CN111507031B - Power module thermal network model parameter identification method based on least square method - Google Patents
Power module thermal network model parameter identification method based on least square method Download PDFInfo
- Publication number
- CN111507031B CN111507031B CN202010216020.8A CN202010216020A CN111507031B CN 111507031 B CN111507031 B CN 111507031B CN 202010216020 A CN202010216020 A CN 202010216020A CN 111507031 B CN111507031 B CN 111507031B
- Authority
- CN
- China
- Prior art keywords
- temperature
- node
- monitoring point
- simulation
- thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000004088 simulation Methods 0.000 claims abstract description 223
- 238000012544 monitoring process Methods 0.000 claims description 186
- 230000001052 transient effect Effects 0.000 claims description 88
- 239000011159 matrix material Substances 0.000 claims description 72
- 230000014509 gene expression Effects 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 229910000679 solder Inorganic materials 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- 230000017525 heat dissipation Effects 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 4
- 230000001808 coupling effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012407 engineering method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/18—Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/02—CAD in a network environment, e.g. collaborative CAD or distributed simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及功率模块热网络模型参数辨识方法,具体是涉及一种基于最小二乘法的功率模块热网络模型参数辨识方法。The invention relates to a method for identifying parameters of a thermal network model of a power module, in particular to a method for identifying parameters of a thermal network model of a power module based on the least squares method.
背景技术Background technique
工业研究表明,功率模块是电力电子系统中最薄弱的部件。约55%的功率模块失效是由温度因素诱发的。功率模块的芯片温度估计是进行寿命预测,可靠性评估的基础。热网络模型由于容易嵌入数字信号处理器中,不需要设计额外的硬件电路而在工业上广泛应用于功率模块的芯片温度预测和估计。有限元仿真模型经常被用于预测芯片温度,有限元仿真模型的仿真结果精度高但是仿真过程耗时,不适合用于芯片温度的在线计算和长时间尺度的芯片温度估算。因此,在牺牲一定精度情况下,需要从功率模块的有限元模型中提取一个降阶的热网络模型。Industrial research has shown that the power module is the weakest component in a power electronic system. About 55% of power module failures are induced by temperature factors. The chip temperature estimation of the power module is the basis for life prediction and reliability evaluation. Thermal network models are widely used in industry for chip temperature prediction and estimation of power modules because they are easily embedded in digital signal processors and do not need to design additional hardware circuits. The finite element simulation model is often used to predict the chip temperature. The simulation results of the finite element simulation model have high accuracy but the simulation process is time-consuming. Therefore, at the expense of certain accuracy, a reduced-order thermal network model needs to be extracted from the finite element model of the power module.
目前,提取降阶的热网络模型已经成为功率模块可靠运行技术的研究热点问题,这既有学术论文对此做了深入的理论分析,也有实际应用的工程方法,如发明专利《一种获取电力电子器件瞬态温度的方法和装置》(CN 102930096 B)和《基于IGBT结温信息的热网络参数辨识方法》(CN 105718694 B)。其中,At present, the extraction of the reduced-order thermal network model has become a research hotspot in the reliable operation technology of power modules. There are both in-depth theoretical analysis of this in academic papers and practical engineering methods, such as the invention patent "A method of obtaining electric power". Method and Device for Transient Temperature of Electronic Devices" (CN 102930096 B) and "Thermal Network Parameter Identification Method Based on IGBT Junction Temperature Information" (CN 105718694 B). in,
中国发明专利说明书CN 102930096 B于2014年11月29日公开的《一种获取电力电子器件瞬态温度的方法和装置》,是先获取电力电子器件的初始有限元模型和有限体积模型;再根据有限元体积模型获取对流换热系数分布,并将对流换热系数分布映射到初始有限元模型上形成新的有限元模型;接着对新的有限元模型进行降阶处理,以得到降阶处理后的降阶模型。但是这种获取降阶的仿真模型的方法存在以下不足之处:Chinese invention patent specification CN 102930096 B, published on November 29, 2014, "A Method and Device for Obtaining Transient Temperature of Power Electronic Devices", is to first obtain the initial finite element model and finite volume model of the power electronic device; The finite element volume model obtains the convective heat transfer coefficient distribution, and maps the convective heat transfer coefficient distribution to the initial finite element model to form a new finite element model; reduced order model. However, this method of obtaining a reduced-order simulation model has the following shortcomings:
1)实现过程中涉及到初始有限元模型,有限元体积模型和新的有限元模型,且存在两次映射操作,提取降阶模型的操作复杂;1) The initial finite element model, the finite element volume model and the new finite element model are involved in the implementation process, and there are two mapping operations, and the operation of extracting the reduced-order model is complicated;
2)初始有限元模型包括散热系统,新的有限元模型以对流换热系数来模型实际的散热系统,这会造成提取的降阶模型存在较大的误差。2) The initial finite element model includes the heat dissipation system, and the new finite element model uses the convective heat transfer coefficient to model the actual heat dissipation system, which will cause a large error in the extracted reduced-order model.
中国发明专利说明书CN 105718694 B于2019年2月19日公开的《基于IGBT结温信息的热网络参数辨识方法》,首先建立等效热网络模型,改变热网络中任意一组可测的热阻和热容,建立两组不同的IGBT热网络参数约束方程;然后测量等效零输入状态下的热阻和热容改变前后的两条降温曲线,获取两组时间常数;最后利用IGBT热网络参数的约束方程获取IGBT的热网络参数。但是这种热网络参数辨识存在以下不足:Chinese invention patent specification CN 105718694 B published "Thermal network parameter identification method based on IGBT junction temperature information" published on February 19, 2019. First, an equivalent thermal network model is established to change any set of measurable thermal resistances in the thermal network. and thermal capacitance, to establish two different IGBT thermal network parameter constraint equations; then measure the thermal resistance under the equivalent zero input state and the two cooling curves before and after the thermal capacitance change to obtain two sets of time constants; finally, use the IGBT thermal network parameters The constraint equation of gets the thermal network parameters of the IGBT. However, this thermal network parameter identification has the following shortcomings:
1)提取的热网络模型不考虑芯片间的热耦合效应,不适用于多芯片功率模块的温度估计;1) The extracted thermal network model does not consider the thermal coupling effect between chips, and is not suitable for temperature estimation of multi-chip power modules;
2)实现过程中涉及到的一组可测的热阻和热容并没有具体说明是如何测量的。2) A set of measurable thermal resistances and thermal capacitances involved in the implementation process does not specify how to measure them.
发明内容SUMMARY OF THE INVENTION
本发明要解决的问题为上述方案的不足,即提供一种简单的、准确的功率模块热网络模型参数辨识方法。本发明通过如下技术方案实现:The problem to be solved by the present invention is the deficiency of the above solution, that is, to provide a simple and accurate method for identifying parameters of a thermal network model of a power module. The present invention is achieved through the following technical solutions:
一种基于最小二乘法的功率模块热网络模型参数辨识方法,所述热网络模型包括13个温度结点、4个输入损耗电流源、20个热导和12个热容;所述13个温度结点记为温度结点Ni,i为温度结点的序号,i=1,2…13,温度结点Ni的温度记为温度Ti,i=1,2…13;所述20个热导记为热导Gj,j为热导的序号,j=1,2...20;所述12个热容记为热容Ck,k为热容的序号,k=1,2…12;所述4个输入损耗电流源分别记为输入损耗电流源P1、输入损耗电流源P2、输入损耗电流源P3和输入损耗电流源P4;A method for identifying parameters of a thermal network model of a power module based on the least squares method, the thermal network model includes 13 temperature nodes, 4 input loss current sources, 20 thermal conductivities and 12 thermal capacitances; the 13 temperature The node is denoted as temperature node Ni, i is the serial number of temperature node, i =1, 2...13, the temperature of temperature node Ni is denoted as temperature Ti, i = 1 , 2...13; the 20 The thermal conductivities are recorded as thermal conductance G j , j is the serial number of thermal conductance, j=1, 2...20; the 12 thermal capacitances are recorded as thermal capacitance C k , k is the serial number of thermal capacitance, k=1 , 2...12; the four input loss current sources are respectively recorded as input loss current source P 1 , input loss current source P 2 , input loss current source P 3 and input loss current source P 4 ;
所述热网络模型为三维Cauer热网络结构,分为4层,温度结点N1、温度结点N2、温度结点N3和温度结点N4处于第1层,温度结点N5、温度结点N6、温度结点N7和温度结点N8处于第2层,温度结点N9、温度结点N10、温度结点N11和温度结点N12处于第3层,温度结点N13处于第4层;温度结点N1、温度结点N5和温度结点N9在空间垂直方向上对齐,温度结点N2、温度结点N6和温度结点N10在空间垂直方向上对齐,温度结点N3、温度结点N7和温度结点N11在空间垂直方向上对齐,温度结点N4、温度结点N8和温度结点N12在空间垂直方向上对齐;The thermal network model is a three-dimensional Cauer thermal network structure, which is divided into 4 layers, the temperature node N 1 , the temperature node N 2 , the temperature node N 3 and the temperature node N 4 are in the first layer, and the temperature node N 5 , temperature node N 6 , temperature node N 7 and temperature node N 8 are in the second layer, temperature node N 9 , temperature node N 10 , temperature node N 11 and temperature node N 12 are in the third layer , the temperature node N 13 is in the fourth layer; the temperature node N 1 , the temperature node N 5 and the temperature node N 9 are aligned in the vertical direction of space, and the temperature node N 2 , the temperature node N 6 and the temperature node N 9 are aligned in the vertical direction of space. N 10 is aligned in the vertical direction of space, temperature node N 3 , temperature node N 7 and temperature node N 11 are aligned in the vertical direction of space, temperature node N 4 , temperature node N 8 and temperature node N 12 Align in the vertical direction of space;
热导G1设置在温度结点N1与温度结点N5之间,热导G2设置在温度结点N2与温度结点N6之间,热导G3设置在温度结点N3与温度结点N7之间,热导G4设置在温度结点N4与温度结点N8之间,热导G5设置在温度结点N5与温度结点N8之间,热导G6设置在温度结点N5与温度结点N6之间,热导G7设置在温度结点N6与温度结点N7之间,热导G8设置在温度结点N7与温度结点N8之间,热导G9设置在温度结点N5与温度结点N9之间,热导G10设置在温度结点N6与温度结点N10之间,热导G11设置在温度结点N7与温度结点N11之间,热导G12设置在温度结点N8与温度结点N12之间,热导G13设置在温度结点N9与温度结点N12之间,热导G14设置在温度结点N9与温度结点N10之间,热导G15设置在温度结点N10与温度结点N11之间,热导G16设置在温度结点N11与温度结点N12之间,热导G17设置在温度结点N9与温度结点N13之间,热导G18设置在温度结点N10与温度结点N13之间,热导G19设置在温度结点N11与温度结点N13之间,热导G20设置在温度结点N12与温度结点N13之间; The thermal conduction G1 is set between the temperature node N1 and the temperature node N5 , the thermal conduction G2 is set between the temperature node N2 and the temperature node N6 , and the thermal conduction G3 is set between the temperature node N 3 and the temperature node N7 , the heat conduction G4 is set between the temperature node N4 and the temperature node N8 , the heat conduction G5 is set between the temperature node N5 and the temperature node N8 , The heat conduction G6 is set between the temperature node N5 and the temperature node N6 , the heat conduction G7 is set between the temperature node N6 and the temperature node N7 , and the heat conduction G8 is set at the temperature node N 7 and the temperature node N 8 , the thermal conductance G 9 is set between the temperature node N 5 and the temperature node N 9 , the thermal conductance G 10 is set between the temperature node N 6 and the temperature node N 10 , The heat conduction G11 is set between the temperature node N7 and the temperature node N11 , the heat conduction G12 is set between the temperature node N8 and the temperature node N12 , and the heat conduction G13 is set at the temperature node N 9 and the temperature node N 12 , the thermal conductance G 14 is set between the temperature node N 9 and the temperature node N 10 , the thermal conductance G 15 is set between the temperature node N 10 and the temperature node N 11 , The thermal conduction G 16 is set between the temperature node N 11 and the temperature node N 12 , the thermal conduction G 17 is set between the temperature node N 9 and the temperature node N 13 , and the thermal conduction G 18 is set between the temperature node N 10 and the temperature node N13 , the heat conduction G19 is set between the temperature node N11 and the temperature node N13 , and the heat conduction G20 is set between the temperature node N12 and the temperature node N13 ;
热容C1、热容C2、热容C3、热容C4、热容C5、热容C6、热容C7、热容C8、热容C9、热容C10、热容C11、热容C12的一端分别相应地与温度结点N1、温度结点N2、温度结点N3、温度结点N4、温度结点N5、温度结点N6、温度结点N7、温度结点N8、温度结点N9、温度结点N10、温度结点N11、温度结点N12相连接,另一端接地;输入损耗电流源P1、输入损耗电流源P2、输入损耗电流源P3、输入损耗电流源P4的一端分别相应地与温度结点N1、温度结点N2、温度结点N3、温度结点N4相连接,另一端接地;Heat capacity C 1 , heat capacity C 2 , heat capacity C 3 , heat capacity C 4 , heat capacity C 5 , heat capacity C 6 , heat capacity C 7 , heat capacity C 8 , heat capacity C 9 , heat capacity C 10 , One end of the heat capacity C 11 and the heat capacity C 12 are respectively corresponding to the temperature node N 1 , the temperature node N 2 , the temperature node N 3 , the temperature node N 4 , the temperature node N 5 , and the temperature node N 6 . , temperature node N 7 , temperature node N 8 , temperature node N 9 , temperature node N 10 , temperature node N 11 , temperature node N 12 are connected, and the other end is grounded; input loss current source P 1 , One end of the input loss current source P 2 , the input loss current source P 3 , and the input loss current source P 4 are respectively corresponding to the temperature node N 1 , the temperature node N 2 , the temperature node N 3 , and the temperature node N 4 . connected, the other end is grounded;
本发明所述辨识方法的步骤如下:The steps of the identification method of the present invention are as follows:
步骤1,搭建功率模块的有限元仿真模型
采样功率模块的物理尺寸,并根据该物理尺寸搭建包括液冷散热系统的功率模块的有限元仿真模型S;所述有限元仿真模型S包括8层,从上至下顺序为芯片层、芯片焊料层、上铜层、陶瓷层、下铜层、基板焊料层、散热基板层和液冷层;所述芯片层由2个IGBT芯片和2个Diode芯片组成,2个IGBT芯片分别记为芯片X1和芯片X3,2个Diode芯片分别记为芯片X2和芯片X4;The physical size of the power module is sampled, and a finite element simulation model S of the power module including the liquid cooling system is built according to the physical size; the finite element simulation model S includes 8 layers, and the order from top to bottom is chip layer, chip solder layer, upper copper layer, ceramic layer, lower copper layer, substrate solder layer, heat dissipation substrate layer and liquid cooling layer; the chip layer is composed of 2 IGBT chips and 2 Diode chips, and the 2 IGBT chips are respectively recorded as chip X 1 and chip X 3 , 2 Diode chips are respectively recorded as chip X 2 and chip X 4 ;
在有限元仿真模型S中共设12个温度监测点,将其中任意一个记为温度监测点Mm,m为温度监测点的序号,m=1,2...12;其中,温度监测点M1设在芯片X1的中心位置,温度监测点M2设在芯片X2的中心位置,温度监测点M3设在芯片X3的中心位置,温度监测点M4设在芯片X4的中心位置;温度监测点M5、温度监测点M6、温度监测点M7和温度监测点M8设在上铜层,温度监测点M9、温度监测点M10、温度监测点M11和温度监测点M12设在基板焊料层;温度监测点M5、温度监测点M9在空间垂直方向上与温度监测点M1对齐,温度监测点M6、温度监测点M10在空间垂直方向上与温度监测点M2对齐,温度监测点M7、温度监测点M11在空间垂直方向上与温度监测点M3对齐,温度监测点M8、温度监测点M12在空间垂直方向上与温度监测点M4对齐;A total of 12 temperature monitoring points are set in the finite element simulation model S, and any one of them is recorded as the temperature monitoring point M m , where m is the serial number of the temperature monitoring point, m=1, 2...12; among them, the temperature monitoring point M 1 is located in the center of the chip X1, the temperature monitoring point M2 is located in the center of the chip X2 , the temperature monitoring point M3 is located in the center of the chip X3 , and the temperature monitoring point M4 is located in the center of the chip X4 Location; temperature monitoring point M 5 , temperature monitoring point M 6 , temperature monitoring point M 7 and temperature monitoring point M 8 are located on the upper copper layer, temperature monitoring point M 9 , temperature monitoring point M 10 , temperature monitoring point M 11 and temperature monitoring point M 11 The monitoring point M 12 is set on the solder layer of the substrate; the temperature monitoring point M 5 and the temperature monitoring point M 9 are aligned with the temperature monitoring point M 1 in the vertical direction of space, and the temperature monitoring point M 6 and the temperature monitoring point M 10 are in the vertical direction of space Aligned with the temperature monitoring point M 2 , the temperature monitoring point M 7 and the temperature monitoring point M 11 are aligned with the temperature monitoring point M 3 in the vertical direction of space, and the temperature monitoring point M 8 and the temperature monitoring point M 12 are aligned with the temperature monitoring point M 12 in the vertical direction of space. The monitoring point M 4 is aligned;
设置液冷层流速V、液冷层温度Y、仿真终止时间Tsim和对数均匀仿真步长Tstep;Set the liquid cooling layer flow velocity V, the liquid cooling layer temperature Y, the simulation termination time T sim and the logarithmic uniform simulation step size T step ;
步骤2,有限元仿真模型仿真实验
仿真实验1,设置芯片X1的损耗输入PX1为幅值A的阶跃功率,芯片X2的损耗输入PX2为0,芯片X3的损耗输入PX3为0,芯片X4的损耗输入PX4为0,仿真获取温度监测点Mm的瞬态温度随仿真时间t变化的数值解记录温度监测点Mm的稳态温度m=1,2...12,得到仿真实验1的稳态温度矩阵和仿真实验1对应的热网络模型的损耗矩阵U1,和U1的表达式如下:
U1=[A 0 0 0 0 0 0 0 0 0 0 0 -A]T U 1 =[A 0 0 0 0 0 0 0 0 0 0 0 -A] T
仿真实验2,设置芯片X2的损耗输入PX2为幅值A的阶跃功率,芯片X1的损耗输入PX1为0,芯片X3的损耗输入PX3为0,芯片X4的损耗输入PX4为0,仿真获取温度监测点Mm的瞬态温度随仿真时间t变化的数值解记录温度监测点Mm的稳态温度m=1,2...12,得到仿真实验2的稳态温度矩阵和仿真实验2对应的热网络模型的损耗矩阵U2,和U2的表达式如下:
U2=[0 A 0 0 0 0 0 0 0 0 0 0 -A]T U 2 =[0 A 0 0 0 0 0 0 0 0 0 0 -A] T
仿真实验3,设置芯片X3的损耗输入PX3为幅值A的阶跃功率,芯片X1的损耗输入PX1为0,芯片X2的损耗输入PX2为0,芯片X4的损耗输入PX4为0,仿真获取温度监测点Mm的瞬态温度随仿真时间t变化的数值解记录温度监测点Mm的稳态温度m=1,2...12,得到仿真实验3的稳态温度矩阵和仿真实验3对应的热网络模型的损耗矩阵U3,和U3的表达式如下:
U3=[0 0 A 0 0 0 0 0 0 0 0 0 -A]T U 3 =[0 0 A 0 0 0 0 0 0 0 0 0 -A] T
仿真实验4,设置芯片X4的损耗输入PX4为幅值A的阶跃功率,芯片X1的损耗输入PX1为0,芯片X2的损耗输入PX2为0,芯片X3的损耗输入PX3为0,仿真获取温度监测点Mm的瞬态温度随仿真时间t变化的数值解记录温度监测点Mm的稳态温度m=1,2...12,得到仿真实验4的稳态温度矩阵和仿真实验4对应的热网络模型的损耗矩阵U4,和U4的表达式如下:
U1=[0 0 0 A 0 0 0 0 0 0 0 0 -A]T U 1 =[0 0 0 A 0 0 0 0 0 0 0 0 -A] T
其中,仿真实验1对应的热网络模型的损耗矩阵U1、仿真实验2对应的热网络模型的损耗矩阵U2、仿真实验3对应的热网络模型的损耗矩阵U3、仿真实验4对应的热网络模型的损耗矩阵U4中的各个元素与热网络模型的温度结点Ni的温度Ti一一对应,i=1,2,...13;Among them, the loss matrix U 1 of the thermal network model corresponding to the
步骤3,计算热网络模型的热导
热网络模型用常微分方程组描述,表达式如下:The thermal network model is described by a system of ordinary differential equations with the following expressions:
其中,in,
T为13个温度构成的温度矩阵,其表达式为:T is a temperature matrix composed of 13 temperatures, and its expression is:
T=[T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13]T T=[T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T 11 T 12 T 13 ] T
P为热网络模型的损耗矩阵,其表达式为:P is the loss matrix of the thermal network model, and its expression is:
P=[P1 P2 P3 P4 0 0 0 0 0 0 0 0 -(P1+P2+P3+P4)]T;P=[P 1 P 2 P 3 P 4 0 0 0 0 0 0 0 0 -(P 1 +P 2 +P 3 +P 4 )] T ;
C为12个热容构成的热容矩阵,其表达式为:C is a heat capacity matrix composed of 12 heat capacities, and its expression is:
G为与20个热导对应的热导矩阵,其表达式为:G is the thermal conductance matrix corresponding to 20 thermal conductivities, and its expression is:
当热网络模型的温度结点Ni的温度Ti达到稳态时,式(1)简化为:When the temperature Ti of the temperature node Ni of the thermal network model reaches a steady state, equation (1) is simplified to:
GT=P (2)GT=P (2)
令仿真实验1的稳态温度矩阵仿真实验1对应的热网络模型的损耗矩阵U1、仿真实验2的稳态温度矩阵仿真实验2对应的热网络模型的损耗矩阵U2、仿真实验3的稳态温度矩阵仿真实验3对应的热网络模型的损耗矩阵U3、仿真实验4的稳态温度矩阵和仿真实验4对应的热网络模型的损耗矩阵U4满足以下超定方程组:Let the steady-state temperature matrix of
利用最小二乘法原理求解超定方程组(3),得到热网络模型的热导Gj,j=1,2,...20;Use the principle of least squares to solve the overdetermined equation system (3), and obtain the thermal conductance G j of the thermal network model, j=1,2,...20;
步骤3,辨识热网络模型的热容
(1)辨识热容C1 (1) Identify the heat capacity C 1
对于温度结点N1,令其满足以下关系式:For the temperature node N 1 , let it satisfy the following relation:
将步骤2仿真获取的温度监测点M1的瞬态温度随仿真时间t变化的数值解赋值给温度结点N1的温度T1、温度监测点M5的瞬态温度随仿真时间t变化的数值解赋值给温度结点N5的温度T5,并令P1=Au(t),其中u(t)为单位阶跃函数;The numerical solution of the transient temperature of the temperature monitoring point M1 obtained by the simulation in
基于最小二乘法辨识出关系式(4)的热容C1;The heat capacity C 1 of the relation (4) is identified based on the least squares method;
(2)辨识热容C2 (2) Identify the heat capacity C 2
对于热网络模型的温度结点N2,令其满足以下关系式:For the temperature node N 2 of the thermal network model, let it satisfy the following relation:
将步骤2仿真获取的温度监测点M2的瞬态温度随仿真时间t变化的数值解赋值给温度结点N2的温度T2、温度监测点M6的瞬态温度随仿真时间t变化的数值解赋值给温度结点N6的温度T6,并令P2=Au(t),其中u(t)为单位阶跃函数;The numerical solution of the transient temperature of the temperature monitoring point M 2 obtained by the simulation in
基于最小二乘法辨识出关系式(5)的热容C2;The heat capacity C 2 of the relation (5) is identified based on the least squares method;
(3)辨识热容C5 (3) Identify the heat capacity C 5
对于热网络模型的温度结点N5,令其满足以下关系式:For the temperature node N 5 of the thermal network model, let it satisfy the following relation:
将步骤2仿真获取的温度监测点M1的瞬态温度随仿真时间t变化的数值解赋值给温度结点N1的温度T1、温度监测点M5的瞬态温度随仿真时间t变化的数值解赋值给温度结点N5的温度T5、温度监测点M6的瞬态温度随仿真时间t变化的数值解赋值给温度结点N6的温度T6、温度监测点M8的瞬态温度随仿真时间t变化的数值解赋值给温度结点N8的温度T8、温度监测点M9的瞬态温度随仿真时间t变化的数值解赋值给温度结点N9的温度T9;The numerical solution of the transient temperature of the temperature monitoring point M1 obtained by the simulation in
基于最小二乘法辨识出关系式(6)的热容C5;The heat capacity C 5 of the relation (6) is identified based on the least squares method;
(4)辨识热容C6 (4) Identify the heat capacity C 6
对于热网络模型的温度结点N6,令其满足以下关系式:For the temperature node N 6 of the thermal network model, let it satisfy the following relation:
将步骤2仿真获取的温度监测点M2的瞬态温度随仿真时间t变化的数值解赋值给温度结点N2的温度T2、温度监测点M5的瞬态温度随仿真时间t变化的数值解赋值给温度结点N5的温度T5、温度监测点M6的瞬态温度随仿真时间t变化的数值解赋值给温度结点N6的温度T6、温度监测点M7的瞬态温度随仿真时间t变化的数值解赋值给温度结点N7的温度T7、温度监测点M10的瞬态温度随仿真时间t变化的数值解赋值给温度结点N10的温度T10;The numerical solution of the transient temperature of the temperature monitoring point M 2 obtained by the simulation in
基于最小二乘法辨识出关系式(7)的热容C6;The heat capacity C 6 of the relation (7) is identified based on the least square method;
(5)辨识热容C9 (5) Identify the heat capacity C 9
对于热网络模型的温度结点N9,令其满足以下关系式:For the temperature node N 9 of the thermal network model, let it satisfy the following relation:
将步骤2仿真获取的温度监测点M5的瞬态温度随仿真时间t变化的数值解赋值给温度结点N5的温度T5、温度监测点M9的瞬态温度随仿真时间t变化的数值解赋值给温度结点N9的温度T9、温度监测点M10的瞬态温度随仿真时间t变化的数值解赋值给温度结点N10的温度T10、温度监测点M12的瞬态温度随仿真时间t变化的数值解赋值给温度结点N12的温度T12;The numerical solution of the transient temperature of the temperature monitoring point M 5 obtained by the simulation in
基于最小二乘法辨识出关系式(8)的热容C9;The heat capacity C 9 of the relation (8) is identified based on the least squares method;
(6)辨识热容C10 (6) Identify the heat capacity C 10
对于热网络模型的温度结点N10,令其满足以下关系式:For the temperature node N 10 of the thermal network model, let it satisfy the following relation:
将步骤2仿真获取的温度监测点M6的瞬态温度随仿真时间t变化的数值解赋值给温度结点N6的温度T6、温度监测点M9的瞬态温度随仿真时间t变化的数值解赋值给温度结点N9的温度T9、温度监测点M10的瞬态温度随仿真时间t变化的数值解赋值给温度结点N10的温度T10、温度监测点M11的瞬态温度随仿真时间t变化的数值解赋值给温度结点N11的温度T11;The numerical solution of the transient temperature of the temperature monitoring point M6 obtained by the simulation in
基于最小二乘法辨识出关系式(9)的热容C10;The heat capacity C 10 of the relation (9) is identified based on the least squares method;
令C3=C1,C4=C2,C7=C5,C8=C6,C11=C9,C12=C10,辨识出12个热容。Let C3 = C1 , C4 = C2 , C7= C5 , C8 = C6 , C11 = C9 , C12 = C10 , identify 12 heat capacities.
本发明公开的基于最小二乘法的功率模块热网络模型参数辨识方法提取出了一种多芯片功率模块的热网络模型,实现了快速获取芯片的瞬态温度,与现有技术相比,本发明的有益效果体现在:The least square method based on the power module thermal network model parameter identification method disclosed by the invention extracts a thermal network model of a multi-chip power module, and realizes the rapid acquisition of the transient temperature of the chip. Compared with the prior art, the present invention has The beneficial effects are reflected in:
1)适合于提取多芯片功率模块的热网络模型,考虑到芯片之间的热耦合效应;1) It is suitable for extracting the thermal network model of multi-chip power modules, taking into account the thermal coupling effect between chips;
2)提取出的热网络模型适合于芯片温度的在线计算,易于嵌入到电路仿真器中进行长时间尺度的芯片温度计算;2) The extracted thermal network model is suitable for on-line calculation of chip temperature, and it is easy to be embedded in a circuit simulator for long-term chip temperature calculation;
3)没有用等效传热系数来简化有限元模型,提取的热网络模型精度高。3) The finite element model is not simplified by the equivalent heat transfer coefficient, and the extracted thermal network model has high accuracy.
附图说明Description of drawings
图1为本发明基于最小二乘法的功率模块热网络模型参数辨识方法的流程图。FIG. 1 is a flowchart of a method for identifying parameters of a thermal network model of a power module based on the least squares method according to the present invention.
图2为本发明辨识方法所涉及的热网络模型结构图。FIG. 2 is a structural diagram of a thermal network model involved in the identification method of the present invention.
图3为有限元仿真模型的芯片平面布局简图。Figure 3 is a schematic diagram of the chip plane layout of the finite element simulation model.
图4为有限元仿真模型的剖面简图。Figure 4 is a schematic cross-sectional view of the finite element simulation model.
图5为仿真实验1的温度监测点M1、温度监测点M5和温度监测点M9的瞬态温度随仿真时间t变化的曲线。FIG. 5 is a graph showing the change of the transient temperature of the temperature monitoring point M 1 , the temperature monitoring point M 5 and the temperature monitoring point M 9 in the
图6为仿真实验获取的热网络模型的温度结点N1和有限元模型的温度监测点M1的瞬态温度曲线。FIG. 6 is the transient temperature curve of the temperature node N 1 of the thermal network model and the temperature monitoring point M 1 of the finite element model obtained by the simulation experiment.
具体实施方式Detailed ways
以下结合附图,对本发明进行进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings.
图2是本发明辨识方法所涉及的热网络模型结构图,由图2可见,本发明中的热网络模型包括13个温度结点、4个输入损耗电流源、20个热导和12个热容;所述13个温度结点记为温度结点Ni,i为温度结点的序号,i=1,2…13,温度结点Ni的温度记为温度Ti,i=1,2…13;所述20个热导记为热导Gj,j为热导的序号,j=1,2...20;所述12个热容记为热容Ck,k为热容的序号,k=1,2…12;所述4个输入损耗电流源分别记为输入损耗电流源P1、输入损耗电流源P2、输入损耗电流源P3和输入损耗电流源P4。FIG. 2 is a structural diagram of the thermal network model involved in the identification method of the present invention. It can be seen from FIG. 2 that the thermal network model in the present invention includes 13 temperature nodes, 4 input loss current sources, 20 thermal conductivity and 12 thermal The 13 temperature nodes are denoted as temperature nodes Ni, i is the serial number of temperature nodes, i =1, 2...13, the temperature of temperature nodes Ni is denoted as temperature Ti, i =1, 2...13; the 20 thermal conductivities are recorded as thermal conductance G j , j is the serial number of the thermal conductance, j=1, 2...20; the 12 thermal capacitances are recorded as thermal capacitance C k , k is the thermal conductance The serial number of the capacitor, k=1, 2...12; the four input loss current sources are respectively recorded as input loss current source P 1 , input loss current source P 2 , input loss current source P 3 and input loss current source P 4 .
所述热网络模型为三维Cauer热网络结构,分为4层,温度结点N1、温度结点N2、温度结点N3和温度结点N4处于第1层,温度结点N5、温度结点N6、温度结点N7和温度结点N8处于第2层,温度结点N9、温度结点N10、温度结点N11和温度结点N12处于第3层,温度结点N13处于第4层;温度结点N1、温度结点N5和温度结点N9在空间垂直方向上对齐,温度结点N2、温度结点N6和温度结点N10在空间垂直方向上对齐,温度结点N3、温度结点N7和温度结点N11在空间垂直方向上对齐,温度结点N4、温度结点N8和温度结点N12在空间垂直方向上对齐。The thermal network model is a three-dimensional Cauer thermal network structure, which is divided into 4 layers, the temperature node N 1 , the temperature node N 2 , the temperature node N 3 and the temperature node N 4 are in the first layer, and the temperature node N 5 , temperature node N 6 , temperature node N 7 and temperature node N 8 are in the second layer, temperature node N 9 , temperature node N 10 , temperature node N 11 and temperature node N 12 are in the third layer , the temperature node N 13 is in the fourth layer; the temperature node N 1 , the temperature node N 5 and the temperature node N 9 are aligned in the vertical direction of space, and the temperature node N 2 , the temperature node N 6 and the temperature node N 9 are aligned in the vertical direction of space. N 10 is aligned in the vertical direction of space, temperature node N 3 , temperature node N 7 and temperature node N 11 are aligned in the vertical direction of space, temperature node N 4 , temperature node N 8 and temperature node N 12 Align vertically in space.
热导G1设置在温度结点N1与温度结点N5之间,热导G2设置在温度结点N2与温度结点N6之间,热导G3设置在温度结点N3与温度结点N7之间,热导G4设置在温度结点N4与温度结点N8之间,热导G5设置在温度结点N5与温度结点N8之间,热导G6设置在温度结点N5与温度结点N6之间,热导G7设置在温度结点N6与温度结点N7之间,热导G8设置在温度结点N7与温度结点N8之间,热导G9设置在温度结点N5与温度结点N9之间,热导G10设置在温度结点N6与温度结点N10之间,热导G11设置在温度结点N7与温度结点N11之间,热导G12设置在温度结点N8与温度结点N12之间,热导G13设置在温度结点N9与温度结点N12之间,热导G14设置在温度结点N9与温度结点N10之间,热导G15设置在温度结点N10与温度结点N11之间,热导G16设置在温度结点N11与温度结点N12之间,热导G17设置在温度结点N9与温度结点N13之间,热导G18设置在温度结点N10与温度结点N13之间,热导G19设置在温度结点N11与温度结点N13之间,热导G20设置在温度结点N12与温度结点N13之间。 The thermal conduction G1 is set between the temperature node N1 and the temperature node N5 , the thermal conduction G2 is set between the temperature node N2 and the temperature node N6 , and the thermal conduction G3 is set between the temperature node N 3 and the temperature node N7 , the heat conduction G4 is set between the temperature node N4 and the temperature node N8 , the heat conduction G5 is set between the temperature node N5 and the temperature node N8 , The heat conduction G6 is set between the temperature node N5 and the temperature node N6 , the heat conduction G7 is set between the temperature node N6 and the temperature node N7 , and the heat conduction G8 is set at the temperature node N 7 and the temperature node N 8 , the thermal conductance G 9 is set between the temperature node N 5 and the temperature node N 9 , the thermal conductance G 10 is set between the temperature node N 6 and the temperature node N 10 , The heat conduction G11 is set between the temperature node N7 and the temperature node N11 , the heat conduction G12 is set between the temperature node N8 and the temperature node N12 , and the heat conduction G13 is set at the temperature node N 9 and the temperature node N 12 , the thermal conductance G 14 is set between the temperature node N 9 and the temperature node N 10 , the thermal conductance G 15 is set between the temperature node N 10 and the temperature node N 11 , The thermal conduction G 16 is set between the temperature node N 11 and the temperature node N 12 , the thermal conduction G 17 is set between the temperature node N 9 and the temperature node N 13 , and the thermal conduction G 18 is set between the temperature node N 10 and the temperature node N 13 , the heat conduction G 19 is set between the temperature node N 11 and the temperature node N 13 , and the heat conduction G 20 is set between the temperature node N 12 and the temperature node N 13 .
热容C1、热容C2、热容C3、热容C4、热容C5、热容C6、热容C7、热容C8、热容C9、热容C10、热容C11、热容C12的一端分别相应地与温度结点N1、温度结点N2、温度结点N3、温度结点N4、温度结点N5、温度结点N6、温度结点N7、温度结点N8、温度结点N9、温度结点N10、温度结点N11、温度结点N12相连接,另一端接地;输入损耗电流源P1、输入损耗电流源P2、输入损耗电流源P3、输入损耗电流源P4的一端分别相应地与温度结点N1、温度结点N2、温度结点N3、温度结点N4相连接,另一端接地。Heat capacity C 1 , heat capacity C 2 , heat capacity C 3 , heat capacity C 4 , heat capacity C 5 , heat capacity C 6 , heat capacity C 7 , heat capacity C 8 , heat capacity C 9 , heat capacity C 10 , One end of the heat capacity C 11 and the heat capacity C 12 are respectively corresponding to the temperature node N 1 , the temperature node N 2 , the temperature node N 3 , the temperature node N 4 , the temperature node N 5 , and the temperature node N 6 . , temperature node N 7 , temperature node N 8 , temperature node N 9 , temperature node N 10 , temperature node N 11 , temperature node N 12 are connected, and the other end is grounded; input loss current source P 1 , One end of the input loss current source P 2 , the input loss current source P 3 , and the input loss current source P 4 are respectively corresponding to the temperature node N 1 , the temperature node N 2 , the temperature node N 3 , and the temperature node N 4 . connected, and the other end is grounded.
图1为本发明基于最小二乘法的功率模块热网络模型参数辨识方法的流程图,由图1可见,本发明参数辨识方法包括以下步骤:Fig. 1 is the flow chart of the power module thermal network model parameter identification method based on the least squares method of the present invention, as can be seen from Fig. 1, the parameter identification method of the present invention comprises the following steps:
步骤1,搭建功率模块的有限元仿真模型
采样功率模块的物理尺寸,并根据该物理尺寸搭建包括液冷散热系统的功率模块的有限元仿真模型S;所述有限元仿真模型S包括8层,从上至下顺序为芯片层、芯片焊料层、上铜层、陶瓷层、下铜层、基板焊料层、散热基板层和液冷层;所述芯片层由2个IGBT芯片和2个Diode芯片组成,2个IGBT芯片分别记为芯片X1和芯片X3,2个Diode芯片分别记为芯片X2和芯片X4。The physical size of the power module is sampled, and a finite element simulation model S of the power module including the liquid cooling system is built according to the physical size; the finite element simulation model S includes 8 layers, and the order from top to bottom is chip layer, chip solder layer, upper copper layer, ceramic layer, lower copper layer, substrate solder layer, heat dissipation substrate layer and liquid cooling layer; the chip layer is composed of 2 IGBT chips and 2 Diode chips, and the 2 IGBT chips are respectively recorded as chip X 1 and chip X 3 , 2 Diode chips are respectively recorded as chip X 2 and chip X 4 .
图3为有限元仿真模型S的芯片平面布局简图,图4为有限元仿真模型S的剖面简图。FIG. 3 is a schematic diagram of a chip plane layout of the finite element simulation model S, and FIG. 4 is a schematic cross-sectional diagram of the finite element simulation model S. As shown in FIG.
在有限元仿真模型S中共设12个温度监测点,将其中任意一个记为温度监测点Mm,m为温度监测点的序号,m=1,2...12;其中,温度监测点M1设在芯片X1的中心位置,温度监测点M2设在芯片X2的中心位置,温度监测点M3设在芯片X3的中心位置,温度监测点M4设在芯片X4的中心位置;温度监测点M5、温度监测点M6、温度监测点M7和温度监测点M8设在上铜层,温度监测点M9、温度监测点M10、温度监测点M11和温度监测点M12设在基板焊料层;温度监测点M5、温度监测点M9在空间垂直方向上与温度监测点M1对齐,温度监测点M6、温度监测点M10在空间垂直方向上与温度监测点M2对齐,温度监测点M7、温度监测点M11在空间垂直方向上与温度监测点M3对齐,温度监测点M8、温度监测点M12在空间垂直方向上与温度监测点M4对齐。A total of 12 temperature monitoring points are set in the finite element simulation model S, and any one of them is recorded as the temperature monitoring point M m , where m is the serial number of the temperature monitoring point, m=1, 2...12; among them, the temperature monitoring point M 1 is located in the center of the chip X1, the temperature monitoring point M2 is located in the center of the chip X2 , the temperature monitoring point M3 is located in the center of the chip X3 , and the temperature monitoring point M4 is located in the center of the chip X4 Location; temperature monitoring point M 5 , temperature monitoring point M 6 , temperature monitoring point M 7 and temperature monitoring point M 8 are located on the upper copper layer, temperature monitoring point M 9 , temperature monitoring point M 10 , temperature monitoring point M 11 and temperature monitoring point M 11 The monitoring point M 12 is set on the solder layer of the substrate; the temperature monitoring point M 5 and the temperature monitoring point M 9 are aligned with the temperature monitoring point M 1 in the vertical direction of space, and the temperature monitoring point M 6 and the temperature monitoring point M 10 are in the vertical direction of space Aligned with the temperature monitoring point M 2 , the temperature monitoring point M 7 and the temperature monitoring point M 11 are aligned with the temperature monitoring point M 3 in the vertical direction of space, and the temperature monitoring point M 8 and the temperature monitoring point M 12 are aligned with the temperature monitoring point M 12 in the vertical direction of space. The monitoring point M 4 is aligned.
设置液冷层流速V、液冷层温度Y、仿真终止时间Tsim和对数均匀仿真步长Tstep。Set the liquid cooling layer flow velocity V, the liquid cooling layer temperature Y, the simulation termination time T sim and the logarithmic uniform simulation step size T step .
在本实例中,液冷层流速V=8L/min,液冷层Y=65℃,仿真终止时间Tsim=100s,对数均匀仿真步长其中t为仿真时间。In this example, the liquid cooling layer flow rate V=8L/min, the liquid cooling layer Y=65℃, the simulation termination time Tsim =100s, and the logarithmic uniform simulation step size where t is the simulation time.
步骤2,有限元仿真模型仿真实验
仿真实验1,设置芯片X1的损耗输入PX1为幅值A的阶跃功率,芯片X2的损耗输入PX2为0,芯片X3的损耗输入PX3为0,芯片X4的损耗输入PX4为0,仿真获取温度监测点Mm的瞬态温度随仿真时间t变化的数值解记录温度监测点Mm的稳态温度m=1,2...12,得到仿真实验1的稳态温度矩阵和仿真实验1对应的热网络模型的损耗矩阵U1,和U1的表达式如下:
U1=[A 0 0 0 0 0 0 0 0 0 0 0 -A]T U 1 =[A 0 0 0 0 0 0 0 0 0 0 0 -A] T
图5为仿真实验1的温度监测点M1、温度监测点M5和温度监测点M9的瞬态曲线随仿真时间t变化的曲线。FIG. 5 is a curve of the transient curves of the temperature monitoring point M 1 , the temperature monitoring point M 5 and the temperature monitoring point M 9 in the
仿真实验2,设置芯片X2的损耗输入PX2为幅值A的阶跃功率,芯片X1的损耗输入PX1为0,芯片X3的损耗输入PX3为0,芯片X4的损耗输入PX4为0,仿真获取温度监测点Mm的瞬态温度随仿真时间t变化的数值解记录温度监测点Mm的稳态温度m=1,2...12,得到仿真实验2的稳态温度矩阵和仿真实验2对应的热网络模型的损耗矩阵U2,和U2的表达式如下:
U2=[0 A 0 0 0 0 0 0 0 0 0 0 -A]T U 2 =[0
仿真实验3,设置芯片X3的损耗输入PX3为幅值A的阶跃功率,芯片X1的损耗输入PX1为0,芯片X2的损耗输入PX2为0,芯片X4的损耗输入PX4为0,仿真获取温度监测点Mm的瞬态温度随仿真时间t变化的数值解记录温度监测点Mm的稳态温度m=1,2...12,得到仿真实验3的稳态温度矩阵和仿真实验3对应的热网络模型的损耗矩阵U3,和U3的表达式如下:
U3=[0 0 A 0 0 0 0 0 0 0 0 0 -A]T U 3 =[0 0 A 0 0 0 0 0 0 0 0 0 -A] T
仿真实验4,设置芯片X4的损耗输入PX4为幅值A的阶跃功率,芯片X1的损耗输入PX1为0,芯片X2的损耗输入PX2为0,芯片X3的损耗输入PX3为0,仿真获取温度监测点Mm的瞬态温度随仿真时间t变化的数值解记录温度监测点Mm的稳态温度m=1,2...12,得到仿真实验4的稳态温度矩阵和仿真实验4对应的热网络模型的损耗矩阵U4,和U4的表达式如下:
U1=[0 0 0 A 0 0 0 0 0 0 0 0 -A]T U 1 =[0 0 0 A 0 0 0 0 0 0 0 0 -A] T
其中,仿真实验1对应的热网络模型的损耗矩阵U1、仿真实验2对应的热网络模型的损耗矩阵U2、仿真实验3对应的热网络模型的损耗矩阵U3、仿真实验4对应的热网络模型的损耗矩阵U4中的各个元素与热网络模型的温度结点Ni的温度Ti一一对应,i=1,2,...13。Among them, the loss matrix U 1 of the thermal network model corresponding to the
在本实例中,幅值A=100。In this example, the amplitude A=100.
步骤3,计算热网络模型的热导
热网络模型用常微分方程组描述,表达式如下:The thermal network model is described by a system of ordinary differential equations with the following expressions:
其中,in,
T为13个温度构成的温度矩阵,其表达式为:T is a temperature matrix composed of 13 temperatures, and its expression is:
T=[T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13]T T=[T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T 11 T 12 T 13 ] T
P为热网络模型的损耗矩阵,其表达式为:P is the loss matrix of the thermal network model, and its expression is:
P=[P1 P2 P3 P4 0 0 0 0 0 0 0 0 -(P1+P2+P3+P4)]T;P=[P 1 P 2 P 3 P 4 0 0 0 0 0 0 0 0 -(P 1 +P 2 +P 3 +P 4 )] T ;
C为12个热容构成的热容矩阵,其表达式为:C is a heat capacity matrix composed of 12 heat capacities, and its expression is:
G为与20个热导对应的热导矩阵,其表达式为:G is the thermal conductance matrix corresponding to 20 thermal conductivities, and its expression is:
当热网络模型的温度结点Ni的温度Ti达到稳态时,式(1)简化为:When the temperature Ti of the temperature node Ni of the thermal network model reaches a steady state, equation (1) is simplified to:
GT=P (2)GT=P (2)
令仿真实验1的稳态温度矩阵仿真实验1对应的热网络模型的损耗矩阵U1、仿真实验2的稳态温度矩阵仿真实验2对应的热网络模型的损耗矩阵U2、仿真实验3的稳态温度矩阵仿真实验3对应的热网络模型的损耗矩阵U3、仿真实验4的稳态温度矩阵和仿真实验4对应的热网络模型的损耗矩阵U4满足以下超定方程组:Let the steady-state temperature matrix of
利用最小二乘法原理求解超定方程组(3),得到热网络模型的热导Gj,j=1,2,...20。Using the principle of least squares to solve the overdetermined equations (3), the thermal conductance G j of the thermal network model is obtained, j=1,2,...20.
步骤3,辨识热网络模型的热容
(1)辨识热容C1 (1) Identify the heat capacity C 1
对于温度结点N1,令其满足以下关系式:For the temperature node N 1 , let it satisfy the following relation:
将步骤2仿真获取的温度监测点M1的瞬态温度随仿真时间t变化的数值解赋值给温度结点N1的温度T1、温度监测点M5的瞬态温度随仿真时间t变化的数值解赋值给温度结点N5的温度T5,并令P1=Au(t),其中u(t)为单位阶跃函数;The numerical solution of the transient temperature of the temperature monitoring point M1 obtained by the simulation in
基于最小二乘法辨识出关系式(4)的热容C1;The heat capacity C 1 of the relation (4) is identified based on the least squares method;
(2)辨识热容C2 (2) Identify the heat capacity C 2
对于热网络模型的温度结点N2,令其满足以下关系式:For the temperature node N 2 of the thermal network model, let it satisfy the following relation:
将步骤2仿真获取的温度监测点M2的瞬态温度随仿真时间t变化的数值解赋值给温度结点N2的温度T2、温度监测点M6的瞬态温度随仿真时间t变化的数值解赋值给温度结点N6的温度T6,并令P2=Au(t),其中u(t)为单位阶跃函数;The numerical solution of the transient temperature of the temperature monitoring point M 2 obtained by the simulation in
基于最小二乘法辨识出关系式(5)的热容C2;The heat capacity C 2 of the relation (5) is identified based on the least squares method;
(3)辨识热容C5 (3) Identify the heat capacity C 5
对于热网络模型的温度结点N5,令其满足以下关系式:For the temperature node N 5 of the thermal network model, let it satisfy the following relation:
将步骤2仿真获取的温度监测点M1的瞬态温度随仿真时间t变化的数值解赋值给温度结点N1的温度T1、温度监测点M5的瞬态温度随仿真时间t变化的数值解赋值给温度结点N5的温度T5、温度监测点M6的瞬态温度随仿真时间t变化的数值解赋值给温度结点N6的温度T6、温度监测点M8的瞬态温度随仿真时间t变化的数值解赋值给温度结点N8的温度T8、温度监测点M9的瞬态温度随仿真时间t变化的数值解赋值给温度结点N9的温度T9;The numerical solution of the transient temperature of the temperature monitoring point M1 obtained by the simulation in
基于最小二乘法辨识出关系式(6)的热容C5;The heat capacity C 5 of the relation (6) is identified based on the least squares method;
(4)辨识热容C6 (4) Identify the heat capacity C 6
对于热网络模型的温度结点N6,令其满足以下关系式:For the temperature node N 6 of the thermal network model, let it satisfy the following relation:
将步骤2仿真获取的温度监测点M2的瞬态温度随仿真时间t变化的数值解赋值给温度结点N2的温度T2、温度监测点M5的瞬态温度随仿真时间t变化的数值解赋值给温度结点N5的温度T5、温度监测点M6的瞬态温度随仿真时间t变化的数值解赋值给温度结点N6的温度T6、温度监测点M7的瞬态温度随仿真时间t变化的数值解赋值给温度结点N7的温度T7、温度监测点M10的瞬态温度随仿真时间t变化的数值解赋值给温度结点N10的温度T10;The numerical solution of the transient temperature of the temperature monitoring point M 2 obtained by the simulation in
基于最小二乘法辨识出关系式(7)的热容C6;The heat capacity C 6 of the relation (7) is identified based on the least square method;
(5)辨识热容C9 (5) Identify the heat capacity C 9
对于热网络模型的温度结点N9,令其满足以下关系式:For the temperature node N 9 of the thermal network model, let it satisfy the following relation:
将步骤2仿真获取的温度监测点M5的瞬态温度随仿真时间t变化的数值解赋值给温度结点N5的温度T5、温度监测点M9的瞬态温度随仿真时间t变化的数值解赋值给温度结点N9的温度T9、温度监测点M10的瞬态温度随仿真时间t变化的数值解赋值给温度结点N10的温度T10、温度监测点M12的瞬态温度随仿真时间t变化的数值解赋值给温度结点N12的温度T12;The numerical solution of the transient temperature of the temperature monitoring point M 5 obtained by the simulation in
基于最小二乘法辨识出关系式(8)的热容C9;The heat capacity C 9 of the relation (8) is identified based on the least squares method;
(6)辨识热容C10 (6) Identify the heat capacity C 10
对于热网络模型的温度结点N10,令其满足以下关系式:For the temperature node N 10 of the thermal network model, let it satisfy the following relation:
将步骤2仿真获取的温度监测点M6的瞬态温度随仿真时间t变化的数值解赋值给温度结点N6的温度T6、温度监测点M9的瞬态温度随仿真时间t变化的数值解赋值给温度结点N9的温度T9、温度监测点M10的瞬态温度随仿真时间t变化的数值解赋值给温度结点N10的温度T10、温度监测点M11的瞬态温度随仿真时间t变化的数值解赋值给温度结点N11的温度T11;The numerical solution of the transient temperature of the temperature monitoring point M6 obtained by the simulation in
基于最小二乘法辨识出关系式(9)的热容C10;The heat capacity C 10 of the relation (9) is identified based on the least squares method;
令C3=C1,C4=C2,C7=C5,C8=C6,C11=C9,C12=C10,辨识出12个热容。Let C3 = C1 , C4 = C2 , C7= C5 , C8 = C6 , C11 = C9 , C12 = C10 , identify 12 heat capacities.
为了验证本发明的有效性,对本发明进行仿真验证。In order to verify the effectiveness of the present invention, the present invention is simulated and verified.
设置芯片X1的损耗输入PX1=-50sin(2πt)+|50sin(2πt)|,芯片X2的损耗输入为PX2=50sin(2πt)+|50sin(2πt)|,芯片X3的损耗输入PX3=50sin(2πt)+|50sin(2πt)|,芯片X4的损耗输入PX4=-50sin(2πt)+|50sin(2πt)|。Set the loss input of chip X1 as P X1 = -50sin(2πt)+|50sin( 2πt )|, the loss input of chip X2 as P X2 =50sin(2πt)+|50sin(2πt)|, the loss of chip X3 Input P X3 =50sin(2πt)+|50sin(2πt)|, and input P X4 =-50sin(2πt)+|50sin(2πt)| for the loss of chip X4 .
在MATLAB/Simulink中搭建热网络模型,并设置输入损耗电流源P1=-50sin(2πt)+|50sin(2πt)|,输入损耗电流源P2=50sin(2πt)+|50sin(2πt)|,输入损耗电流源P3=50sin(2πt)+|50sin(2πt)|,输入损耗电流源P4=-50sin(2πt)+|50sin(2πt)|。Build the thermal network model in MATLAB/Simulink, and set the input loss current source P 1 =-50sin(2πt)+|50sin(2πt)|, the input loss current source P 2 =50sin(2πt)+|50sin(2πt)| , the input loss current source P 3 =50sin(2πt)+|50sin(2πt)|, and the input loss current source P4= −50sin (2πt)+|50sin(2πt)|.
图6为仿真实验获取的热网络模型的温度结点N1的瞬态温度和有限元模型的温度监测点M1的瞬态温度曲线,热网络模型的温度结点N1的瞬态温度变化基本与有限元模型的温度监测点M1的瞬态温度变化一致,最大误差不超过1%。Figure 6 shows the transient temperature curve of the temperature node N1 of the thermal network model obtained from the simulation experiment and the transient temperature curve of the temperature monitoring point M1 of the finite element model, and the transient temperature change of the temperature node N1 of the thermal network model It is basically consistent with the transient temperature change of the temperature monitoring point M1 of the finite element model, and the maximum error does not exceed 1%.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010216020.8A CN111507031B (en) | 2020-03-25 | 2020-03-25 | Power module thermal network model parameter identification method based on least square method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010216020.8A CN111507031B (en) | 2020-03-25 | 2020-03-25 | Power module thermal network model parameter identification method based on least square method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111507031A CN111507031A (en) | 2020-08-07 |
CN111507031B true CN111507031B (en) | 2022-06-24 |
Family
ID=71874147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010216020.8A Active CN111507031B (en) | 2020-03-25 | 2020-03-25 | Power module thermal network model parameter identification method based on least square method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111507031B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102930096A (en) * | 2012-10-26 | 2013-02-13 | 南车株洲电力机车研究所有限公司 | Method and device for acquiring transient temperature of power electronic device |
CN105718694A (en) * | 2016-01-28 | 2016-06-29 | 重庆大学 | Thermal-network parameter identification method based on IGBT junction temperature information |
CN106407608A (en) * | 2016-10-27 | 2017-02-15 | 华北电力大学 | Steady state junction temperature prediction model of crimping IGBT module considering thermal coupling |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190250205A1 (en) * | 2018-02-13 | 2019-08-15 | GM Global Technology Operations LLC | Thermal model based health assessment of igbt |
-
2020
- 2020-03-25 CN CN202010216020.8A patent/CN111507031B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102930096A (en) * | 2012-10-26 | 2013-02-13 | 南车株洲电力机车研究所有限公司 | Method and device for acquiring transient temperature of power electronic device |
CN105718694A (en) * | 2016-01-28 | 2016-06-29 | 重庆大学 | Thermal-network parameter identification method based on IGBT junction temperature information |
CN106407608A (en) * | 2016-10-27 | 2017-02-15 | 华北电力大学 | Steady state junction temperature prediction model of crimping IGBT module considering thermal coupling |
Non-Patent Citations (2)
Title |
---|
IGBT功率模块热网络模型建立及其参数辨识方法综述和展望;李凯伟等;《电子测量与仪器学报》;20200115(第01期);全文 * |
IGBT模块实时温度反馈的动态热网络模型;胡丰晔等;《半导体技术》;20200203(第02期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111507031A (en) | 2020-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105718694B (en) | Thermal network parameter identification method based on IGBT junction temperature information | |
CN106021189B (en) | A kind of more telegram in reply cable stable state temperature liter acquisition methods adapting to a variety of boundary conditions | |
CN104217061A (en) | Temperature field simulation design method for low-voltage distribution cabinet | |
CN111950220B (en) | Electrothermal coupling model building method | |
CN112966391B (en) | Fourier analysis diffusion angle-based power module thermal impedance modeling method | |
CN112307656B (en) | Method, system and device for acquiring electrothermal parameters of power semiconductor module | |
CN115186556A (en) | Thermal impedance model modeling and junction temperature estimation method, computer device and storage medium | |
Oukaira et al. | Foster-based transient thermal analysis of SiP for thermomechanical studies | |
CN106970268B (en) | Phase voltage self-calibration method of single-phase overhead transmission line based on parallel capacitor | |
CN111507031B (en) | Power module thermal network model parameter identification method based on least square method | |
CN106599384B (en) | A Method for Obtaining Transient Temperature Rise of Cable Adapting to Two Boundary Temperatures | |
CN106053527B (en) | Method that is a kind of while testing power battery anisotropy thermal diffusion coefficient | |
CN114186462A (en) | Fanout signal line electric heating simulation method | |
CN111400833B (en) | Verilog-A macro model modeling method for thermal wind speed sensor | |
CN118688600A (en) | IGBT module monitoring method, device, equipment, medium and product | |
CN106294966B (en) | A single-circuit cable core transient temperature acquisition method independent of skin temperature | |
CN109284573B (en) | Multi-loop cable steady-state temperature rise acquisition method considering nearby heat source conditions | |
Yuan et al. | Improved Cauer thermal network considering thermal coupling effects of multi‐chip modules | |
CN110569529B (en) | A Junction Temperature Estimation Method for Power Devices Based on Adaptive Heat Transfer Angle Optimization | |
CN113420407B (en) | IGCT water-cooled radiator modeling and junction temperature calculation method | |
WO2023245701A1 (en) | Thermal wind speed sensor macromodel extraction method based on state space method | |
CN117172178A (en) | Si/SiC hybrid device coupling thermal parameter identification method | |
Németh et al. | Compact modeling approach for microchannel cooling and its validation | |
CN115219554A (en) | A method and system for determining thermal resistance of a double-sided heat dissipation module | |
CN115828809A (en) | A Thermal Modeling Method for Planar Interconnect Modules with Double-sided Heat Dissipation Based on Diffusion Thermal Resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |