CN111495413A - 一种析氧二硒化钴/二氧化锡@氮掺杂科琴炭黑复合催化剂及其制备方法和应用 - Google Patents

一种析氧二硒化钴/二氧化锡@氮掺杂科琴炭黑复合催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN111495413A
CN111495413A CN202010471400.6A CN202010471400A CN111495413A CN 111495413 A CN111495413 A CN 111495413A CN 202010471400 A CN202010471400 A CN 202010471400A CN 111495413 A CN111495413 A CN 111495413A
Authority
CN
China
Prior art keywords
nitrogen
cose
sno
composite catalyst
oxygen evolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010471400.6A
Other languages
English (en)
Other versions
CN111495413B (zh
Inventor
钱东
徐德垚
苏侃达
龙炫达
张志良
李俊华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010471400.6A priority Critical patent/CN111495413B/zh
Publication of CN111495413A publication Critical patent/CN111495413A/zh
Application granted granted Critical
Publication of CN111495413B publication Critical patent/CN111495413B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种析氧二硒化钴/二氧化锡@氮掺杂科琴炭黑复合催化剂及其制备方法和应用,该复合催化剂由二硒化钴颗粒和二氧化锡颗粒均匀负载在氮掺杂科琴炭黑上构成;其制备方法是先对科琴炭黑进行氮掺杂得到氮掺杂科琴炭黑,再通过共沉淀法制备六羟基合锡酸钴@氮掺杂科琴炭黑前驱体,所述前驱体经过一步高温硒化处理,即得析氧二硒化钴/二氧化锡@氮掺杂科琴炭黑复合催化剂;该制备工艺简单、成本低,有利于工业化生产;所得复合催化剂应用于水的电分解析氧过程,具有活性高和稳定性好的特点,展现出良好的应用前景。

Description

一种析氧二硒化钴/二氧化锡@氮掺杂科琴炭黑复合催化剂及 其制备方法和应用
技术领域
本发明涉及一种析氧(OER)复合催化剂及其制备方法和应用,特别涉及一种高性能析氧CoSe2/SnO2@N-KB复合催化剂及其制备方法,还涉及CoSe2/SnO2@N-KB复合催化剂在电解水或金属-空气二次电池中的应用,属于电催化技术领域。
背景技术
析氧反应(OER)是水分解、金属-空气二次电池等储能和能量转换过程的关键反应之一。但是,由于电极极化和电阻带来的过电位和动力学迟滞,致使反应效率低下,需要合适的电催化剂来降低反应的活化能和改善电极的动力学。迄今,IrO2和RuO2被认为是OER过程最高效的催化剂,但高昂的成本和稀缺性严重阻碍了它们的广泛应用。许多科学家将目光投向基于第一行过渡金属(例如,Fe、Co和Ni)的OER催化剂上,包括氧化物、氢氧化物和层状双金属氢氧化物。同时科学家们还关注基于过渡金属的硫属元素化合物(例如硒化物和硫化物)、磷化物和氮化物。相对于过渡金属氧化物、氢氧化物和层状双金属氢氧化物等OER催化剂来说,过渡金属硒化物因其内在的金属特性而具有更好的导电性,表现出更高的OER电催化活性。但是作为单一的过渡金属基OER催化材料,其仍然存在导电性较差,缺陷和活性点位少,稳定性较差等问题。
发明内容
针对现有技术中的过渡金属基OER催化材料存在活性和电导率低,稳定性差等缺陷,本发明的第一个目的是在于提供一种由CoSe2/SnO2颗粒与氮掺杂科琴炭黑(N-KB)复合构成的析氧CoSe2/SnO2@N-KB复合催化剂,其综合催化性能接近甚至超过商用RuO2催化剂。
本发明的第二个目的是在于提供一种高性能析氧CoSe2/SnO2@N-KB复合催化剂的制备方法,该制备方法简单,成本低,满足工业生产应用要求。
本发明的第三个目的是在于提供所述高性能析氧CoSe2/SnO2@N-KB复合催化剂在电解水或金属-空气二次电池的应用,在碱性介质中,CoSe2/SnO2@N-KB复合催化剂的OER综合催化性能超过商用RuO2催化剂。
为了实现上述技术目的,本发明提供了一种析氧CoSe2/SnO2@N-KB复合催化剂,其由二硒化钴颗粒和二氧化锡颗粒与氮掺杂科琴炭黑复合构成。
本发明提供的析氧CoSe2/SnO2@N-KB复合催化剂中的主要活性组分来源于CoSe2颗粒和SnO2颗粒,两种组分有机结合有利于复合材料的电子结构调变,能增加缺陷和活性位点,提高复合材料的催化活性和稳定性。而氮掺杂科琴炭黑一方面作为助催化剂,其本身具有一定的OER催化活性,协同增强CoSe2颗粒和SnO2颗粒活性组分的催化性能,另一方面,其作为CoSe2颗粒和SnO2颗粒的载体可以有效地防止CoSe2/SnO2颗粒的团聚,增大材料的活性表面积,此外,氮掺杂科琴炭黑具有较高的导电性,可以改善CoO和CoSe2导电性差的问题,且氮掺杂科琴炭黑还可以利用其杂原子氮与金属离子之间的配位作用,提高复合材料的稳定性。
优选的方案,所述析氧CoSe2/SnO2@N-KB复合催化剂由以下质量百分比组分组成:二硒化钴颗粒和二氧化锡颗粒85%–97%;氮掺杂科琴炭黑3%–15%。较优选的方案,所述析氧CoSe2/SnO2@N-KB复合催化剂由以下质量百分比组分组成:二硒化钴颗粒和二氧化锡颗粒88%–94%;氮掺杂科琴炭黑6%–12%。氮掺杂科琴炭黑比例过高则活性成分含量较低,复合催化剂的催化活性降低,氮掺杂科琴炭黑比例过低,则不能使CoSe2颗粒和SnO2颗粒较好地分散,不能充分暴露催化活性组分的催化活性位点及缺陷。
优选的方案,二硒化钴和二氧化锡的摩尔比为(1–3):(1–3)。较优选的方案,二硒化钴和二氧化锡的摩尔比为(1–2):(1–2)。两种活性成分在优选的比例范围内,更能体现出两者催化活性的协同作用。
优选的方案,氮掺杂科琴炭黑中氮掺杂质量百分比含量为3%–12%,较优选的方案,氮掺杂科琴炭黑中氮掺杂质量百分比含量为6%–9%。适量的氮掺杂可以提高复合材料的稳定性,且有利于提高科琴炭黑的导电性。
本发明还提供了一种析氧CoSe2/SnO2@N-KB复合催化剂的制备方法,其包括以下步骤:
1)将科琴炭黑、含氮有机小分子化合物及水混合,经过水热反应,得到氮掺杂科琴炭黑;
2)将钴盐、柠檬酸三钠和氮掺杂科琴炭黑溶解分散至水中后,滴加锡盐醇溶液,再加入碱性溶液进行共沉淀,得到CoSn(OH)6@N-KB前驱体;
3)将CoSn(OH)6@N-KB前驱体和硒粉研磨混合后,置于保护气氛中,在450℃–550℃温度下进行硒化处理,即得。
优选的方案,所述含氮有机小分子化合物包括尿素、三聚氰胺、三聚氰氯、氰胺、双氰胺中至少一种。这些含氮有机小分子化合物通过水热处理对科琴炭黑进行氮掺杂。
优选的方案,所述钴盐为本领域常见的水溶性钴盐。如氯化钴、硝酸钴、醋酸钴等。
优选的方案,所述锡盐为本领常见的普通锡盐。如氯化锡、硝酸锡、醋酸锡等。
优选的方案,碱性溶液如氢氧化钠等。在沉淀过程中碱性溶液分步缓慢添加。
优选的方案,科琴炭黑、含氮有机小分子化合物、钴盐、柠檬酸三钠和锡盐的质量比为(1–3):(4–10):(5–12):(7–15):(8–18)。
优选的方案,水热处理温度为140℃–210℃;较优选为160℃–200℃。水热处理时间为8–16h;较优选为10–14h。
优选的方案,CoSn(OH)6@N-KB前驱体和硒粉的质量比为(2–8):(1–6)。
优选的方案,硒化处理温度较优选为480℃–520℃。硒化处理时间为0.5–4h;较优选为1–3h。硒化过程中的温度控制是十分重要的,当温度在400℃以下时得到的是完全不同的目标产物Se-CoSnO3@N-KB,并没有CoSe2物相的生成,其析氧催化活性要明显差于CoSe2/SnO2@N-KB。
本发明还提供了一种析氧CoSe2/SnO2@N-KB复合催化剂的应用,其作为电解水或金属-空气二次电池析氧电催化剂应用。
本发明的析氧CoSe2/SnO2@N-KB复合催化剂的制备方法具体如下:将KB和双氰胺加入到100mL的烧杯中,然后加入50mL去离子水,搅拌30min,转移至内衬聚四氟乙烯的不锈钢反应釜中,在140℃–210℃保温8–16h,冷却至室温后,产物分别用水与乙醇离心洗涤3次,在真空干燥箱内于60℃烘干,得到氮掺杂科琴炭黑(N-KB)。再将钴盐、柠檬酸三钠和N-KB加入到150mL的去离子水中。室温下搅拌30min。随后逐滴加入锡盐的醇溶液。再在室温下逐滴加入NaOH溶液,搅拌1h后,再逐滴加入NaOH溶液[科琴炭黑、含氮有机小分子化合物、钴盐、柠檬酸三钠、锡盐和NaOH的质量比为(1–3):(4–10):(5–12):(7–15):(8–18):(120–360)],搅拌30min。所得悬浮物分别用去离子水和无水乙醇离心洗涤3次,所得产物在真空干燥箱于60℃干燥12h,得到CoSn(OH)6@N-KB前驱体。将CoSn(OH)6@N-KB和硒粉[前驱体CoSn(OH)6@N-KB和硒粉的质量比为(2–8):(1–6)]进行充分研磨,研磨后的粉末置于管式炉中,在N2气氛中以2℃ min-1的速率升温至450℃–550℃,煅烧0.5–4h,自然降温,即得。
相对现有技术,本发明的技术方案带来的有益技术效果:
1、本发明的析氧CoSe2/SnO2@N-KB复合催化剂由高活性的CoSe2和SnO2两种颗粒与具有高导电性的氮掺杂科琴炭黑有机结合,各物质之间协同增效作用明显,复合催化剂表现出很高的催化活性,与商业RuO2催化剂的催化性能接近甚至超越,大幅度降低了OER催化剂的成本。
2、本发明的析氧CoSe2/SnO2@N-KB复合催化剂制备方法简单,成本低,有利于工业化生产。
3、本发明的析氧CoSe2/SnO2@N-KB复合催化剂中CoSe2颗粒和SnO2颗粒有机复合有利于复合材料的电子结构调变,能增加缺陷和活性位点,提高复合材料的催化活性和稳定性,而氮掺杂科琴炭黑赋予了催化活性材料良好的导电性和一定的OER催化活性外,还能有效地防止CoSe2/SnO2颗粒的团聚,增大材料的活性表面积,且通过氮原子与金属离子之间的配位作用提高复合材料的稳定性。
4、本发明的析氧CoSe2/SnO2@N-KB复合催化剂应用于电解水或金属-空气二次电池的析氧电催化剂,表现出活性高、稳定性好的特点,展现出良好的应用前景。
附图说明
【图1】为实施例1中前驱体CoSn(OH)6@N-KB和对比例5中CoSnO3@N-KB的(a)XRD谱图;(b)实施例1中目标产品CoSe2/SnO2@N-KB-500、对比例4中CoSe2/SnO2和对比例6中N-KB的XRD谱图;(c)实施例1中目标产品CoSe2/SnO2@N-KB-500、对比例2中Se-CoSnO3@N-KB-300和对比例3中Se-CoSnO3@N-KB-400的XRD谱图。
【图2】为实施例1中(a和b)前驱体CoSn(OH)6@N-KB的SEM图和(c和d)目标产品CoSe2/SnO2@N-KB-500的SEM图;(e)对比例2中Se-CoSnO3@N-KB-300的SEM图;(f)对比例3中Se-CoSnO3@N-KB-400的SEM图;(g)对比例4中CoSe2/SnO2的SEM图;(h)对比例6中N-KB的SEM图。前驱体CoSn(OH)6@N-KB的SEM图表明CoSn(OH)6呈中空立方体和球体结构,直径为100–150nm,并且混合有颗粒状的N-KB。CoSe2/SnO2@N-KB-500的SEM图表明CoSe2/SnO2基本上保留了前驱体CoSn(OH)6的中空立方体和球体结构,但表面变得更加粗糙,并且出现了大量的纳米颗粒。这种变化可以增大样品的孔隙率,增加活性位点和与电解液的有效接触面积,更有利于OER反应的进行。Se-CoSnO3@N-KB-300和Se-CoSnO3@N-KB-400的SEM图表明其形貌与CoSn(OH)6@N-KB前驱体相似,说明CoSn(OH)6经焙烧所形成的无定型CoSnO3可以保留原来的形貌。N-KB的SEM图表明N-KB呈由纳米颗粒组成的三维多孔结构。
【图3】为实施例1中目标产品CoSe2/SnO2@N-KB-500的(a和b)TEM图、(c)HRTEM图和(d)EDX图。进一步表明CoSe2/SnO2@N-KB-500由壳层大约为25nm的中空立方块或球和以N-KB为主的纳米颗粒组成。从其HRTEM图中可以观察到间距为0.294nm的晶格条纹,对应CoSe2的(200)晶面,证明了CoSe2的存在。相应的EDX图表明材料中Co、Sn、Se、C、N和O元素的存在。
【图4】为实施例1中目标产品CoSe2/SnO2@N-KB-500的(a)XPS总谱图,(b)Co2p、(c)Se 3d、(d)Sn 3d、(e)C 1s、(f)N 1s和(g)O 1s的高分辨XPS谱图。进一步表明CoSe2/SnO2@N-KB-500的成功合成及N对KB的成功掺杂。
【图5】为实施例1中目标产品CoSe2/SnO2@N-KB-500、对比例2中Se-CoSnO3@N-KB-300和对比例3中Se-CoSnO3@N-KB-400催化剂在氧气饱和的1M KOH溶液和扫描速度为5mV/s时的(a)LSV图、(b)电流密度为10mA/cm2时所需的过电位η、(c)Tafel曲线图和(d)1.55V(vs.RHE)时的交流阻抗图谱。图中显示CoSe2/SnO2@N-KB-500具有在电流密度为10mA/cm2时最低的过电位η、最小的Tafel斜率和最小的电化学阻抗值,表明CoSe2/SnO2@N-KB-500具有最高的催化活性和最适宜的催化动力学。
【图6】为实施例1中目标产品CoSe2/SnO2@N-KB-500、对比例1中RuO2、对比例4中CoSe2/SnO2、对比例5中CoSnO3@N-KB和对比例6中N-KB在氧气饱和的1M KOH溶液和扫描速度为5mV/s时的(a)LSV图、(b)电流密度为10mA/cm2时所需的过电位η和(c)Tafel曲线图;(d)CoSe2/SnO2@N-KB-500、CoSe2/SnO2、CoSnO3@N-KB和N-KB在1.48V(vs.RHE)的电位下电流密度与扫描速率的关系曲线;(e)CoSe2/SnO2@N-KB-500和RuO2进行2000次CV循环前后测得的LSV曲线。图中显示CoSe2/SnO2@N-KB-500具有在电流密度为10mA/cm2时最低的过电位η、最小的Tafel斜率和最大的电化学活性比表面积,表明CoSe2/SnO2@N-KB-500具有最高的催化活性和最适宜的催化动力学;同时,CoSe2/SnO2@N-KB-500具有比RuO2更好的稳定性。
具体实施方式
下面用实施例更详细地描述本发明内容,但并不限制本发明权利要求的保护范围。
实施例1
CoSe2/SnO2@N-KB-500的制备分为三步,具体如下:
(1)N-KB的制备
称取200mg KB和1.0g双氰胺加入到100mL的烧杯中,然后加入50mL去离子水,搅拌30min,转移至内衬聚四氟乙烯的不锈钢反应釜中,在180℃保温12h,冷却至室温后,产物分别用水与乙醇离心洗涤3次,在真空干燥箱内于60℃烘干,得到氮掺杂的科琴炭黑(N-KB)。
(2)前驱体CoSn(OH)6@N-KB的制备
称取5mmol六水合氯化钴、5mmol柠檬酸三钠和120mg N-KB加入150mL的去离子水。室温下搅拌30min。随后逐滴加入25mL的四氯化锡(5mmol)乙醇溶液。再在室温下逐滴加入25mL NaOH溶液(2mol L-1),搅拌1h后,再逐滴加入100mLNaOH溶液(8mol L-1),搅拌30min。所得悬浮物分别用去离子水和无水乙醇离心洗涤3次,所得产物在真空干燥箱于60℃干燥12h,得到CoSn(OH)6@N-KB。
(3)CoSe2/SnO2@N-KB-500的制备
将100mg CoSn(OH)6@N-KB和80mg硒粉进行充分研磨,研磨后的粉末置于管式炉中,在N2气氛中以2℃min-1的速率升温至500℃,煅烧2h,自然降温得到CoSe2/SnO2@N-KB-500。
采用X射线衍射技术(XRD,Empyrean,Cu Kα,
Figure BDA0002514409860000071
)对产品进行物相和晶体结构表征;通过扫描电子显微镜(SEM,Quanta 250FEG)对产品表面的形貌进行观察;通过透射电子显微镜(JEOL JEM-2100)对产品进行透射电子显微(TEM)和高分辨透射电子显微(HRTEM)表征,观察产品的微观形貌;样品表层的元素组成及价态采用X射线光电子能谱分析(XPS,K-Alpha+,Al-Kα)。
通过三电极系统在CHI660E电化学工作站上于室温下测试样品的电化学性能。工作电极的制备:称取4mg待测样品粉末,分散于去离子水、乙醇及5%Nafion溶液(体积比为0.45:0.5:0.05)的1mL混合液中,超声30min使样品均匀分散在基体溶液中。用移液枪汲取5μL悬浮液滴加到直径3mm的玻碳电极上,室温干燥后备用(催化剂的负载量为0.28mg/cm2)。在样品OER性能测试过程中,铂电极为对电极,Hg/HgO为参比电极。样品OER活性的评价采用线性扫描伏安法(LSV),电解液为氧气饱和的1M KOH溶液,扫描速率为5mV/s。OER稳定性测试是以100mV s-1的扫描速率循环2000圈后,比较循环前后LSV曲线在达到150mA cm-2电流密度时的过电势增加情况。
CoSe2/SnO2@N-KB-500复合物作为OER催化剂的起始电位为1.409V(vs.RHE)。在电流密度为10mA/cm2时,所需的过电位η为303mV(vs.RHE)。Tafel斜率为66mV/dec。在稳定性评价中,以100mV s-1的扫描速率循环2000圈后,CoSe2/SnO2@N-KB-500循环前后LSV曲线在达到150mA cm-2电流密度时的过电势增加了17mV。
对比例1
以商用RuO2为OER催化剂。
催化性能的评价方法同实施例1。
RuO2作为OER催化剂的起始电位为1.469V(vs.RHE)。在电流密度为10mA/cm2时,所需的过电位η为310mV(vs.RHE)。Tafel斜率为71mV/dec。在稳定性评价中,以100mV s-1的扫描速率循环2000圈后,RuO2循环前后LSV曲线在达到150mA cm-2电流密度时的过电势增加了28mV。
对比例2
以Se-CoSnO3@N-KB-300为OER催化剂。
按照实施例1的方法将CoSe2/SnO2@N-KB-500制备过程中的硒化温度替换为300℃制备得到Se-CoSnO3@N-KB-300。
催化性能的评价方法同实施例1。
Se-CoSnO3@N-KB-300作为OER催化剂的起始电位为1.525V(vs.RHE)。在电流密度为10mA/cm2时,所需的过电位η为360mV(vs.RHE)。Tafel斜率为70mV/dec。
对比例3
以Se-CoSnO3@N-KB-400为OER催化剂。
按照实施例1的方法将CoSe2/SnO2@N-KB-500制备过程中的硒化温度替换为400℃制备得到Se-CoSnO3@N-KB-400。
催化性能的评价方法同实施例1。
Se-CoSnO3@N-KB-400作为OER催化剂的起始电位为1.280V(vs.RHE)。在电流密度为10mA/cm2时,所需的过电位η为320mV(vs.RHE)。Tafel斜率为95mV/dec。
对比例4
以CoSe2/SnO2为OER催化剂。
按照实施例1的方法在CoSe2/SnO2@N-KB-500制备过程中没有加入N-KB制备得到CoSe2/SnO2
催化性能的评价方法同实施例1。
CoSe2/SnO2作为OER催化剂的起始电位为1.538V(vs.RHE)。在电流密度为10mA/cm2时,所需的过电位η为369mV(vs.RHE)。Tafel斜率为67mV/dec。
对比例5
以CoSnO3@N-KB为OER催化剂。
按照实施例1的方法在CoSe2/SnO2@N-KB-500制备过程中没有加入硒粉制备得到CoSnO3@N-KB。
催化性能的评价方法同实施例1。
CoSnO3@N-KB作为OER催化剂的起始电位为1.572V(vs.RHE)。在电流密度为10mA/cm2时,所需的过电位η为415mV(vs.RHE)。Tafel斜率为73mV/dec。
对比例6
以N-KB为OER催化剂。
按照实施例1第一步的方法制备得到N-KB。
催化性能的评价方法同实施例1。
N-KB作为OER催化剂的起始电位为1.477V(vs.RHE)。在电流密度为10mA/cm2时,所需的过电位η为460mV(vs.RHE)。Tafel斜率为157mV/dec。

Claims (10)

1.一种析氧CoSe2/SnO2@N-KB复合催化剂,其特征在于:由二硒化钴颗粒和二氧化锡颗粒均匀负载在氮掺杂科琴炭黑上构成。
2.根据权利要求1所述的析氧CoSe2/SnO2@N-KB复合催化剂,其特征在于:所述析氧CoSe2/SnO2@N-KB复合催化剂由以下质量百分比组分组成:
二硒化钴颗粒和二氧化锡颗粒85%–97%;
氮掺杂科琴炭黑3%–15%;
其中,
二硒化钴和二氧化锡的摩尔比为(1–3):(1–3);
氮掺杂科琴炭黑中氮掺杂质量百分比含量为3%–12%。
3.根据权利要求1或2所述的析氧CoSe2/SnO2@N-KB复合催化剂,其特征在于:所述析氧CoSe2/SnO2@N-KB复合催化剂由以下质量百分比组分组成:
二硒化钴颗粒和二氧化锡颗粒88%–94%;
氮掺杂科琴炭黑6%–12%;
其中,
二硒化钴和二氧化锡的摩尔比为(1–2):(1–2);
氮掺杂科琴炭黑中氮掺杂质量百分比含量为6%–9%。
4.权利要求1~3任一项所述一种析氧CoSe2/SnO2@N-KB复合催化剂的制备方法,其特征在于:包括以下步骤:
1)将科琴炭黑、含氮有机小分子化合物及水混合,经过水热反应,得到氮掺杂科琴炭黑;
2)将钴盐、柠檬酸三钠和氮掺杂科琴炭黑溶解分散至水中后,滴加锡盐醇溶液,再加入碱性溶液进行共沉淀反应,得到CoSn(OH)6@N-KB前驱体;
3)将CoSn(OH)6@N-KB前驱体和硒粉研磨混合后,置于保护气氛中,在450℃–550℃温度下进行硒化处理,即得。
5.根据权利要求4所述的一种析氧CoSe2/SnO2@N-KB复合催化剂的制备方法,其特征在于:所述含氮有机小分子化合物包括尿素、三聚氰胺、三聚氰氯、氰胺、双氰胺中至少一种。
6.根据权利要求4或5所述的一种析氧CoSe2/SnO2@N-KB复合催化剂的制备方法,其特征在于:科琴炭黑、含氮有机小分子化合物、钴盐、柠檬酸三钠和锡盐的质量比为(1–3):(4–10):(5–12):(7–15):(8–18)。
7.根据权利要求4所述的一种析氧CoSe2/SnO2@N-KB复合催化剂的制备方法,其特征在于:所述水热反应的温度为140℃–210℃,时间为8–16h。
8.根据权利要求4所述的一种析氧CoSe2/SnO2@N-KB复合催化剂的制备方法,其特征在于:CoSn(OH)6@N-KB前驱体和硒粉的质量比为(2–8):(1–6)。
9.根据权利要求4所述的一种析氧CoSe2/SnO2@N-KB复合催化剂的制备方法,其特征在于:所述硒化处理的时间为0.5–4h。
10.权利要求1~3任一项所述的一种析氧CoSe2/SnO2@N-KB复合催化剂的应用方法,其特征在于:作为电解水或金属-空气二次电池析氧电催化剂应用。
CN202010471400.6A 2020-05-29 2020-05-29 一种析氧二硒化钴/二氧化锡@氮掺杂科琴炭黑复合催化剂及其制备方法和应用 Active CN111495413B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010471400.6A CN111495413B (zh) 2020-05-29 2020-05-29 一种析氧二硒化钴/二氧化锡@氮掺杂科琴炭黑复合催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010471400.6A CN111495413B (zh) 2020-05-29 2020-05-29 一种析氧二硒化钴/二氧化锡@氮掺杂科琴炭黑复合催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111495413A true CN111495413A (zh) 2020-08-07
CN111495413B CN111495413B (zh) 2021-04-02

Family

ID=71849687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010471400.6A Active CN111495413B (zh) 2020-05-29 2020-05-29 一种析氧二硒化钴/二氧化锡@氮掺杂科琴炭黑复合催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111495413B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094479A (zh) * 2022-07-25 2022-09-23 福建省清流县东莹化工有限公司 电化学分解水电极用氟氧钴镍复合碳催化剂及其制备方法
CN115275227A (zh) * 2022-06-29 2022-11-01 合肥工业大学智能制造技术研究院 一种固相宏量合成珊瑚状金属硒化物复合氮掺杂碳催化剂的方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059862A2 (en) * 2000-02-11 2001-08-16 The Texas A & M University System Electroconductive fuel cell component with directly bonded layers and method for making same
CN107051568A (zh) * 2017-05-08 2017-08-18 中南大学 一种析氧Fe掺杂二硒化钴@N‑CT复合催化剂及其制备方法和应用
CN108374179A (zh) * 2018-02-07 2018-08-07 浙江大学 一种铁掺杂二硒化钴复合氮掺杂碳材料的制备方法及应用
CN108754533A (zh) * 2018-05-25 2018-11-06 西安交通大学 一种长寿命高活性电解水产臭氧的掺杂氧化锡电极的制备方法
CN109174146A (zh) * 2018-07-24 2019-01-11 安徽师范大学 一维碱式碳酸钴@二维CoSe/NF异质结构复合材料及其制备方法和应用
CN110102331A (zh) * 2019-05-21 2019-08-09 中南大学 一种高性能析氧二硒化钴/四硒化三镍@nc/c复合催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059862A2 (en) * 2000-02-11 2001-08-16 The Texas A & M University System Electroconductive fuel cell component with directly bonded layers and method for making same
CN107051568A (zh) * 2017-05-08 2017-08-18 中南大学 一种析氧Fe掺杂二硒化钴@N‑CT复合催化剂及其制备方法和应用
CN108374179A (zh) * 2018-02-07 2018-08-07 浙江大学 一种铁掺杂二硒化钴复合氮掺杂碳材料的制备方法及应用
CN108754533A (zh) * 2018-05-25 2018-11-06 西安交通大学 一种长寿命高活性电解水产臭氧的掺杂氧化锡电极的制备方法
CN109174146A (zh) * 2018-07-24 2019-01-11 安徽师范大学 一维碱式碳酸钴@二维CoSe/NF异质结构复合材料及其制备方法和应用
CN110102331A (zh) * 2019-05-21 2019-08-09 中南大学 一种高性能析氧二硒化钴/四硒化三镍@nc/c复合催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JITAO LU,ET.AL.: "Metal organic frameworks derived CoSe2@N-Doped-carbon-nanorods as highly efficient electrocatalysts for oxygen evolution reaction", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
YU-SYUAN CHAO,ET.AL.: "Cobalt selenide electrocatalyst supported by nitrogen-doped carbon and its stable activity toward oxygen reduction reaction", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115275227A (zh) * 2022-06-29 2022-11-01 合肥工业大学智能制造技术研究院 一种固相宏量合成珊瑚状金属硒化物复合氮掺杂碳催化剂的方法及其应用
CN115094479A (zh) * 2022-07-25 2022-09-23 福建省清流县东莹化工有限公司 电化学分解水电极用氟氧钴镍复合碳催化剂及其制备方法
CN115094479B (zh) * 2022-07-25 2023-09-05 福建省清流县东莹化工有限公司 电化学分解水电极用氟氧钴镍复合碳催化剂及其制备方法

Also Published As

Publication number Publication date
CN111495413B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
Wang et al. Hollow bimetallic cobalt-based selenide polyhedrons derived from metal–organic framework: an efficient bifunctional electrocatalyst for overall water splitting
Zhang et al. Spinel CoFe2O4 supported by three dimensional graphene as high-performance bi-functional electrocatalysts for oxygen reduction and evolution reaction
CN108385124B (zh) 一种用于析氢反应的过渡族金属/碳管/石墨烯电催化剂的制备方法
Su et al. Hydrothermal-assisted defect engineering in spinel Co3O4 nanostructures as bifunctional catalysts for oxygen electrode
CN111584889B (zh) 一种含锌单原子催化剂及其制备方法与应用
CN110102331B (zh) 一种高性能析氧二硒化钴/四硒化三镍@nc/c复合催化剂及其制备方法和应用
Yang et al. Self-supported N-doped hierarchical Co3O4 electrocatalyst with abundant oxygen vacancies for acidic water oxidation
Li et al. Synthesis of nitrogen-rich porous carbon nanotubes coated Co nanomaterials as efficient ORR electrocatalysts via MOFs as precursor
Yang et al. Serpentine CoxNi3-xGe2O5 (OH) 4 nanosheets with tuned electronic energy bands for highly efficient oxygen evolution reaction in alkaline and neutral electrolytes
Ma et al. Facile fabrication of a binary NiCo phosphide with hierarchical architecture for efficient hydrogen evolution reactions
Yang et al. Facile synthesis of CoSe nanoparticles encapsulated in N-doped carbon nanotubes-grafted N-doped carbon nanosheets for water splitting
Wang et al. Phosphorus-doped CoTe 2/C nanoparticles create new Co–P active sites to promote the hydrogen evolution reaction
CN113373471B (zh) 一种用于电催化还原co2制低碳醇的铟基催化剂的制备方法及应用
CN111495413B (zh) 一种析氧二硒化钴/二氧化锡@氮掺杂科琴炭黑复合催化剂及其制备方法和应用
Yu et al. High negative voltage activating perovskite oxide with bi-vacancy synergistic regulation for water oxidation
Loni et al. Cobalt-based electrocatalysts for water splitting: an overview
CN114959780B (zh) 一种核壳结构钴掺杂二硒化镍电催化材料及其制备方法
Jiang et al. Ion-biosorption induced core–shell Fe 2 P@ carbon nanoparticles decorated on N, P co-doped carbon materials for the oxygen evolution reaction
Zhu et al. Template confined construction of Fe–NiCoP/NiCoP/NF heterostructures for highly efficient electrocatalytic oxygen evolution reaction
Sun et al. Combination of ZIF-67 derived hollow porous Co9S8 nanocages and MWCNTs for electrochemical hydrogen storage applications
Gao et al. Efficient oxygen evolution catalysts with synergistic reactivity: CoFe2O4/C derived from bimetallic organic framework supported on nitrogen-doped carbon nanoarray structure
Yu et al. Oxygen-deficient MoO x/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction
Karimpour et al. New insights on the effects of surface facets and calcination temperature on electrochemical properties of MnCo2O4 as bifunctional oxygen electrocatalyst in zinc-air batteries
Jiang et al. Ru-optimized geometric sites of cations in CoFe/CoFe2O4 electrocatalysts with graphitic carbon shells for boosting water oxidation
CN110560094B (zh) 一种3d多孔钴锡钼三金属催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant