CN111510073A - Terahertz broadband third harmonic mixer - Google Patents
Terahertz broadband third harmonic mixer Download PDFInfo
- Publication number
- CN111510073A CN111510073A CN202010436725.0A CN202010436725A CN111510073A CN 111510073 A CN111510073 A CN 111510073A CN 202010436725 A CN202010436725 A CN 202010436725A CN 111510073 A CN111510073 A CN 111510073A
- Authority
- CN
- China
- Prior art keywords
- waveguide
- line
- microstrip
- local oscillator
- circuit substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 230000007704 transition Effects 0.000 claims abstract description 28
- 239000002184 metal Substances 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000000523 sample Substances 0.000 claims abstract description 18
- 239000000725 suspension Substances 0.000 claims abstract description 12
- 229910000679 solder Inorganic materials 0.000 claims description 9
- 238000003466 welding Methods 0.000 claims 3
- 238000009408 flooring Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/16—Multiple-frequency-changing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明提供了一种太赫兹宽带三次谐波混频器,包括混频器电路基片、金属腔体和肖特基二极管;混频器电路基片上设有波导‑悬置带线‑微带过渡结构、接地通孔、悬置带、开路线枝节、金属铺地、中频低通滤波器、中频端微带线、扇形探针和微带线,金属腔体包括射频端波导和本振端波导。本发明采用波导‑悬置带线‑微带过渡结构,降低了失配引起的损耗,增大了有效带宽,尺寸小、易加工、成本低。
The invention provides a terahertz broadband third harmonic mixer, comprising a mixer circuit substrate, a metal cavity and a Schottky diode; the mixer circuit substrate is provided with a waveguide-suspended stripline-microstrip Transition structures, ground vias, suspension strips, open line branches, metal floors, IF low-pass filters, IF end microstrip lines, sector probes and microstrip lines, metal cavities include RF end waveguides and local oscillator ends waveguide. The present invention adopts a waveguide-suspended stripline-microstrip transition structure, which reduces the loss caused by mismatch, increases the effective bandwidth, has small size, is easy to process, and has low cost.
Description
技术领域technical field
本发明属于太赫兹奇次谐波混频器的技术领域,具体涉及一种太赫兹宽带三次谐波混频器。The invention belongs to the technical field of terahertz odd harmonic mixers, in particular to a terahertz broadband third harmonic mixer.
背景技术Background technique
随着超高速数据传输和高分辨率成像需求的日益增长,通信、雷达等应用系统对工作带宽的要求越来越高,太赫兹波频谱资源的开发利用随之备受关注。相关太赫兹应用系统当中,接收机前端必须具有宽带、低噪声系数特性,以保证系统的高灵敏度。但是太赫兹频段低噪声放大器实现难度较大,因此通常将混频器用作太赫兹接收机的第一级。With the increasing demand for ultra-high-speed data transmission and high-resolution imaging, communication, radar and other application systems have higher and higher requirements for working bandwidth, and the development and utilization of terahertz spectrum resources has attracted much attention. In the relevant terahertz application system, the receiver front end must have broadband and low noise figure characteristics to ensure the high sensitivity of the system. However, low-noise amplifiers in the terahertz band are difficult to implement, so a mixer is usually used as the first stage of a terahertz receiver.
基波混频器当中,本振信号需要由太赫兹频率源提供,其制作难度大、成本高,比混频器更难实现,而谐波混频器可以将所需的本振信号频率降低为基波频率的1/N(N为谐波次数),降低了本振信号的实现难度,增强了本振和射频端口隔离度,因此太赫兹接收机前端通常采用谐波混频器。目前太赫兹频段谐波混频器研究多集中于偶次谐波混频器,关于奇次谐波混频器特别是三次谐波混频器的报道较少。由于奇次谐波混频器特殊的结构要求,平衡二极管对通常位于射频端或者本振端波导内,出于匹配难度大和加工工艺要求高等原因,较低频段奇次谐波混频器的结构和设计方案难以应用到太赫兹频段,目前太赫兹频段通常采用波导渐变、鳍线过渡等方式进行阻抗匹配,但是通常存在尺寸较大、带宽不足、损耗过大等问题。Among the fundamental mixers, the local oscillator signal needs to be provided by a terahertz frequency source, which is difficult to manufacture, high cost, and more difficult to implement than the mixer, while the harmonic mixer can reduce the required frequency of the local oscillator signal. It is 1/N of the fundamental frequency (N is the harmonic order), which reduces the difficulty of realizing the local oscillator signal and enhances the isolation between the local oscillator and the RF port. Therefore, the front end of the terahertz receiver usually adopts a harmonic mixer. At present, the research on harmonic mixers in the terahertz band mostly focuses on even-order harmonic mixers, and there are few reports on odd-order harmonic mixers, especially third-order harmonic mixers. Due to the special structural requirements of the odd harmonic mixer, the balanced diode pair is usually located in the RF end or the local oscillator end waveguide. And the design scheme is difficult to apply to the terahertz frequency band. At present, the terahertz frequency band usually adopts waveguide gradient, fin line transition and other methods for impedance matching, but there are usually problems such as large size, insufficient bandwidth, and excessive loss.
发明内容SUMMARY OF THE INVENTION
针对现有技术中存在不足,本发明提供了一种太赫兹宽带三次谐波混频器,尺寸小,同时降低损耗、增大了有效带宽。In view of the deficiencies in the prior art, the present invention provides a terahertz broadband third harmonic mixer with small size, while reducing loss and increasing effective bandwidth.
本发明是通过以下技术手段实现上述技术目的的。The present invention achieves the above technical purpose through the following technical means.
一种太赫兹宽带三次谐波混频器,包括混频器电路基片、金属腔体和肖特基二极管;所述金属腔体包括射频端波导和本振端波导;A terahertz broadband third harmonic mixer, comprising a mixer circuit substrate, a metal cavity and a Schottky diode; the metal cavity includes a radio frequency end waveguide and a local oscillator end waveguide;
所述混频器电路基片上设有波导-悬置带线-微带过渡结构、开路线枝节、中频低通滤波器和扇形探针;The mixer circuit substrate is provided with a waveguide-suspended stripline-microstrip transition structure, an open line branch, an intermediate frequency low-pass filter and a sector probe;
所述波导-悬置带线-微带过渡结构包括三角形开窗、悬置带线和微带线,所述三角形开窗位于混频器电路基片背面,顶点位置与混频器电路基片正面的肖特基二极管中心对齐;The waveguide-suspended stripline-microstrip transition structure includes a triangular window, a suspended stripline and a microstrip, the triangular window is located on the back of the mixer circuit substrate, and the vertex position is the same as that of the mixer circuit substrate. Front-side Schottky diodes are center-aligned;
所述肖特基二极管设有D1、D2、D3三个焊脚,中间焊脚D3固定在悬置带线处焊盘上;The Schottky diode is provided with three solder pins D1, D2 and D3, and the middle solder pin D3 is fixed on the pad at the suspension strip line;
所述悬置带线与倒T型微带线连接,微带线水平方向靠近悬置带线处连接开路线枝节;The suspension strip line is connected with the inverted T-shaped microstrip line, and the microstrip line is connected to the open line branch in the horizontal direction near the suspension strip line;
所述微带线水平方向靠近本振端波导的末端连接扇形探针,扇形探针位于本振端波导内部;The microstrip line is connected to a fan-shaped probe near the end of the local oscillation end waveguide in the horizontal direction, and the fan-shaped probe is located inside the local oscillation end waveguide;
所述微带线竖直方向上连接有中频低通滤波器,中频低通滤波器由两级相同的CMRC单元组成;The microstrip line is connected with an intermediate frequency low-pass filter in the vertical direction, and the intermediate frequency low-pass filter is composed of two identical CMRC units;
所述波导-悬置带线-微带过渡结构、肖特基二极管、悬置带线均位于射频端波导的内部。The waveguide-suspended stripline-microstrip transition structure, the Schottky diode, and the suspended stripline are all located inside the waveguide at the radio frequency end.
优选地,所述三角形开窗外缘朝向本振端波导方向加工有若干接地通孔。Preferably, a plurality of grounding through holes are machined on the outer edge of the triangular window toward the direction of the local oscillator end waveguide.
优选地,所述焊脚D1、焊脚D2固定在两侧接地通孔处焊盘上。Preferably, the soldering legs D1 and D2 are fixed on the pads at the ground vias on both sides.
优选地,所述混频器电路基片上还设有金属铺地;在混频器基片正面,金属铺地覆盖接地通孔及其附近位置;在混频器电路基片反面,金属铺地覆盖三角形开窗和扇形探针以外的位置;接地通孔连通混频器电路基片正反面的金属铺地。Preferably, the mixer circuit substrate is further provided with a metal ground; on the front side of the mixer substrate, the metal ground covers the ground through hole and its vicinity; on the reverse side of the mixer circuit substrate, the metal ground Cover the position other than the triangular opening and the fan-shaped probe; the grounding through hole is connected to the metal floor on the front and back of the mixer circuit substrate.
优选地,所述开路线枝节包括四根开路线,两两相对地连接在微带线两侧。Preferably, the open line branches include four open lines, which are connected to two sides of the microstrip line opposite each other.
优选地,所述开路线的长度为本振信号波长的十二分之一。Preferably, the length of the open line is one twelfth of the wavelength of the local oscillator signal.
优选地,所述微带线竖直方向末端连接中频端微带线,所述中频端微带线的阻抗为50Ω。Preferably, the vertical end of the microstrip line is connected to an intermediate frequency end microstrip line, and the impedance of the intermediate frequency end microstrip line is 50Ω.
优选地,所述中频低通滤波器由两级相同的CMRC单元组成。Preferably, the intermediate frequency low-pass filter consists of two identical CMRC units.
优选地,所述肖特基二极管至射频端波导的短路面距离为λRF,TE10/4,其中λRF,TE10为射频信号波长。Preferably, the short-circuit surface distance from the Schottky diode to the RF end waveguide is λ RF, TE10 /4, where λ RF, TE10 are the wavelength of the RF signal.
优选地,所述射频端波导的尺寸满足WR06标准,本振端波导的尺寸满足WR19标准。Preferably, the size of the RF end waveguide meets the WR06 standard, and the size of the local oscillator end waveguide meets the WR19 standard.
本发明采用上述技术方案,与现有技术相比具有如下优点:The present invention adopts the above-mentioned technical scheme, and has the following advantages compared with the prior art:
(1)本发明的三次谐波混频器采用波导-悬置带线-微带过渡结构,同时实现了两部分功能:在射频频段进行波导和悬置带线结构的宽带过渡,在本振频段进行悬置带线和微带线结构的宽带过渡;降低了失配引起的损耗,增大了有效带宽,尺寸小、易加工、成本低,总长度仅为射频信号一个波长。(1) The third harmonic mixer of the present invention adopts a waveguide-suspended stripline-microstrip transition structure, and realizes two functions at the same time: the broadband transition between the waveguide and the suspended stripline structure is performed in the radio frequency band, and the The frequency band performs broadband transition of suspended stripline and microstrip line structure; reduces the loss caused by mismatch, increases the effective bandwidth, small size, easy processing, low cost, and the total length is only one wavelength of the radio frequency signal.
(2)本发明的三次谐波混频器采用波导-悬置带线-微带过渡结构,其两侧的接地通孔紧邻肖特基二极管的接地焊脚,提供了良好的射频和直流接地,避免冗余接地结构引入寄生效应和能量损耗,进一步降低了混频器的变频损耗。(2) The third harmonic mixer of the present invention adopts a waveguide-suspended stripline-microstrip transition structure, and the ground through holes on both sides are close to the ground pins of the Schottky diode, providing good RF and DC grounding , to avoid parasitic effects and energy loss introduced by the redundant grounding structure, and further reduce the frequency conversion loss of the mixer.
(3)本发明充分利用单个肖特基二极管芯片中的串联双肖特基结,用单个芯片构成了平衡二极管对结构,减小了二极管对和波导-悬置带线-微带过渡结构的相对位置偏差,有利于保证批量装配的一致性。(3) The present invention makes full use of the series-connected double Schottky junctions in a single Schottky diode chip, and uses a single chip to form a balanced diode pair structure, reducing the diode pair and the waveguide-suspended stripline-microstrip transition structure. The relative position deviation is conducive to ensuring the consistency of batch assembly.
附图说明Description of drawings
图1为本发明所述太赫兹宽带三次谐波混频器结构示意图;1 is a schematic structural diagram of a terahertz broadband third harmonic mixer according to the present invention;
图2为本发明所述波导-悬置带线-微带过渡结构示意图,图2(a)为本发明波导-悬置带线-微带过渡结构正面视图,图2(b)为本发明波导-悬置带线-微带过渡结构反面视图;Fig. 2 is a schematic diagram of the waveguide-suspended stripline-microstrip transition structure according to the present invention, Fig. 2(a) is a front view of the waveguide-suspended stripline-microstrip transition structure of the present invention, and Fig. 2(b) is the present invention The reverse view of the waveguide-suspended stripline-microstrip transition structure;
图3为本发明射频信号和本振信号传输时,电场方向变化示意图;图3(a)为本发明中射频信号从射频端波导传输至肖特基二极管时的电场方向变化示意图,图3(b)为本发明中本振信号从微带线传输至肖特基二极管时的电场方向变化示意图;Fig. 3 is the schematic diagram of the electric field direction change when the radio frequency signal and the local oscillator signal are transmitted in the present invention; Fig. 3 (a) is the electric field direction change schematic diagram when the radio frequency signal is transmitted from the radio frequency end waveguide to the Schottky diode in the present invention, Fig. 3 ( b) is a schematic diagram of the change of the electric field direction when the local oscillator signal is transmitted from the microstrip line to the Schottky diode in the present invention;
图4为本发明的变频损耗仿真曲线示意图;4 is a schematic diagram of a simulation curve of frequency conversion loss of the present invention;
其中:1-射频端波导,2-波导-悬置带线-微带过渡结构,3-肖特基二极管,4-接地通孔,5-悬置带线,6-开路线枝节,7-金属铺地,8-中频低通滤波器,9-中频端微带线,10-扇形探针,11-本振端波导,12-微带线。Among them: 1-RF end waveguide, 2-Waveguide-suspended stripline-microstrip transition structure, 3-Schottky diode, 4-ground via, 5-suspended stripline, 6-open line branch, 7- Metal floor, 8-IF low-pass filter, 9-IF end microstrip line, 10-Sector probe, 11- LO end waveguide, 12-Microstrip line.
具体实施方式Detailed ways
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。The present invention will be further described below with reference to the accompanying drawings and specific embodiments, but the protection scope of the present invention is not limited thereto.
如图1所示,本发明的太赫兹宽带三次谐波混频器,由混频器电路基片、放置电路基片的金属腔体和肖特基二极管3组成,混频器电路基片上设有波导-悬置带线-微带过渡结构2、接地通孔4、悬置带5、开路线枝节6、金属铺地7、中频低通滤波器8、中频端微带线9、扇形探针10和微带线12,放置电路基片的金属腔体包括射频端波导1和本振端波导11。As shown in Figure 1, the terahertz broadband third harmonic mixer of the present invention is composed of a mixer circuit substrate, a metal cavity on which the circuit substrate is placed, and a Schottky
如图2(a)、(b)所示,波导-悬置带线-微带过渡结构2包括一段三角形开窗、悬置带线5和微带线12,其中三角形开窗位于混频器电路基片背面,顶点位置与混频器电路基片正面的肖特基二极管3中心对齐;三角形开窗外缘朝向本振端波导11方向加工有若干接地通孔4;金属铺地7在混频器基片正面覆盖接地通孔4及其附近位置,在混频器电路基片反面覆盖三角形开窗和扇形探针10以外的位置;接地通孔4连通混频器电路基片正反面的金属铺地7;本实施例中,金属铺地7优选铜材料。As shown in Figures 2(a) and (b), the waveguide-suspended stripline-
如图2(a)所示,肖特基二极管3共有D1、D2、D3三个焊脚,中间焊脚D3为双肖特基结共用焊脚,对应悬置带线5处焊盘,焊脚D3通过导电胶粘在悬置带线5处焊盘上;二极管两端焊脚D1和焊脚D2分别对应两侧接地通孔4处焊盘,焊脚D1和焊脚D2通过导电胶粘在两侧接地通孔4处焊盘上。双肖特基结相对于射频信号为同相串联,相对于本振信号和中频信号为反相并联,因此一个肖特基结由射频和本振信号同相驱动,另一个肖特基结由射频和本振信号反相驱动,从而构成平衡二极管对结构,输出中频信号。接地通孔4紧邻肖特基二极管3的两端焊脚D1、D2,形成良好的射频和直流接地,避免增加冗余枝节。As shown in Figure 2(a), the Schottky
悬置带线5与倒T型微带线12连接,微带线12水平方向靠近悬置带线5处连接开路线枝节6,如图1所示,开路线枝节6包括四根开路线,两两相对地连接在微带线12两侧。当射频信号从射频端波导1传输至肖特基二极管3时,会有一部分继续传输泄漏到本振和中频端口,可以将泄漏的一部分射频信号反射回肖特基二极管3,避免能量损耗,改善端口隔离度。每根开路线的长度为射频信号波长的四分之一,即本振信号波长的十二分之一(λLO,TEM/12),对本振信号影响较小,通过调节线宽、间距,辅助其他电路结构(波导-悬置带线-微带过渡结构2、悬置带5、中频低通滤波器8、中频端微带线9和扇形探针10)进行本振频段的阻抗匹配。本振信号频率位于射频端波导1的截止频段,因此本振信号至射频端的隔离度可以得到保证。The suspended
微带线12水平方向靠近本振端波导11的末端连接扇形探针10,扇形探针10位于本振端波导11内部,并通过导电胶将包含扇形探针10的混频器电路基片与本振端波导11固定。本振信号从本振端波导11输入,由扇形探针10过渡到微带线12上,传输至肖特基二极管3。The end of the
微带线12竖直方向上依次连接有中频低通滤波器8和中频端微带线9,中频端微带线9位于微带线12竖直方向末端。中频低通滤波器8由两级相同的CMRC(紧凑微带谐振)单元组成,两级级联以增强对本振信号和射频信号的抑制。The
波导-悬置带线-微带过渡结构2、肖特基二极管3、悬置带线5均位于射频端波导1的内部,并通过导电胶将包含波导-悬置带线-微带过渡结构2、肖特基二极管3、悬置带线5三部分的混频器电路基片与射频端波导1固定。本实施例中,肖特基二极管3至射频端波导1的短路面距离为λRF,TE10/4(其中λRF,TE10为射频信号波长),以确保二极管位于射频信号电场强度最大位置,减小射频信号的损耗。The waveguide-suspended stripline-
优选地,本实施例中射频端波导1的尺寸满足WR06标准,本振端波导11的尺寸满足WR19标准,中频端微带线9的阻抗为50Ω。Preferably, the size of the
如图3(a)所示,射频信号从射频端标准波导1向波导-悬置带线-微带过渡结构2传输,最终到达肖特基二极管3,在此过程中,射频信号的电场方向保持不变;如图3(b)所示,本振信号从微带线12向肖特基二极管3传输,在此过程中,始终为准TEM模(横电磁模)。射频信号和本振信号在传输过程中,避免了模式变化和能量浪费,降低了变频损耗,有效改善工作带宽。射频信号和本振信号加载到肖特基二极管3上,利用肖特基二极管3非线性进行混频,通过阻抗匹配和滤波,在中频端口提取到所需中频信号。As shown in Figure 3(a), the RF signal is transmitted from the
构建混频器的整体仿真模型,具体实施步骤包括:(1)考虑二极管封装尺寸引入的寄生效应,在三维电子仿真软件(如HFSS)中建立肖特基二极管3的三维电磁模型;(2)在三维电子仿真软件中,建立扇形探针10、中频低通滤波器8、开路线枝节6等无源电路的三维电磁模型,进行初步仿真,其中混频器电路基片材料设置为Rogers5880、厚度为0.127mm;(3)由肖特基二极管3的三维电磁模型、无源电路的三维电磁模型,在三维电子仿真软件中建立混频器无源部分完整的三维电磁模型;(4)从三维电子仿真软件中,将混频器无源部分完整的三维电磁模型的仿真结果导出,得到SNP文件;(5)将SNP文件导入电路级仿真软件(ADS),构成多端口模型,与体现肖特基二极管3非线性特性的二极管SPICE模型级联,构成混频器的整体仿真模型,利用谐波平衡法仿真得到混频器变频损耗;(6)通过调节波导-悬置带线-微带过渡结构2的尺寸、优化匹配枝节,获得宽带范围内的变频损耗最优结果。The overall simulation model of the mixer is constructed, and the specific implementation steps include: (1) Considering the parasitic effect introduced by the diode package size, establish a three-dimensional electromagnetic model of the Schottky diode 3 in three-dimensional electronic simulation software (such as HFSS); (2) In the three-dimensional electronic simulation software, the three-dimensional electromagnetic model of the passive circuit such as the fan-shaped probe 10, the intermediate frequency low-pass filter 8, the open circuit branch 6, etc. is established, and the preliminary simulation is carried out, wherein the mixer circuit substrate material is set to Rogers5880, thickness is 0.127mm; (3) the three-dimensional electromagnetic model of the Schottky diode 3 and the three-dimensional electromagnetic model of the passive circuit are used to establish a complete three-dimensional electromagnetic model of the passive part of the mixer in the three-dimensional electronic simulation software; (4) from the three-dimensional electromagnetic model In the electronic simulation software, the simulation results of the complete three-dimensional electromagnetic model of the passive part of the mixer are exported to obtain the SNP file; (5) the SNP file is imported into the circuit-level simulation software (ADS) to form a multi-port model, which is consistent with the embodiment of SCHOTT. The diode SPICE models of the nonlinear characteristics of the
本实施例中,波导-悬置带线-微带过渡结构2的总长度设为12mm,每根开路线的长度设为0.32mm,CMRC单元长度为1.40mm;按照步骤(4)-(6),对混频器的整体结构进行仿真,仿真结果如图4所示。从图中可以看出,当本振功率为14dBm时,在135-165GHz范围内,混频器变频损耗不超过14.5dB,在140-160GHz范围内,混频器变频损耗为11.5±0.7dB。相较于现有技术,本发明的太赫兹宽带三次谐波混频器采用波导-悬置带线-微带过渡结构,改善了变频损耗、提高了工作带宽,与传统改变波导尺寸或者鳍线过渡的方法相比,结构更加紧凑,降低了加工难度和容差要求。In this embodiment, the total length of the waveguide-suspended stripline-
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。The embodiments are preferred embodiments of the present invention, but the present invention is not limited to the above-mentioned embodiments, and any obvious improvement, replacement or All modifications belong to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010436725.0A CN111510073B (en) | 2020-05-21 | 2020-05-21 | Terahertz broadband third harmonic mixer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010436725.0A CN111510073B (en) | 2020-05-21 | 2020-05-21 | Terahertz broadband third harmonic mixer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111510073A true CN111510073A (en) | 2020-08-07 |
CN111510073B CN111510073B (en) | 2023-04-07 |
Family
ID=71876887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010436725.0A Active CN111510073B (en) | 2020-05-21 | 2020-05-21 | Terahertz broadband third harmonic mixer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111510073B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115051651A (en) * | 2022-08-11 | 2022-09-13 | 壹新信通科技(成都)有限公司 | Terahertz frequency doubling Schottky diode structure, frequency multiplier and electronic equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104467681A (en) * | 2014-11-06 | 2015-03-25 | 电子科技大学 | Terahertz subharmonic frequency multiplication and mixing device based on monolithic integrated circuit |
CN105071776A (en) * | 2015-08-19 | 2015-11-18 | 中国电子科技集团公司第四十一研究所 | Harmonic mixer with low local oscillator power |
CN108134168A (en) * | 2017-12-21 | 2018-06-08 | 四川众为创通科技有限公司 | A kind of Terahertz triple-frequency harmonics frequency mixer based on fin line structure |
CN109193088A (en) * | 2018-09-17 | 2019-01-11 | 电子科技大学 | A kind of efficient 220GHz triple-frequency harmonics frequency mixer using single die |
-
2020
- 2020-05-21 CN CN202010436725.0A patent/CN111510073B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104467681A (en) * | 2014-11-06 | 2015-03-25 | 电子科技大学 | Terahertz subharmonic frequency multiplication and mixing device based on monolithic integrated circuit |
CN105071776A (en) * | 2015-08-19 | 2015-11-18 | 中国电子科技集团公司第四十一研究所 | Harmonic mixer with low local oscillator power |
CN108134168A (en) * | 2017-12-21 | 2018-06-08 | 四川众为创通科技有限公司 | A kind of Terahertz triple-frequency harmonics frequency mixer based on fin line structure |
CN109193088A (en) * | 2018-09-17 | 2019-01-11 | 电子科技大学 | A kind of efficient 220GHz triple-frequency harmonics frequency mixer using single die |
Non-Patent Citations (1)
Title |
---|
钱志宇等: "330 GHz 高性能二次谐波混频器设计" * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115051651A (en) * | 2022-08-11 | 2022-09-13 | 壹新信通科技(成都)有限公司 | Terahertz frequency doubling Schottky diode structure, frequency multiplier and electronic equipment |
CN115051651B (en) * | 2022-08-11 | 2022-11-01 | 壹新信通科技(成都)有限公司 | Terahertz frequency multiplication Schottky diode structure, frequency multiplier and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN111510073B (en) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Varonen et al. | Millimeter-wave integrated circuits in 65-nm CMOS | |
CN104377418B (en) | Terahertz multifunction device based on integrated technology | |
CN107394328B (en) | D-waveband waveguide-planar circuit transition device | |
Ahmadi et al. | Substrateless amplifier module realized by ridge gap waveguide technology for millimeter-wave applications | |
CN109193088B (en) | A kind of efficient 220GHz triple-frequency harmonics frequency mixer using single die | |
CN110212277B (en) | A waveguide-to-microstrip E-plane probe transition structure with ground loop | |
CN114243246B (en) | Application of improved terahertz high-isolation E-plane power divider | |
CN107342780B (en) | A novel all-solid-state terahertz receiver front-end | |
CN112993506B (en) | Monolithic and system-level circuit integrated package structure of terahertz microstrip probe without jumper | |
CN111510073B (en) | Terahertz broadband third harmonic mixer | |
CN108539353A (en) | A kind of ultra-wide band novel planar evil spirit T | |
Shan et al. | An eight-way power combiner based on a transition between rectangular waveguide and multiple microstrip lines | |
Mahdavi et al. | Broadband Three-Section Branch-Line Coupler Realized by Ridge Gap Waveguide Technology from 12 to 20 GHz | |
CN207184463U (en) | A new all-solid-state terahertz receiver front-end | |
CN114421106A (en) | A small-size and low-loss terahertz transceiver front-end multi-layer integrated package structure | |
CN105789810A (en) | Broadband halfmode corrugated substrate integrated waveguide coupler and design method thereof | |
CN115473025B (en) | Waveguide difference port magic T based on microstrip-waveguide hybrid integration | |
Gurulakshmi et al. | Numerical analysis on slinky 3 dB power divider for high speed RF sensor system | |
CN116130914B (en) | A millimeter wave and terahertz monolithic circuit transition structure and implementation method thereof | |
CN112993505B (en) | Terahertz wire-jumping-free coplanar waveguide single chip and system-level circuit low-insertion-loss packaging structure | |
Poddar et al. | A novel UWB Balun: Application in 5G systems | |
CN116093569A (en) | Microstrip line and rectangular waveguide conversion device | |
Sun et al. | The wideband Marchand balun transition design | |
Leufker et al. | A wideband planar microstrip to coplanar stripline transition (balun) at 35 GHz | |
CN2867624Y (en) | Microwave Single Balanced Mixer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |