技术中机电耦合系数不高的问题提出本方案,包括中部镂空的衬底,以及固定设置在衬底上的压电薄膜,所述压电薄膜在衬底镂空的对应位置设有电极对,所述电极对与所述压电薄膜电性连接,所述的压电薄膜采用氧化镓材料制成。优点在于,利用了氧化镓极强的压电特性,可保证压电谐振器具有很高的机电耦合系数。进一步,采用ε相氧化镓单晶膜,不仅可以避免由晶界和缺陷带来的能量吸收,降低损耗,而且可以大幅度提高器件稳定性。此外,本发明的薄膜压电谐振器结构简单,加工重复性好,有利于工业化生产。
The invention discloses a piezoelectric resonator based on a gallium oxide film and a preparation method thereof, and relates to semiconductor technology. Aiming at the problem that the electromechanical coupling coefficient is not high in the prior art, this solution is proposed, including a substrate with a hollow in the middle, and a piezoelectric film fixed on the substrate. The piezoelectric film is provided with electrodes at the corresponding positions of the hollow of the substrate. Yes, the electrode pair is electrically connected to the piezoelectric film, and the piezoelectric film is made of gallium oxide material. The advantage is that the piezoelectric resonator has a high electromechanical coupling coefficient by utilizing the extremely strong piezoelectric properties of gallium oxide. Further, the use of ε-phase gallium oxide single crystal film can not only avoid energy absorption caused by grain boundaries and defects, reduce losses, but also greatly improve device stability. In addition, the thin film piezoelectric resonator of the present invention has a simple structure and good processing repeatability, which is favorable for industrial production.
Description
技术领域technical field
本发明涉及半导体技术,是新一代信息技术,尤其涉及一种基于氧化镓薄膜的压电谐振器及其制备方法。The invention relates to semiconductor technology, which is a new generation of information technology, in particular to a piezoelectric resonator based on a gallium oxide film and a preparation method thereof.
背景技术Background technique
压电谐振器被广泛应用于构建射频滤波器和振荡器,是射频通信领域的重要器件之一;此外,压电谐振器还可被用于实现传感器。随着通信技术的快速发展,大数据和物联网时代已经到来,压电谐振器的发展方向必将是高频率、低功耗、微型化、集成化和低成本等。薄膜压电谐振器具有传统陶瓷介质谐振器无可比拟的频率、功率容量、体积和成本优势。薄膜压电谐振器通常由压电薄膜和电极构成,其工作原理是由射频电信号通过电极在压电薄膜内激励起声波振荡从而实现特定频率的谐振。因此,压电薄膜的机电耦合系数是决定谐振器性能的关键。现有的压电薄膜通常采用磁控溅射工艺制备的ZnO、AlN等,其材料本身的压电特性不够强且为多晶结构,存在大量的晶界和缺陷,造成对声波振荡能量的吸收,增加损耗,导致机电耦合系数不高。此外,多晶压电薄膜中的大量晶界和缺陷还可导致谐振器的稳定性和耐高温特性差等问题。Piezoelectric resonators are widely used to construct RF filters and oscillators, and are one of the important devices in the field of RF communications; in addition, piezoelectric resonators can also be used to implement sensors. With the rapid development of communication technology, the era of big data and the Internet of Things has arrived, and the development direction of piezoelectric resonators is bound to be high frequency, low power consumption, miniaturization, integration and low cost. Thin-film piezoelectric resonators have unmatched frequency, power capacity, volume, and cost advantages over traditional ceramic dielectric resonators. The thin film piezoelectric resonator is usually composed of a piezoelectric film and an electrode. Its working principle is that a radio frequency electrical signal excites an acoustic wave in the piezoelectric film through the electrode to achieve resonance at a specific frequency. Therefore, the electromechanical coupling coefficient of the piezoelectric film is the key to determine the performance of the resonator. Existing piezoelectric thin films are usually prepared by magnetron sputtering process, such as ZnO, AlN, etc. The piezoelectric properties of the materials themselves are not strong enough and they are polycrystalline structures, and there are a large number of grain boundaries and defects, which cause the absorption of acoustic wave oscillation energy. , increasing the loss, resulting in a low electromechanical coupling coefficient. In addition, the large number of grain boundaries and defects in polycrystalline piezoelectric films can also lead to problems such as poor stability and high temperature resistance of the resonator.
发明内容SUMMARY OF THE INVENTION
为了解决上述现有技术存在的问题,本发明目的在于提供一种基于氧化镓薄膜的压电谐振器及其制备方法。In order to solve the above-mentioned problems in the prior art, the present invention aims to provide a piezoelectric resonator based on a gallium oxide film and a preparation method thereof.
本发明所述的一种基于氧化镓薄膜的压电谐振器,包括中部镂空的衬底,以及固定设置在衬底上的压电薄膜,所述压电薄膜在衬底镂空的对应位置设有电极对,所述电极对与所述压电薄膜电性连接,所述的压电薄膜为氧化镓薄膜。A piezoelectric resonator based on a gallium oxide film according to the present invention includes a substrate hollowed out in the middle, and a piezoelectric film fixed on the substrate. An electrode pair, the electrode pair is electrically connected with the piezoelectric film, and the piezoelectric film is a gallium oxide film.
所述的氧化镓薄膜为ε相氧化镓单晶薄膜。The gallium oxide film is an ε-phase gallium oxide single crystal film.
所述的氧化镓薄膜厚度为0.1um到20um。The thickness of the gallium oxide film is 0.1um to 20um.
所述的电极对包括第一电极和第二电极,所述的第一电极设置在氧化镓薄膜上表面,所述的第二电极设置在氧化镓薄膜下表面。The electrode pair includes a first electrode and a second electrode, the first electrode is arranged on the upper surface of the gallium oxide film, and the second electrode is arranged on the lower surface of the gallium oxide film.
所述的电极对包括第一电极和第二电极,所述的第一电极和第二电极均设置在氧化镓薄膜上表面且互为叉指电极结构。The electrode pair includes a first electrode and a second electrode, and the first electrode and the second electrode are both arranged on the upper surface of the gallium oxide film and form an interdigitated electrode structure.
本发明所述的一种基于氧化镓薄膜的压电谐振器的制备方法,包括在衬底上生长压电薄膜的步骤、衬底刻蚀镂空的步骤以及电极对制作的步骤;所述的压电薄膜采用氧化镓材料制成。The method for preparing a piezoelectric resonator based on a gallium oxide film according to the present invention includes the steps of growing the piezoelectric film on the substrate, the step of etching the substrate and hollowing out, and the step of making electrode pairs; The electric thin film is made of gallium oxide material.
所述压电薄膜为ε相氧化镓单晶薄膜。The piezoelectric film is an ε-phase gallium oxide single crystal film.
所述压电薄膜的厚度为0.1um到20um。The thickness of the piezoelectric film is 0.1 um to 20 um.
所述的压电薄膜由金属有机化学气相沉积或分子束外延的方法外延生长而成。The piezoelectric thin film is epitaxially grown by metal organic chemical vapor deposition or molecular beam epitaxy.
所述衬底刻蚀镂空的步骤具体为:通过光刻工艺在衬底下表面形成图形化掩模,采用干法或湿法刻蚀工艺对衬底进行刻蚀,暴露出位于中间位置的压电薄膜。The step of etching and hollowing out the substrate is specifically: forming a patterned mask on the lower surface of the substrate by a photolithography process, and using a dry or wet etching process to etch the substrate, exposing the piezoelectric in the middle position. film.
本发明所述的一种基于氧化镓薄膜的压电谐振器及其制备方法,其优点在于,利用了氧化镓极强的压电特性,可保证压电谐振器具有很高的机电耦合系数。进一步,采用ε相氧化镓单晶膜,不仅可以避免由晶界和缺陷带来的能量吸收,降低损耗,而且可以大幅度提高器件稳定性。此外,本发明的薄膜压电谐振器结构简单,加工重复性好,有利于工业化生产。The piezoelectric resonator based on a gallium oxide film and its preparation method according to the present invention have the advantages that the piezoelectric resonator has a high electromechanical coupling coefficient by utilizing the extremely strong piezoelectric properties of gallium oxide. Further, the use of ε-phase gallium oxide single crystal film can not only avoid energy absorption caused by grain boundaries and defects, reduce losses, but also greatly improve device stability. In addition, the thin-film piezoelectric resonator of the present invention has a simple structure and good processing repeatability, which is favorable for industrial production.
附图说明Description of drawings
图1是本发明所述压电谐振器实施例一的结构示意图;1 is a schematic structural diagram of Embodiment 1 of the piezoelectric resonator according to the present invention;
图2是图1中A-A向剖视图。FIG. 2 is a cross-sectional view taken along the line A-A in FIG. 1 .
图3是本发明所述压电谐振器实施例二的结构示意图;3 is a schematic structural diagram of Embodiment 2 of the piezoelectric resonator according to the present invention;
图4是图1中B-B向剖视图。FIG. 4 is a sectional view taken along the line B-B in FIG. 1 .
附图标记:101-衬底、102-氧化镓薄膜、103-第一电极、104第二电极。Reference numerals: 101-substrate, 102-gallium oxide film, 103-first electrode, 104-second electrode.
具体实施方式Detailed ways
实施例一Example 1
如图1、2所示,本发明所述的一种基于氧化镓薄膜包括中部镂空的衬底101,以及固定设置在衬底101上的压电薄膜。所述压电薄膜在衬底101镂空的对应位置设有电极对,所述电极对与所述压电薄膜电性连接。所述的压电薄膜为氧化镓薄膜102,优选为ε相氧化镓单晶薄膜,厚度为0.1um到20um。所述的电极对包括第一电极103和第二电极104,所述的第一电极103设置在氧化镓薄膜102上表面,所述的第二电极104设置在氧化镓薄膜102下表面。As shown in FIGS. 1 and 2 , a gallium oxide-based thin film according to the present invention includes a
工作原理在于,利用纵向压电效应,由分设于氧化镓薄膜102上下表面的第一电极103和第二电极104实现电信号的输入和输出,其优点是压电效应强和损耗小。The working principle is that the input and output of electrical signals are realized by the
制备方法包括如下详细步骤:The preparation method includes the following detailed steps:
生长压电薄膜:在衬底101上通过金属有机化学气相沉积MOCVD或分子束外延MBE的方法外延生长ε相氧化镓单晶薄膜,厚度控制在优选范围0.1um到20um;Growth of piezoelectric film: epitaxial growth of ε-phase gallium oxide single crystal film by metal organic chemical vapor deposition MOCVD or molecular beam epitaxy MBE on the
制作第一电极103:在压电薄膜上表面采用溅射或电子束蒸发方法制备得到第一电极103;Making the first electrode 103: the
衬底101深槽刻蚀:通过光刻工艺在衬底101下表面形成图形化掩模,采用干法或湿法刻蚀工艺对衬底101进行刻蚀,暴露出位于中间位置的压电薄膜;
制作第二电极104:在暴露出来的压电薄膜下表面采用溅射或电子束蒸发方法制备得到第二电极104。Fabrication of the second electrode 104: The
实施例二Embodiment 2
如图3、4所示,本实施例与实施例一的区别主要在于,所述的电极对是互为叉指电极结构的第一电极103和第二电极104,且电极对均设置在氧化镓薄膜102上表面,水平位置与衬底101镂空对应的位置相适应。As shown in FIGS. 3 and 4 , the main difference between this embodiment and the first embodiment is that the electrode pair is the
工作原理在于,利用横向压电效应,由位于氧化镓薄膜102上表面的电极对实现电信号的输入和输出,其优点是结构简单,制备工艺步骤少。The working principle is that the input and output of electrical signals are realized by the electrode pair located on the upper surface of the
制备方法包括如下详细步骤:The preparation method includes the following detailed steps:
生长压电薄膜:在衬底101上通过金属有机化学气相沉积(MOCVD)或分子束外延(MBE)的方法外延生长ε相氧化镓单晶薄膜,厚度控制在优选范围0.1um到20um;Growth of piezoelectric film: epitaxial growth of ε-phase gallium oxide single crystal film by metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) method on the
制作电极对:在压电薄膜上表面采用溅射或电子束蒸发方法分别制备得到第一电极103和第二电极104;Making an electrode pair: the
衬底101深槽刻蚀:通过光刻工艺在衬底101下表面形成图形化掩模,采用干法或湿法刻蚀工艺对衬底101进行刻蚀,暴露出位于中间位置的压电薄膜。相比实施例一,在电极对形成的步骤上更加归一化,使得结构简单而工艺步骤减少。
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。For those skilled in the art, various other corresponding changes and deformations can be made according to the technical solutions and concepts described above, and all these changes and deformations should fall within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010382773.6A CN111510100B (en) | 2020-05-08 | 2020-05-08 | Piezoelectric resonator based on gallium oxide film and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010382773.6A CN111510100B (en) | 2020-05-08 | 2020-05-08 | Piezoelectric resonator based on gallium oxide film and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111510100A true CN111510100A (en) | 2020-08-07 |
CN111510100B CN111510100B (en) | 2021-07-02 |
Family
ID=71864323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010382773.6A Active CN111510100B (en) | 2020-05-08 | 2020-05-08 | Piezoelectric resonator based on gallium oxide film and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111510100B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111640857A (en) * | 2020-07-20 | 2020-09-08 | 中山大学 | Application of gallium oxide in piezoelectric material, piezoelectric film and piezoelectric device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1557770A (en) * | 2004-01-14 | 2004-12-29 | 浙江大学 | A low-loss microwave dielectric ceramic |
CN103159473A (en) * | 2011-12-19 | 2013-06-19 | 中国科学院上海硅酸盐研究所 | Microwave medium ceramic material and preparing method thereof |
CN103408303A (en) * | 2013-08-13 | 2013-11-27 | 江苏大学 | Piezoceramic material with high stability and high-voltage-electricity performance |
CN109302158A (en) * | 2018-08-01 | 2019-02-01 | 河源市众拓光电科技有限公司 | A kind of thin film bulk acoustic wave resonator and preparation method thereof |
WO2019058618A1 (en) * | 2017-09-20 | 2019-03-28 | 株式会社ニコン | Glass composition, optical element and optical device using same |
CN110784188A (en) * | 2019-10-17 | 2020-02-11 | 武汉大学 | Resonator and preparation method thereof |
-
2020
- 2020-05-08 CN CN202010382773.6A patent/CN111510100B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1557770A (en) * | 2004-01-14 | 2004-12-29 | 浙江大学 | A low-loss microwave dielectric ceramic |
CN103159473A (en) * | 2011-12-19 | 2013-06-19 | 中国科学院上海硅酸盐研究所 | Microwave medium ceramic material and preparing method thereof |
CN103408303A (en) * | 2013-08-13 | 2013-11-27 | 江苏大学 | Piezoceramic material with high stability and high-voltage-electricity performance |
WO2019058618A1 (en) * | 2017-09-20 | 2019-03-28 | 株式会社ニコン | Glass composition, optical element and optical device using same |
CN109302158A (en) * | 2018-08-01 | 2019-02-01 | 河源市众拓光电科技有限公司 | A kind of thin film bulk acoustic wave resonator and preparation method thereof |
CN110784188A (en) * | 2019-10-17 | 2020-02-11 | 武汉大学 | Resonator and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
SAN-DONG GUO等: "Piezoelectric properties of Ga2O3 : a first-principle study", 《EUR. PHYS. J. B》 * |
张珂: "氧化镓基半导体薄膜的外延生长及紫外探测器的研制", 《万方数据知识服务平台》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111640857A (en) * | 2020-07-20 | 2020-09-08 | 中山大学 | Application of gallium oxide in piezoelectric material, piezoelectric film and piezoelectric device |
Also Published As
Publication number | Publication date |
---|---|
CN111510100B (en) | 2021-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9197185B2 (en) | Resonator device including electrodes with buried temperature compensating layers | |
US9479139B2 (en) | Resonator device including electrode with buried temperature compensating layer | |
US7109826B2 (en) | Tapered electrode in an acoustic resonator | |
CN111049490B (en) | Bulk acoustic wave resonator with electrical isolation layer and its manufacturing method, filter and electronic equipment | |
CN111262543A (en) | Scandium-doped aluminum nitride lamb wave resonator and preparation method thereof | |
EP4050795A1 (en) | Bulk acoustic resonator, filter, and electronic device | |
CN109995342B (en) | Preparation method of air-gap type film bulk acoustic resonator | |
EP4050796A1 (en) | Bulk acoustic wave resonator and manufacturing method therefor, filter, and electronic device | |
CN111600569A (en) | Bulk acoustic wave resonator, method of manufacturing the same, filter, and electronic apparatus | |
WO2024012311A1 (en) | Method for forming surface acoustic wave resonance device | |
CN113193846B (en) | A Thin Film Bulk Acoustic Resonator with Hybrid Transverse Structural Features | |
JP7306726B2 (en) | Manufacturing method of film bulk acoustic wave resonator | |
CN110113022A (en) | Film bulk acoustic resonator and manufacturing method thereof | |
CN114614793A (en) | Film bulk acoustic resonator with temperature compensation structure and preparation method thereof | |
CN110784188A (en) | Resonator and preparation method thereof | |
CN110417374A (en) | Film bulk acoustic resonator and preparation method thereof | |
US20240275352A1 (en) | Baw filter structure and preparation method thereof | |
CN108471298A (en) | Air lumen type thin film bulk acoustic wave resonator and preparation method thereof | |
CN111510100A (en) | A piezoelectric resonator based on gallium oxide thin film and its preparation method | |
CN212163290U (en) | Scandium-doped aluminum nitride lamb wave resonator | |
CN110868181A (en) | A thin film material surface acoustic wave device with GS layered electrode and its preparation method and application | |
KR20050072576A (en) | Thin film bulk acoustic resonator filter and manufacturing method thereof | |
CN217116045U (en) | High-bandwidth silicon reverse side etching type film bulk acoustic resonator | |
US20230090976A1 (en) | Bulk Acoustic Resonator and Filter | |
CN114301406B (en) | Cavity type piezoelectric single crystal acoustic wave resonator and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210331 Address after: 201699 G08, 7th floor, building 11, 1569 Yushu Road, Songjiang District, Shanghai Applicant after: Shanghai Youdian Semiconductor Technology Co.,Ltd. Address before: 510275 Zhongshan University, 135 West Xingang Road, Guangdong, Guangzhou, Haizhuqu District Applicant before: SUN YAT-SEN University |
|
GR01 | Patent grant | ||
GR01 | Patent grant |