CN111501016A - 一种高均一性的原子层沉积方法及其应用 - Google Patents

一种高均一性的原子层沉积方法及其应用 Download PDF

Info

Publication number
CN111501016A
CN111501016A CN202010275215.XA CN202010275215A CN111501016A CN 111501016 A CN111501016 A CN 111501016A CN 202010275215 A CN202010275215 A CN 202010275215A CN 111501016 A CN111501016 A CN 111501016A
Authority
CN
China
Prior art keywords
atomic layer
layer deposition
deposition method
organic compound
ema
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010275215.XA
Other languages
English (en)
Inventor
安重镒
金成基
项金娟
贺晓彬
张琦辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Zhenxin Beijing Semiconductor Co Ltd
Original Assignee
Institute of Microelectronics of CAS
Zhenxin Beijing Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS, Zhenxin Beijing Semiconductor Co Ltd filed Critical Institute of Microelectronics of CAS
Priority to CN202010275215.XA priority Critical patent/CN111501016A/zh
Publication of CN111501016A publication Critical patent/CN111501016A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种高均一性的原子层沉积方法及其应用。一种高均一性的原子层沉积方法包括:以含有至少一个环戊二烯基配体的金属有机化合物为前驱体,在载体上进行原子层沉积,形成薄膜。本发明解决了现有技术膜质共形性低的问题。

Description

一种高均一性的原子层沉积方法及其应用
技术领域
本发明涉及半导体制备领域,特别涉及一种高均一性的原子层沉积方法及其应用。
背景技术
随着半导体器件的微型化,在拥有高深宽比(30以上)的图形结构中,获得均匀的共形膜对提高器件的电学特性至关重要。在1X级以下的动态随机存储器电容器(DRAMCapacitor)结构中,为确保优异的电特性,图形结构的顶部和底部的共形性必须达到90%以上,甚至要求达到98%以上,但现有技术很难达到,即使采用现有原子层沉积法也无法实现。例如以四(乙基甲基胺基)锆与臭氧为前驱体,利用原子层沉积法可以得到共形性为88%的膜质,无法满足1X级DRAM的要求。
发明内容
本发明的目的在于提供一种高均一性的原子层沉积方法,该方法解决了现有技术膜质共形性低的问题。
为了实现以上目的,本发明提供了以下技术方案:
一种高均一性的原子层沉积方法,包括:以含有至少一个环戊二烯基配体的金属有机化合物为前驱体,在载体上进行原子层沉积,形成薄膜。
本发明发现已有沉积方法无法达到高共形性的原因在于:前驱体采用的金属有机化合物的热分解温度较低,低于其蒸发温度,因此,在金属有机化合物蒸发成气相前就已经发生分解反应,形成容易吸附在晶圆(或其他载体)表面的分子,进而导致晶圆表面无法形成均匀分散的膜厚。以乙基甲基胺基三甲基锆(Zr(EMA)(Me)3)为例,其热分解温度为120℃,蒸发温度为170℃,其用作原子层沉积的前驱体时,就容易出现以上问题。
为此,本发明改变了传统原子层沉积法的前驱体类型,在金属有机化合物中引入至少一个环戊二烯基配体,增加了化合物的分子内结合力,使化合物的热分解温度高于蒸发温度,解决了以上问题,达到了“高均一性”的目的。
本发明所述的高均一性的原子层沉积方法可用于制作任意的半导体器件,包括但不限于DRAM,2D NAND,3D NAND或LCD。
与现有技术相比,本发明达到了以下技术效果:
(1)提高了沉积膜厚的均一性:部分实施例将现有的89%共形性提高至92%;
(2)适用范围广:适用于多种类型的金属有机物前驱体,也适用于各种类型的半导体。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。
图1为利用现有技术在生产性晶圆(PW)上沉积的膜外貌示意图;
图2为利用本发明技术在生产性晶圆(PW)上沉积的膜外貌示意图;
图3为利用现有技术在非生产性晶圆(NPW)上沉积的膜外貌示意图;
图4为利用本发明技术在非生产性晶圆(NPW)上沉积的膜外貌示意图;
图5为两种不同技术沉积的半导体结构的击穿电压累计分布图。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
本发明涉及的简称含义如下。
Cp为环戊二烯基,
METHD为甲氧基乙氧基四甲基庚二酮酸根,
MPD为2-甲基-2,4戊二氧基,
THD为2,3,6,6-四甲基-3,5-庚二酮酸根,
EMA为乙基甲基胺基,
DMA为二甲基胺基,
Me为甲基,
ALD为原子层沉积。
实施例
分别采用式(一)的Zr(EMA)(Me)3和式(二)的Zr(DMA)(Me)2(Cp)为前驱体,均以臭氧O3为反应气体,在晶圆上沉积氧化锆ZrO2
Figure BDA0002444536650000031
沉积方式是ALD,过程为:前驱体的脉冲——净化气体/抽空——其他反应气体的脉冲——净化气体/抽空。其中,净化气体/抽空的顺序可调换。
以上两种前驱体沉积的ZrO2膜形貌分别如图1至4所示,图中黑色实体小圈代表在ALD沉积反应之前驱体化合物的热分解产物。
经检测,以Zr(EMA)(Me)3沉积的ZrO2膜形貌共形性为89%,以Zr(DMA)(Me)2(Cp)沉积的ZrO2膜形貌共形性为92%。
测试两种方法制备的结构的击穿电压(BV)累计分布,如图5所示,结果显示在10nA测试条件下本发明制备的半导体结构的耐电强度更高。
在另外的实施方式中,可根据所需的膜类型改变金属类型或者配位基的类型/数量等,如金属有机化合物中含有两个、三个或四个环戊二烯基配体。金属有机化合物中配体的数量既与金属的配位键数量有关,也与满足原子层沉积的基本要求有关,例如在较低的沉积温度下具有充分的挥发性,或者能够吸附在载体表面,不会腐蚀载体或载体上已有的膜等。
所需的膜类型包括但不限于金属膜、金属氧化物膜、金属硅酸盐膜或者其结合。
所需的膜类型可根据介电常数要求选择,如常见的薄膜的介电常数K要求为20以上,K=20~35,或K≥50。
在一些实施方式中,所述金属有机化合物还含有以下配位基中的一个或多个:甲氧基乙氧基四甲基庚二酮酸根基(METHD)、2,3,6,6-四甲基-3,5-庚二酮酸根(THD)、2-甲基-2,4戊二氧基(MPD)、乙基甲基胺基(EMA)、二甲基胺基(DMA)、甲基(Me)。
大部分实施例方式中所采用的前驱体可以有多种不同类型的配位基,只要包含一个以上环戊二烯基配体即可,包括但不限于Cp与METHD的组合,或者Cp与DMA、Me的三者组合,或者Cp与EMA、Me三者的组合。
在一些实施方式中,应所需膜类型或半导体器件类型不同,所述金属有机化合物中的金属可以为以下中的一种或多种:锶Sr、钡Ba、钛Ti、锆Zr或铪Hf。
在一些实施方式中,前驱体可以是一种化合物中包含多个金属元素,也可以是多个不同金属的有机化合物的混合物。
在一些实施方式中,作为前驱体的金属有机化合物为以下中的一种或多种:
Sr(METHD)(Cp),Ba(METHD)(Cp),Ti(MPD)(THD)(Cp),Ti(Cp)2(THD)2,Zr(DMA)(Me)2(Cp),Zr(EMA)2(Cp)2,Zr(Cp)2(Me)2,Zr(Cp)(EMA)(Me)2,Hf(EMA)2(Cp)2,Hf(Cp)2(Me)2,Hf(Cp)(EMA)(Me)2,Ti(Cp)2(Me)2
在一些实施方式中,所述原子层沉积时所述金属有机化合物的气化方法为溶剂气化法。
通常前驱体室温下为弱挥发性的固体时,可将其溶解在有机溶剂中。可用的溶剂包括但不限于:脂肪烃、芳香烃、卤代烃、硅烷化烃、醚、聚醚、硫醚、酯、硅油等。
在一些实施方式中,原子层沉积时用于金属有机化合物前驱体气化的加热方式为:热惰性气体(例如Ar、He、Ne等)加热或热腔室加热,或者其他可行的加热方式。
在一些实施方式中,原子层沉积时的工作温度为40~600℃。
上述实施例方式所述的载体除晶圆外,也可以是半导体衬底,或者已经加工过(例如沉积过其他层或者刻蚀了沟槽)的衬底,包括但不限于DRAM中的电容凹槽或替代栅工艺中牺牲栅去除后形成的栅极凹槽。
上述实施例方式所述的原子层沉积(ALD)是指在处理室(即沉积室)中执行沉积循环的气相沉积方法。通常,在每个循环期间,将前驱体化学吸附至载体表面。之后,必要时可随后将反应物(例如另一前驱体或反应气体)导入沉积室以用于将化学吸附的前驱体在沉积表面转化为所要物质。此外,每个循环期间也可以利用吹扫步骤将过量前驱体从处理室去除,或者将反应副产物从沉积室去除,吹扫和抽真空的先后顺序可调换。
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。

Claims (14)

1.一种高均一性的原子层沉积方法,其特征在于,包括:以含有至少一个环戊二烯基配体的金属有机化合物为前驱体,在载体上进行原子层沉积,形成薄膜。
2.根据权利要求1所述的原子层沉积方法,其特征在于,所述载体为DRAM中的电容凹槽或替代栅工艺中牺牲栅去除后形成的栅极凹槽。
3.根据权利要求1所述的原子层沉积方法,其特征在于,所述金属有机化合物中含有两个、三个或四个环戊二烯基配体。
4.根据权利要求1所述的原子层沉积方法,其特征在于,所述薄膜的介电常数K为20以上。
5.根据权利要求4所述的原子层沉积方法,其特征在于,所述薄膜的介电常数K为20~35。
6.根据权利要求4所述的原子层沉积方法,其特征在于,所述薄膜的介电常数K为50以上。
7.根据权利要求1所述的原子层沉积方法,其特征在于,所述金属有机化合物还含有以下配位基中的一个或多个:甲氧基乙氧基四甲基庚二酮酸根基、2,3,6,6-四甲基-3,5-庚二酮酸根、2-甲基-2,4戊二氧基、乙基甲基胺基、二甲基胺基、甲基。
8.根据权利要求1所述的原子层沉积方法,其特征在于,所述金属有机化合物中的金属为以下中的一种或多种:锶、钡、钛、锆或铪。
9.根据权利要求1或者4-8中任一项所述的原子层沉积方法,其特征在于,所述金属有机化合物为以下中的一种或多种:
Sr(METHD)(Cp),Ba(METHD)(Cp),Ti(MPD)(THD)(Cp),Ti(Cp)2(THD)2,Zr(DMA)(Me)2(Cp),Zr(EMA)2(Cp)2,Zr(Cp)2(Me)2,Zr(Cp)(EMA)(Me)2,Hf(EMA)2(Cp)2,Hf(Cp)2(Me)2,Hf(Cp)(EMA)(Me)2,Ti(Cp)2(Me)2
其中,
Cp为环戊二烯基,
METHD为甲氧基乙氧基四甲基庚二酮酸根,
MPD为2-甲基-2,4戊二氧基,
THD为2,3,6,6-四甲基-3,5-庚二酮酸根,
EMA为乙基甲基胺基,
DMA为二甲基胺基,
Me为甲基。
10.根据权利要求1所述的原子层沉积方法,其特征在于,所述原子层沉积时,所述金属有机化合物的气化方法为溶剂气化法。
11.根据权利要求1或10所述的原子层沉积方法,其特征在于,所述原子层沉积时,用于所述金属有机化合物气化的加热方式为:热惰性气体加热或热腔室加热。
12.根据权利要求1所述的原子层沉积方法,其特征在于,所述原子层沉积时的工作温度为40~600℃。
13.权利要求1-12任一项所述的原子层沉积方法用于制作半导体器件。
14.权利要求1-12任一项所述的原子层沉积方法用于制作DRAM,2D NAND,3D NAND或LCD。
CN202010275215.XA 2020-04-09 2020-04-09 一种高均一性的原子层沉积方法及其应用 Pending CN111501016A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010275215.XA CN111501016A (zh) 2020-04-09 2020-04-09 一种高均一性的原子层沉积方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010275215.XA CN111501016A (zh) 2020-04-09 2020-04-09 一种高均一性的原子层沉积方法及其应用

Publications (1)

Publication Number Publication Date
CN111501016A true CN111501016A (zh) 2020-08-07

Family

ID=71869136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010275215.XA Pending CN111501016A (zh) 2020-04-09 2020-04-09 一种高均一性的原子层沉积方法及其应用

Country Status (1)

Country Link
CN (1) CN111501016A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063196A (zh) * 2005-04-29 2007-10-31 波克股份有限公司 使用溶液基前体的原子层沉积方法和设备
CN101827956A (zh) * 2007-09-14 2010-09-08 西格玛-奥吉奇公司 采用基于单环戊二烯基钛的前体通过原子层沉积制备含钛薄膜的方法
CN102144281A (zh) * 2008-09-08 2011-08-03 应用材料股份有限公司 原位腔室处理与沉积工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063196A (zh) * 2005-04-29 2007-10-31 波克股份有限公司 使用溶液基前体的原子层沉积方法和设备
CN101827956A (zh) * 2007-09-14 2010-09-08 西格玛-奥吉奇公司 采用基于单环戊二烯基钛的前体通过原子层沉积制备含钛薄膜的方法
CN102144281A (zh) * 2008-09-08 2011-08-03 应用材料股份有限公司 原位腔室处理与沉积工艺

Similar Documents

Publication Publication Date Title
US7462559B2 (en) Systems and methods for forming metal-containing layers using vapor deposition processes
TWI398543B (zh) 使用β-二酮亞胺金屬化合物之原子層沉積系統及方法
JP2003338500A (ja) アルコールを用いた化学気相蒸着法または原子層蒸着法による金属酸化物薄膜の製造方法
US7446053B2 (en) Capacitor with nano-composite dielectric layer and method for fabricating the same
Leick et al. Atomic layer deposition of Ru from CpRu (CO) 2Et using O2 gas and O2 plasma
TWI496929B (zh) 含鉿與鋯的前驅物及使用彼之方法
JP2012069871A5 (zh)
Lee et al. Improved initial growth behavior of SrO and SrTiO3 films grown by atomic layer deposition using {Sr (demamp)(tmhd)} 2 as Sr-precursor
CN113423862B (zh) 金属膜形成用前驱体组合物、利用其的金属膜形成方法、半导体元件以及晶体管
TW201634726A (zh) 成膜組成物及利用其製造模的方法
US8574675B2 (en) Method and composition for depositing ruthenium with assistive metal species
KR102008445B1 (ko) 지르코늄 함유막 형성용 전구체 조성물 및 이를 이용한 지르코늄 함유막 형성 방법
KR20150143371A (ko) 성막용 전구체 화합물 및 이를 이용한 박막 형성 방법
US20110014770A1 (en) Methods of forming a dielectric thin film of a semiconductor device and methods of manufacturing a capacitor having the same
Min et al. Liquid Source‐MOCVD of BaxSr1–xTiO3 (BST) Thin Films with a N‐alkoxy‐β‐ketoiminato Titanium Complex
KR101501803B1 (ko) 성막 방법, 성막 장치 및 기억 매체
CN111501016A (zh) 一种高均一性的原子层沉积方法及其应用
US20150072085A1 (en) Titanium bis diazadienyl precursor for vapor deposition of titanium oxide films
KR102544077B1 (ko) 금속막 형성용 전구체 조성물 및 이를 이용한 박막 형성 방법
KR20150124603A (ko) 지르코늄 산화물 박막 형성용 전구체 화합물, 이의 제조방법 및 이를 이용한 박막의 제조방법
TW202235423A (zh) 含第iv族元素之先質及含第iv族元素的膜之沈積
KR102562274B1 (ko) 유기 금속 전구체 화합물
KR20070114519A (ko) 캐패시터의 유전막 및 그 제조 방법과 이를 이용한 반도체소자의 캐패시터 및 그 제조 방법
JP2007197804A (ja) 有機金属化学蒸着法用原料及び該原料を用いた金属含有膜の製造方法
JP7262912B2 (ja) 金属膜形成用前駆体組成物、これを用いた金属膜形成方法、及び前記金属膜を含む半導体素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200807

RJ01 Rejection of invention patent application after publication