CN111497278A - 一种特征结构可设计的碳纤维复合材料的制备方法及产品 - Google Patents

一种特征结构可设计的碳纤维复合材料的制备方法及产品 Download PDF

Info

Publication number
CN111497278A
CN111497278A CN202010324292.XA CN202010324292A CN111497278A CN 111497278 A CN111497278 A CN 111497278A CN 202010324292 A CN202010324292 A CN 202010324292A CN 111497278 A CN111497278 A CN 111497278A
Authority
CN
China
Prior art keywords
carbon fiber
product
fiber cloth
layer
vacuum bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010324292.XA
Other languages
English (en)
Other versions
CN111497278B (zh
Inventor
周何乐子
周华民
张峰嘉
黄志高
张云
王云明
李德群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202010324292.XA priority Critical patent/CN111497278B/zh
Publication of CN111497278A publication Critical patent/CN111497278A/zh
Priority to US17/237,064 priority patent/US11952472B2/en
Application granted granted Critical
Publication of CN111497278B publication Critical patent/CN111497278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/36Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and impregnating by casting, e.g. vacuum casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/547Measures for feeding or distributing the matrix material in the reinforcing structure using channels or porous distribution layers incorporated in or associated with the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本发明属于碳纤维复合材料相关技术领域,并公开了一种特征结构可设计的碳纤维复合材料的制备方法及产品。该方法包括下列步骤:(a)选取多张碳纤维布作为原料,选取预设数量的碳纤维布,在每张碳纤维布上成型增强相;(b)将原料中所有的碳纤维布表面均涂覆树脂基体溶液,然后逐层叠放,其中表面有增强相的碳纤维布放置在预设层中,同时,在叠放过程中在设定层中放置微型电源,以此获得预制品;(c)将所述预制品放置在真空袋中抽真空并密封,将密封后的预制品热压,热压后真空袋中的产品即为所需的碳纤维增强复合产品。通过本发明,使得无损在线监测技术采集到的数据更加精确、更加准确实现对损伤信号的实时反馈。

Description

一种特征结构可设计的碳纤维复合材料的制备方法及产品
技术领域
本发明属于碳纤维复合材料相关技术领域,更具体地,涉及一种特征结构可设计的碳纤维复合材料的制备方法及产品。
背景技术
碳纤维增强树脂基复合材料的高比强度、高比模量,其广泛应用于各种重要构件中,例如飞机机身、潜艇螺旋桨及桥墩修复等。结构件服役过程中的关键问题之一需监测其健康/损伤状态。目前,有多种无损检测方法可用于碳纤维复合材料结构件的损伤状态,包括超声波C扫描、X射线、热成像和涡流技术等,但对于航空航天、轨道交通等领域来说,这些技术通常需要将目标构件停用,以便进行损伤后检查和评估,无法实现在线监测。除此之外,还有许多其它包括光纤传感技术在内的在线检测技术,但这些方法都需将外部传感器(例如光纤)在碳纤维复合材料结构件中的附着,不仅安装传感系统费时费力,传感系统的脆弱性、对服役条件的适应性、与被测结构件的结合性等问题也亟待解决;并且由于光纤等传感器尺寸较大,与树脂界面结合较弱,有可能成为预埋的缺陷。这些问题都将影响其检测技术的应用范围,甚至影响被测结构件的力学性能。
另外,目前碳纤维复合材料基体多为热固性或高温热塑性树脂,存在损伤修复难度大的问题;若将部分甚至全部的热固性材料用特殊热塑性材料替代,针对裂纹易扩展区域进行特征结构设计加工,这样在检测到构件损伤后,采用一定修复技术(如激光束照射、加热等),即可使构件力学承载能力恢复继续使用,赋予碳纤维复合材料可修复性。因此,急需提供碳纤维复合材料能及时并快速获知复合材料中的损伤区域,以便及时修改。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种特征结构可设计的碳纤维复合材料的制备方法及产品,通过采用多层碳纤维布,并在多层结构中设置微型电源,该微型电源和碳纤维布自身导电特性结合,可以方便快捷的检测产品中裂纹、受损和断裂等多种缺陷的位置,使得无损在线监测技术采集到的数据更加精确、更加准确,对数据的分析更加人性化、智能化,实现对损伤信号的实时反馈,并以此为依据制定应对损伤的解决方案。
为实现上述目的,按照本发明的一个方面,提供了一种特征结构可设计的碳纤维复合材料的制备方法,该方法包括下列步骤:
(a)选取多张碳纤维布作为原料,选取预设数量的碳纤维布,在每张碳纤维布上成型增强相;
(b)将原料中所有的碳纤维布表面均涂覆树脂基体溶液,然后逐层叠放,其中表面有增强相的碳纤维布放置在预设层中,同时,在叠放过程中在设定层中放置微型电源,以此获得预制品;
(c)将所述预制品放置在真空袋中抽真空并密封,将密封后的预制品热压,热压后真空袋中的产品即为所需的碳纤维增强复合产品。
进一步优选地,在步骤(a)中,所述增强相的材料为添加CNT的高分子材料。
进一步优选地,在步骤(a)中,所述增强相的成型方法为3D打印技术、静电纺丝或纤维自动铺丝。
进一步优选地,在步骤(b)中,所述微型电源为:进行无线充电的微型电源器或具有压电效应的传感器件。
进一步优选地,在步骤(b)中,所述微型电源放置的位置优选为应力集中或需加强检测的位置。
进一步优选地,在步骤(b)中,所述树脂基体溶液中添加有固化剂,用于加速树脂的固化。
进一步优选地,在步骤(b)中,所述树脂基体溶液为热塑性或热固性树脂。
进一步优选地,在步骤(c)中,将所述预制品放置在真空袋中时,优选在真空袋中铺放隔离膜,方便热压后将碳纤维增强复合产品从真空袋中取出。
按照本发明的另一个方面,提供了一种上述所述的制备方法获得的产品。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具备下列有益效果:
1、本发明中采用碳纤维增强作为原料,碳纤维具有导电性,利用其自身损伤与电阻耦合的特性,可根据电阻变化实时监测损伤状态,在碳纤维层中放置微型电源,相比现有技术中采用外接电源测量复合材料电阻的方式,对于面积较大的待检测复合材料,现有技术需外接大量的电源,且检测的位置不能达到所需检测的位置,测量精度低,本发明中的材料中自带微型电源,无需外接电源,可在应力集中的地方放置微型电源,测量精度高,同时也极大程度的简化了测量电路,提高碳纤维复合材料构件的检测精度与可靠性,分析裂纹易扩展区域进行力学增强及赋予可修复性,进一步扩展多功能碳纤维增强复合材料的应用;
2、本发明中利用特征结构可设计技术的可设计性,设计碳纤维复合材料层间相,根据碳纤维复合材料构件形状及服役条件的差异,进行应力场等分析,针对性地设计层间相,使结构件各处的力学性能更好地适应使用条件,同时对可能出现的裂纹进行预测和控制,利用层间相的形状与图案控制裂纹发展路径,减小其对结构件使用性能的影响,提高碳纤维复合材料结构件的应用范围与使用寿命;
3、本发明中利用特征结构设计技术针对性地设计层间相图案和形状,还可与电路设计结合起来,根据服役条件及结构件形状,使用导电材料设计层间相,利用碳纤维自身导电特性使监测电路覆盖结构件所有关键监测区域甚至全部区域;
4、本发明实现在碳纤维复合材料结构件的不同服役条件下,针对性地进行局部增强增韧,改善结构件力学性能,在结构件的不同受载情况下,针对性地监测裂纹产生及扩展,同时,为了使无损在线监测技术采集到的数据更加精确、更加准确,对数据的分析更加人性化、智能化,实现对损伤信号的实时反馈,并以此为依据制定应对损伤的解决方案,本发明将微结构可设计技术与碳纤维复合材料生产互相结合,实现电阻法无损在线监测系统与配套的软件及终端系统相结合。
附图说明
图1是按照本发明的优选实施例所构建的碳纤维复合产品的制备流程图;
图2是按照本发明的优选实施例所构建的成型增强相的示意图;
图3是按照本发明的优选实施例所构建的碳纤维布叠放后层之间的结构示意图;
图4是按照本发明的优选实施例所构建的碳纤维复合产品导电特性的分层损伤监测多通道电路示意图;
图5是按照本发明的优选实施例所构建的碳纤维复合产品导电特性的分层损伤监测多通道电路中任一路通道电路示意图;
图6是按照本发明的优选实施例所构建的碳纤维复合产品导电特性的分层损伤监测中裂纹扩展面示意图;
图7是按照本发明的优选实施例所构建的碳纤维复合产品导电特性的纤维断裂监测电路示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,一种特征结构可设计的碳纤维复合材料的制备方法,该方法包括下列步骤:
1)预先设计层间增强相图案,选取成型方法在碳纤维表面成型增强相,实现层间增强材料在碳纤维布上的铺放。
增强相材料选择为添加CNT的高分子材料,例如,添有CNT的尼龙(PA),可在增强增韧的同时,改善导电性能;成型方法可选择为:3D打印技术、静电纺丝、纤维自动铺丝等技术,但不仅仅限于上述方法。
2)在工作台上铺放真空袋膜,用密封胶进行固定并密封;为了使得树脂完全浸润纤维布,在真空袋膜上铺一层隔离膜后,进行步骤1)中增强的碳纤维布的铺放与树脂浸润;按照一定比例将树脂与固化剂进行充分混合获得混合溶液,在隔离膜上涂刷均匀后,铺一层增强的碳纤维布,在该增强的碳纤维布上均匀涂刷树脂混合溶液,再铺一层碳纤维布,交替反复进行,直至完成所有碳纤维布的叠放。
根据目标产品需求,选择在特定层铺放表面含有增强材料的碳纤维布。
3)根据目标产品需求,选择在特定层、特定部位预埋微型电源器(可无线充电),完成后继续进行手工铺放。
微型电源为:进行无线充电的微型电源器或具有压电效应的传感器件,可采用电磁感应技术对微型电源器进行无线充电,充电完成后,在目标产品内为监测电路提供电压。
4)完成后在最上方铺放真空袋膜进行密封、抽真空。
5)通过热压机完成热压工艺,从真空袋中取出产品得到目标产品。
步骤4)完成后,将所得半成品转至热压机工作台,根据树脂性能设定热压温度、时间及压力,热压根据树脂的性能进行设定,使得树脂固化。热压完成后,得到目标产品。
上述工艺可根据目标产品需求,选择性使用热塑性树脂或热固性树脂进行浸润。
本发明提供的碳纤维复合材料具备下列特点:
1)根据电信号在线反馈的构件健康情况,对构件的外场加载条件(力、热、温度等)进行实时调整,在满足服役要求情况下最大化降低损伤扩展速度;
2)在构件监测区域内预埋压电材料、微型电源器等,可实现无外电场接入的监测系统中信号流产生;
3)在终端采集系统与被测构件之间建立电磁感应采集系统,接收被测结构件产生的电信号进行分析,实现无源检测系统中信号流接收;
4)利用热塑性材料可熔融再成形的优势,尤其的,应用于碳纤维增强热固性树脂复合材料,可实现构件受损后的可修复性;
下面结合具体的实施例进一步说明本发明。
如图1-3所示,制备碳纤维增强复合产品具体的制备步骤如下:
1)准备剪裁好的T300编织碳纤维布(33cm*25cm)16张;准备
Figure BDA0002462615170000061
LY 1564环氧树脂与
Figure BDA0002462615170000062
22962固化剂共200g,按照4:1的比例,在40℃加热条件下进行均匀混合。
2)选择一张准备好的碳纤维布,将其铺放在FDM打印机工作台上,选择添加有CNT的尼龙6作为打印原材料,打印出长20cm,宽3cm,厚度0.2mm的环条状矩形层间相(图2所示);将得到的具有增强层间相的碳纤维布放置一侧,待用。
3)取DMF和丙酮共9g,按照质量比3:2进行均匀混合,得到溶剂;再取PVDF粉末1g倒入配制好的溶剂中,在40℃条件下,磁力搅拌30分钟,得到静电纺丝用的PVDF溶液;选择一张准备好的碳纤维布,将其卷在静电纺丝设备中的收集辊上,电压设置为18kV,溶液注射器顶端与收集辊之间距离为15cm,注射器中溶液进给速度为1mm/h;纺丝半小时后,得到表面铺满PVDF薄膜的纤维布一张,放置一侧,待用。
4)在加热板上放一块4mm厚铝板,加热板温度设定为40℃;将铝板表面清理干净后,铺一层40cm*30cm的真空袋膜,用密封胶粘住四个边将其固定在铝板上,此时不撕开密封胶表面的白纸;在真空袋膜上铺一层33cm*25cm的隔离膜,然后用刷子蘸取混合好的环氧树脂均匀涂刷隔离膜表面,随后在隔离膜上覆盖一层碳纤维布;再用刷子均匀涂刷碳纤维布表面,随后在碳纤维布上再覆盖一层碳纤维布,并重复此步骤,直至纤维布铺放完毕,其中带有增强层间相的碳纤维布铺放在第5层,带有PVDF薄膜的碳纤维布铺放在第9层;碳纤维布铺放完毕后,在其表面铺放40cm*30cm的真空袋膜,并撕下密封胶表面的白纸,两层真空袋膜对形成密封空间。利用真空泵将密封空间抽为真空状态。
5)将铝板及所制备半成品转移至热压机工作台,设定压力为2Mpa,加热温度180℃,加热时间4h。完成热压后取下成品,去掉表面真空袋膜与隔离膜,得到成品。
对于上述实施例中获得的产品,进行如下分析,具体如下:
对于分层损伤,多方向监测电路示意图如图4所示,任一方向监测电路图5、图6所示,该产品的电阻计算方法如下:
R=Rc+Ri+Re+Rm=V/I (I)
Rm=ρd/(S0-S) (2)
其中,S0为碳纤维复合板的总面积,R为所测碳纤维复合板总电阻,V为外加电压,I为电流,Rm为两层碳纤维布中间层的厚度方向电阻,Re为是电路中其他部分的电阻(包括监测电路内阻),Rc为碳纤维沿纵向的电阻,Ri为金属丝电极与碳纤维的界面电阻。
从式(1)、(2)中可以看出,当被测结构件一定时,Rc、Ri、Re均为定值,可见,被测碳纤维复合板总电阻随裂纹扩展面积S的变化而变化。
对于纤维断裂损伤,监测电路示意图如图7所示,电阻计算方法如下:
R=Rc+Re+Ri+Rm=V/I (3)
Figure BDA0002462615170000081
其中,R为所测碳纤维复合板总电阻,V为外加电压,I为电流,Rc为碳纤维沿纵向的总电阻,Re为是电路中其他部分的电阻(包括监测电路内阻),Ri为金属丝电极与碳纤维的界面电阻,Rm为碳纤维布中间层纵向总电阻,R0为单根碳纤维纵向电阻,n为碳纤维的数量。
从式(3)、(4)、(5)中可以看出,当被测复合板发生纤维断裂时,断裂的纤维处变为开路,有效导电碳纤维数量n和中间层总电阻Rm发生变化,从而使被测碳纤维复合板总电阻发生变化。
被测结构件监测区域利用压电材料进行设计,实现无外电压输入条件下的信号流产生,在被测结构件与终端分析系统之间建立电磁感应系统,实现信号流的无线接收,当损伤发生时,被测构件产生的电信号发生变化,这种变化通过被测结构件内部监测电路、电磁感应系统传递到终端分析系统,终端系统再对收集到的电信号进行智能分析,自动识别损伤电信号与其它电信号,对于损伤电信号,终端系统通过分析后,会将损伤类型、损伤程度、损伤位置等关键监测信息传输到用户软件中,从而使用户可以更精确、更准确、更智能地实时监测被测结构件的健康状态并对被测结构件的使用情况做出及时调整,以最大程度减少经济损失甚至人员伤亡。
利用碳纤维自身导电性进行监测电路设计,将避免传统的附加传感系统(如光纤传感技术)对被测结构件力学性能等产生的负面影响,解决传感系统安装难度高问题和附加传感系统的脆弱性问题,增加无损在线监测系统的使用寿命,提高无损在线监测技术检测碳纤维复合材料结构件的速度、精确度、准确度,通过被测结构件与终端系统之间电磁感应系统的建立,实现无源、无线检测,避免了传统的有线连接给结构件使用带来的不便,扩大在线监测技术的使用范围。
此外,由于热塑性材料具有可熔融再加工的优势,因此在上述技术方案的基础上,将传统的热固性材料,部分甚至全部用热塑性材料替代,即采用热塑性材料进行多功能碳纤维增强复合材料设计,当多功能碳纤维复合材料结构件受损时,可以采取一定的修复技术,如激光束照射、加热等,直接对受损构件进行修复,无须拆卸,提高碳纤维复合材料结构件的可修复性,从而扩大碳纤维复合材料的使用范围,提高使用寿命,降低使用成本。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种特征结构可设计的碳纤维复合材料的制备方法,其特征在于,该方法包括下列步骤:
(a)选取多张碳纤维布作为原料,选取预设数量的碳纤维布,在每张碳纤维布上成型增强相;
(b)将原料中所有的碳纤维布表面均涂覆树脂基体溶液,然后逐层叠放,其中表面有增强相的碳纤维布放置在预设层中,同时,在叠放过程中在设定层中放置微型电源,以此获得预制品;
(c)将所述预制品放置在真空袋中抽真空并密封,将密封后的预制品热压,热压后真空袋中的产品即为所需的碳纤维增强复合产品。
2.如权利要求1所述的一种特征结构可设计的碳纤维复合材料的制备方法,其特征在于,在步骤(a)中,所述增强相的材料为添加CNT的高分子材料。
3.如权利要求1所述的一种特征结构可设计的碳纤维复合材料的制备方法,其特征在于,在步骤(a)中,所述增强相的成型方法为3D打印技术、静电纺丝或纤维自动铺丝。
4.如权利要求1所述的一种特征结构可设计的碳纤维复合材料的制备方法,其特征在于,在步骤(b)中,所述微型电源为:进行无线充电的微型电源器或具有压电效应的传感器件。
5.如权利要求1所述的一种特征结构可设计的碳纤维复合材料的制备方法,其特征在于,在步骤(b)中,所述微型电源放置的位置优选为应力集中或需加强检测的位置。
6.如权利要求1所述的一种特征结构可设计的碳纤维复合材料的制备方法,其特征在于,在步骤(b)中,所述树脂基体溶液中添加有固化剂,用于加速树脂的固化。
7.如权利要求1所述的一种特征结构可设计的碳纤维复合材料的制备方法,其特征在于,在步骤(b)中,所述树脂基体溶液为热塑性或热固性树脂。
8.如权利要求1所述的一种特征结构可设计的碳纤维复合材料的制备方法,其特征在于,在步骤(c)中,将所述预制品放置在真空袋中时,优选在真空袋中铺放隔离膜,方便热压后将碳纤维增强复合产品从真空袋中取出。
9.一种如权利要求1-8任一项所述的制备方法获得的产品。
CN202010324292.XA 2020-04-22 2020-04-22 一种特征结构可设计的碳纤维复合材料的制备方法及产品 Active CN111497278B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010324292.XA CN111497278B (zh) 2020-04-22 2020-04-22 一种特征结构可设计的碳纤维复合材料的制备方法及产品
US17/237,064 US11952472B2 (en) 2020-04-22 2021-04-22 Preparation method and product of carbon fiber reinforced polymer composite with designable characteristic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010324292.XA CN111497278B (zh) 2020-04-22 2020-04-22 一种特征结构可设计的碳纤维复合材料的制备方法及产品

Publications (2)

Publication Number Publication Date
CN111497278A true CN111497278A (zh) 2020-08-07
CN111497278B CN111497278B (zh) 2021-08-10

Family

ID=71872947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010324292.XA Active CN111497278B (zh) 2020-04-22 2020-04-22 一种特征结构可设计的碳纤维复合材料的制备方法及产品

Country Status (2)

Country Link
US (1) US11952472B2 (zh)
CN (1) CN111497278B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112373070A (zh) * 2020-11-17 2021-02-19 华东交通大学 一种具有原位监测功能的t形接头构件及其制备方法
CN112757663A (zh) * 2020-12-31 2021-05-07 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种连续纤维增强热塑性复合材料自动铺丝成型方法
CN113267541A (zh) * 2021-06-30 2021-08-17 华中科技大学 一种混合连续纤维复合材料的电容式在线监测产品及方法
CN113777135A (zh) * 2021-10-09 2021-12-10 同济大学 纤维增强热固性树脂基复合材料层间开裂的监测及修复结构、监测方法及修复方法
CN114687047A (zh) * 2022-05-07 2022-07-01 浙江理工大学 一种碳纤维织造过程损伤监测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414107B (zh) * 2022-01-26 2022-11-01 西安交通大学 一种具有自感知功能的高强度碳纤维复合材料及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009056895A1 (de) * 2009-12-10 2011-06-16 Eads Deutschland Gmbh Verfahren zur Erfassung von Messgrößen in einem FVK-Bauteil
CN204116284U (zh) * 2014-10-27 2015-01-21 中国民航大学 一种飞机蜂窝结构复合材料敲击检测与损伤识别装置
CN105067712A (zh) * 2015-07-23 2015-11-18 中国商用飞机有限责任公司北京民用飞机技术研究中心 复合材料结构的损伤监测方法、装置和系统
CN107674385A (zh) * 2017-10-31 2018-02-09 西南石油大学 一种增韧降阻碳纤维复合材料的制备方法
CN110509576A (zh) * 2019-08-13 2019-11-29 北京航空航天大学 一种复合材料结构冲击损伤评测及自动修复系统
CN110713715A (zh) * 2019-10-08 2020-01-21 同济大学 一种具有应力健康监测功能的碳纳米管-碳纤维/双马来酰亚胺复合材料制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436500B1 (ko) * 2013-09-23 2014-10-17 한국기계연구원 탄소 나노 튜브/산화 그래핀 복합체가 코팅된 탄소 섬유를 포함하는 탄소 섬유 복합재 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009056895A1 (de) * 2009-12-10 2011-06-16 Eads Deutschland Gmbh Verfahren zur Erfassung von Messgrößen in einem FVK-Bauteil
CN204116284U (zh) * 2014-10-27 2015-01-21 中国民航大学 一种飞机蜂窝结构复合材料敲击检测与损伤识别装置
CN105067712A (zh) * 2015-07-23 2015-11-18 中国商用飞机有限责任公司北京民用飞机技术研究中心 复合材料结构的损伤监测方法、装置和系统
CN107674385A (zh) * 2017-10-31 2018-02-09 西南石油大学 一种增韧降阻碳纤维复合材料的制备方法
CN110509576A (zh) * 2019-08-13 2019-11-29 北京航空航天大学 一种复合材料结构冲击损伤评测及自动修复系统
CN110713715A (zh) * 2019-10-08 2020-01-21 同济大学 一种具有应力健康监测功能的碳纳米管-碳纤维/双马来酰亚胺复合材料制备方法及应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112373070A (zh) * 2020-11-17 2021-02-19 华东交通大学 一种具有原位监测功能的t形接头构件及其制备方法
CN112757663A (zh) * 2020-12-31 2021-05-07 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种连续纤维增强热塑性复合材料自动铺丝成型方法
CN113267541A (zh) * 2021-06-30 2021-08-17 华中科技大学 一种混合连续纤维复合材料的电容式在线监测产品及方法
CN113267541B (zh) * 2021-06-30 2023-09-22 华中科技大学 一种混合连续纤维复合材料的电容式在线监测产品及方法
CN113777135A (zh) * 2021-10-09 2021-12-10 同济大学 纤维增强热固性树脂基复合材料层间开裂的监测及修复结构、监测方法及修复方法
CN114687047A (zh) * 2022-05-07 2022-07-01 浙江理工大学 一种碳纤维织造过程损伤监测方法

Also Published As

Publication number Publication date
US20210332203A1 (en) 2021-10-28
CN111497278B (zh) 2021-08-10
US11952472B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
CN111497278B (zh) 一种特征结构可设计的碳纤维复合材料的制备方法及产品
Parmar et al. Advanced robotics and additive manufacturing of composites: towards a new era in Industry 4.0
CN102294874B (zh) 制造预浸渍件和/或层压件的在线检查方法和闭环过程
Saeedifar et al. Delamination analysis in composite laminates by means of acoustic emission and bi-linear/tri-linear cohesive zone modeling
US9976964B2 (en) Method of measuring a parameter of a composite moulding material
Allaer et al. On the in-plane mechanical properties of stainless steel fibre reinforced ductile composites
CN106872521A (zh) 基于红外成像的自动铺放缺陷在线动态检测装置及方法
US20150367586A1 (en) Forming tools and flexible ultrasonic transducer arrays
EP2795309A1 (en) A method for on-line control of a manufacturing process for a multicomponent sheet material
CN105004758A (zh) 一种涡流线扫描热成像检测系统及方法
WO2014193601A1 (en) Method for fabricating composite porosity standards
Dhanunjayarao et al. 3D printing of fiber-reinforced polymer nanocomposites: additive manufacturing
US11958255B2 (en) In-situ fiber-optic temperature field measurement during thermoplastic composite welding and other applications
US8490493B2 (en) Device and method for the detection of composite defects
Bartkowiak et al. Effects of hybridization on the tension–tension fatigue behavior of continuous-discontinuous fiber-reinforced sheet molding compound composites
CN108181029A (zh) 碳纳米纸传感器多方向监测纤维增强复合材料应变的方法
CN204925003U (zh) 一种涡流线扫描热成像检测系统
HOSHIKAWA et al. Experimental and numerical evaluation of open hole tensile properties of 3D printed continuous carbon fiber reinforced thermoplastics
CN106596621B (zh) 一种用于桥面铺装结构的融冰能力评估装置及方法
CN108827218B (zh) 一种红外检测Z-pin在复合材料层合板中植入角的装置及方法
Smith et al. Structural health monitoring of 3D printed structures
Song et al. Mechanical properties of composites with embedded FBG sensors in different layer
Peng et al. Study on the damages detection of 3 dimensional and 6 directional braided composites using FBG sensor
Bekas et al. Smart bondline monitoring of an efficient industrial thermoplastic aircraft window frame
EP4238743A1 (en) Method for bonding two fiber composite components with each other to form a fiber composite structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant