CN111490113A - 光电探测装置及光电转换方法 - Google Patents

光电探测装置及光电转换方法 Download PDF

Info

Publication number
CN111490113A
CN111490113A CN201910073718.6A CN201910073718A CN111490113A CN 111490113 A CN111490113 A CN 111490113A CN 201910073718 A CN201910073718 A CN 201910073718A CN 111490113 A CN111490113 A CN 111490113A
Authority
CN
China
Prior art keywords
molybdenum disulfide
semiconductor layer
electrode
detection device
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910073718.6A
Other languages
English (en)
Inventor
黄忠政
张天夫
肖小阳
赵洁
李群庆
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN201910073718.6A priority Critical patent/CN111490113A/zh
Priority to TW108107938A priority patent/TWI727275B/zh
Priority to US16/713,329 priority patent/US20200243698A1/en
Publication of CN111490113A publication Critical patent/CN111490113A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种光电探测装置,其包括:一二硫化钼半导体层、一电信号检测器、一第一电极及一第二电极;所述二硫化钼半导体层分别与第一电极和第二电极电连接,所述电信号检测器用于检测所述二硫化钼半导体层的电学性能的变化,其中,所述二硫化钼半导体层为非晶二硫化钼。本发明还涉及一种光电转换方法。

Description

光电探测装置及光电转换方法
技术领域
本发明涉及一种光电探测装置及使用方法,特别涉及一种基于非晶二硫化钼的光电探测装置及光电转换方法。
背景技术
光电探测装置可将光信号转换为电信号而具有广泛的应用,如成像装置、传感装置、通信装置等。半导体层作为光电探测装置中的重要元件,直接决定了光电探测装置所能探测的光谱范围。目前,采用半导体材料如GaN、Si、InGaAs和HgCdTe等可分别检测不同波段的光,如紫外光、可见光、近红外、中红外等。然而,随着电子装置需求的飙升,在室温下能够检测宽光带的光电探测装置已成为迫切需求。
具有二维结构的二硫化钼具有较强的光电作用,是一种很有前途的光电材料。目前对二硫化钼光电性能的研究中,多晶二硫化钼经检测可实现光谱响应从445纳米到2717纳米的宽光谱范围。然而,在制备多晶二硫化钼时,基底温度需要达到600摄氏度甚至更高,制备价格昂贵。
发明内容
有鉴于此,确有必要提供一种成本低、能检测宽光谱的光电探测装置。
一种光电探测装置,其包括:一二硫化钼半导体层、一电信号检测器、一第一电极及一第二电极;所述二硫化钼半导体层分别与第一电极和第二电极电连接,所述电信号检测器用于检测所述二硫化钼半导体层的电学性能的变化,其中,所述二硫化钼半导体层为非晶二硫化钼。
一种光电转换方法,该方法包括以下步骤:提供一光电探测装置,所述光电探测装置为上述光电探测装置;以及采用入射光照射所述光电探测装置。
相较于现有技术,本发明提供的光电探测装置,采用非晶二硫化钼作为光电半导体材料,由于该非晶二硫化钼的带隙仅为0.196eV,因此,采用该非晶二硫化钼的光电探测装置10具有波长为345纳米至6340纳米的宽光谱探测范围;所述非晶二硫化钼可通过在室温下磁控溅射得到,制备方法简单,成本低,响应速度快。
附图说明
图1是本发明第一实施例提供的光电探测装置的结构示意图。
图2是本发明第一实施例提供的非晶二硫化钼和非晶二硫化钼退火后的XRD图谱。
图3是本发明第一实施例提供的非晶二硫化钼和非晶二硫化钼退火后的TEM图。
图4是本发明第一实施例提供的二硫化钼半导体层的制备方法流程图。
图5是本发明第一实施例提供的通过磁控溅射法制备得到的非晶二硫化钼的XPS图谱。
图6是本发明第一实施例提供的制备非晶二硫化钼的射频功率与所述光电探测装置的关系曲线图。
图7是本发明第一实施例提供的制备非晶二硫化钼的压强与所述光电探测装置的关系曲线图。
图8是本发明第一实施例提供的非晶二硫化钼的厚度与所述光电探测装置的关系曲线图。
图9是本发明第一实施例提供的电极材料与所述光电探测装置的关系曲线图。
图10是本发明第一实施例提供的光电转换方法流程图。
图11是本发明第一实施例提供的光电探测装置对不同光波长的吸收率的变化曲线图。
图12是本发明第一实施例提供的入射光波长与所述光电探测装置的关系曲线图。
图13本发明第一实施例提供的所述光电探测装置的光响应曲线图。
主要元件符号说明
Figure BDA0001958074300000021
Figure BDA0001958074300000031
如下具体实施例将结合上述附图进一步说明本发明。
具体实施方式
下面将结合具体实施例及附图对本发明所提供的光电探测装置及光电转换方法作进一步说明。
请参阅图1,本发明第一实施例提供一种光电探测装置10,所述光电探测装置10包括一二硫化钼半导体层11,一电信号检测器12,一第一电极13,一第二电极14及一基底15。所述二硫化钼半导体层11设置在所述基底15的表面。所述二硫化钼半导体层11分别与所述第一电极13和第二电极14电连接。所述第一电极13和第二电极14间隔设置。所述电信号检测器12通过所述第一电极13和第二电极14电连接至所述二硫化钼半导体层11,用于检测所述二硫化钼半导体层11电学性能的变化。所述二硫化钼半导体层11、第一电极13、电信号检测器12及第二电极14依次连接形成一回路。
具体地,所述二硫化钼半导体层11为非晶二硫化钼。所述非晶二硫化钼为二维片状半导体材料,所述非晶二硫化钼在吸收光子后,可将光子转换为新的电子-空穴对。该非晶二硫化钼的带隙Eg最小可达到0.196eV。根据半导体带隙和吸收波长的关系λ(nm)=1243/Eg(eV)可知,当该非晶二硫化钼的带隙在0.196eV时,可吸收波长达到6340纳米的光。又,所述非晶二硫化钼对波长低至345纳米的光均具有很好的吸收效果。因此,采用该二硫化钼半导体层11的光电探测装置10可探测的光波长的范围为345纳米至6340纳米的宽光谱。请一并参阅图2及图3,图2为非晶二硫化钼和非晶二硫化钼退火后的XRD图谱,可以看出非晶二硫化钼的XRD图谱中没有出现明显的尖峰为非晶相,而将非晶二硫化钼退火后的图谱中出现明显的尖峰,即非晶二硫化钼在退火后变为晶相。图3中(a)为非晶二硫化钼的TEM图,(b)为非晶二硫化钼退火后的TEM图,可以看出非晶二硫化钼在退火中由非晶相转变为晶相。所述二硫化钼半导体层11的厚度范围为10纳米-150纳米。本实施例中,所述二硫化钼半导体层11的厚度为114.5纳米。
请参阅图4,所述二硫化钼半导体层11可通过磁控溅射法制备得到,具体包括以下步骤:
步骤11,在磁控溅射腔内设置所述基底15。
当所述磁控溅射腔内的真空度达到3×10-5Pa时,通入氩气直到压强达到设定值P;所述基底15的温度保持为室温温度Ts,Ts为20-28℃。所述基底15的材料不限,满足能够沉积二硫化钼即可,如石英、玻璃、二氧化硅、硅或其组合。本实施中,所述压强P为0.2Pa,所述基底温度为23℃,所述基底15的材料为表面设有二氧化硅层的硅基底。
步骤12,调节射频功率、二硫化钼溅射靶与基底15的距离以及沉积时间以沉积制备所述二硫化钼半导体层11。
所述射频功率的范围为150W-500W;所述溅射靶与基底15的距离设定为100毫米;所述沉积时间可根据需要沉积薄膜的厚度进行调节。本实施例中,所述射频功率为400W。
请参阅图5,为通过上述磁控溅射法制备得到的非晶二硫化钼的XPS图谱。(a)为所述非晶二硫化钼整体化学元素的XPS图谱,可以看出所述非晶二硫化钼具有高的化学纯度;(b)为所述非晶二硫化钼中Mo 3d的XPS图谱,Mo 3d的XPS图谱包括测试图谱(surveydata)、拟合图谱(fitting data)、Mo 3d5/2和Mo 3d3/2的图谱,可以看出Mo 3d5/2和Mo 3d3/2的结合能分别位于228.5eV和231.8eV;(c)为所述非晶二硫化钼中S 2p的XPS图谱,S 2p的XPS图谱包括测试图谱(survey data)、拟合图谱(fitting data)、S 2p3/2和S 2p1/2的图谱,可以看出S 2p3/2和S 2p1/2的结合能分别位于161.8eV和162.9eV,根据Mo和S的元素图谱可以看出磁控溅射得到的非晶二硫化钼材料不存在被氧化的现象。
所述第一电极13和第二电极14由导电材料组成,其形状结构不限。所述第一电极13和第二电极14可选择为金属、ITO、导电胶、导电聚合物以及导电碳纳米管等。所述金属材料可以为钪、钛、金、钯、铬、铂或任意组合的合金。具体地,所述第一电极13和第二电极14可选择为层状、棒状、块状或其它形状。本实施例中,所述第一电极13和第二电极14间隔设置,且分别与所述二硫化钼半导体层11相对的两边缘接触设置,所述第一电极13和第二电极14为金属Au和Ti得到的金属复合结构,具体地,所述金属复合结构是由金属Au在金属Ti的表面复合而成。
所述电信号检测器12通过所述第一电极13、第二电极14与所述二硫化钼半导体层11串联形成一电路回路。所述电信号检测器12可为电流检测装置、电压检测装置。所述电信号检测器12为电流检测装置时,该电信号检测器12包括一电源和一电流计,所述电源用于为所述二硫化钼半导体层11提供偏压,所述电流计用于检测电路回路中的电流变化。所述电信号检测器12为电压检测装置时,该电信号检测器12包括一电源和一电压计,所述电源用于为所述二硫化钼半导体层11提供偏压,所述电流计用于检测所述二硫化钼半导体层的电压变化。
工作时,所述光电探测装置10的响应度及探测率等参数会根据二硫化钼的制备参数、厚度、电极材料的不同而改变。上述制备参数可包括射频功率,压强。请参阅图6,(a)为不同射频功率下光电流和偏压的曲线关系图;(b)为所述光电探测装置10的响应度与射频功率的曲线关系图。当入射光波长、入射光功率及偏压为一定值时,随着射频功率的改变,所述光电探测装置10的响应度也不断改变,从图中可以看出,当射频功率为350-450W时,该光电探测装置10的响应度Rλ的数值提高23%-30%,性能提高显著。优选地,所述射频功率为350-400W。进一步,当射频功率为400W时,该光电探测装置10的响应度Rλ达到最大值,性能最好。这时,选用的入射光波长λ为1550纳米,入射光功率Popt为10mW,偏压Vds为1V。请参阅图7,(a)为不同压强下光电流和偏压的曲线关系图;(b)为所述光电探测装置10的响应度与压强的曲线关系图。当入射光波长、入射光功率及偏压为一定值时,随着压强的升高,所述光电探测装置10的响应度不断减小,从图中可以看出,当压强为0.2Pa时,该光电探测装置10的响应度Rλ达到最大值,性能最好。这时,选用的入射光波长λ为1550纳米,入射光功率Popt为4mW,偏压Vds为1V。请参阅图8,(a)为不同的非晶二硫化钼的厚度下光电流和偏压的曲线关系图;(b)为所述光电探测装置10的响应度Rλ、探测率D*与厚度的曲线关系图。当入射光波长、入射光功率及偏压为一定值时,随着厚度的增加,所述光电探测装置10的响应度及探测率也不断增加。这是由于随着厚度的增加,入射光会被更充分的吸收,光子转换成电子-空穴对的数量增多,从而使光电流增大以得到更大的光响应度。这时,选用的入射光波长λ为1550纳米,入射光功率Popt为4mW,偏压Vds为1V。请参阅图9,所述第一电极13和第二电极14的材料选用不同的金属时,所述所述光电探测装置10的响应度不同。(a)为不同电极材料下光电流和偏压的曲线关系图;(b)为所述光电探测装置10的响应度与电极材料的曲线关系图。当入射光波长λ、入射光功率(Light power)、偏压Vds及非晶二硫化钼的厚度(thickness)为一定值时,选用不同材料的电极,所述光电探测装置10的响应度也不同。从图中可以看出,当电极选用Ti/Au时,该光电探测装置10的响应度最高,这也说明电极与非晶二硫化钼的接触最优。
本发明提供的所述光电探测装置10具有以下优点:采用非晶二硫化钼作为光电半导体材料,由于该非晶二硫化钼的带隙仅为0.196eV,因此,采用该非晶二硫化钼的光电探测装置10具有波长为345纳米至6340纳米的宽光谱探测范围;所述非晶二硫化钼可通过在室温下磁控溅射得到,制备方法简单,成本低。
请参阅图10,本发明第一实施例提供一种光电转换方法,所述光电转换方法包括以下步骤:
步骤21,提供所述光电探测装置10;
步骤22,采用入射光16照射所述光电探测装置10。
在步骤21中,所述光电探测装置10为上述第一实施例提供的光电探测装置。由于所述光电探测装置10采用非晶二硫化钼作为光电半导体层,所述非晶二硫化钼的带隙可降低至0.196eV,因此,所述光电探测装置10也可具有非常宽的光探测范围。所述光电探测装置10可吸收的波长可达到6340纳米。所述光电探测装置10在实际使用过程中,由于仪器等设备的限制,不会穷尽所有波段的入射光去一一照射,而是优选一部分范围波长的入射光。本实施例中,所述入射光16的波长范围为345纳米至4814纳米。请参阅图11,(a)为所述光电探测装置10对不同光波长的吸收率的变化曲线图;(b)为(a)的部分波长范围的放大图,这时,所选用的非晶二硫化钼的厚度为114.5nm。可以看出,所述光电探测装置10在波长为345纳米至4814纳米的范围内的入射光具有很高的吸收率。
在步骤22中,当采用不同波长的入射光16照射所述二硫化钼半导体层11,所述光电探测装置10的响应度及探测率不同。请参阅图12,(a)为不同入射光波长下光电流和偏压的曲线关系图;(b)为所述光电探测装置10的响应度、探测率与入射光波长的曲线关系图。当入射光功率、偏压及非晶二硫化钼的厚度为一定值时,所述光电探测装置10对宽波长的入射光均具有很好的响应度和探测率。同时,在入射光功率Popt为4mW,偏压Vds为1V,非晶二硫化钼的厚度为114.5nm时,该光电探测装置10对波长为520纳米的光的响应度及探测率最好。同时,若将图12中的选取的几个波长值在图10中相应位置标记出来,可以看出随着波长值的变化,所述光电探测装置10对光的吸收率与响应度的变化趋势相同。请参阅图13,(a)为所述光电探测装置10在波长为973纳米、偏压为1伏时的光响应曲线图;(b)为光响应上升部分曲线图;(c)为光响应衰减部分曲线图。从图中可以看出,所述光电探测装置10具有很快的光响应速度,这也说明所述光电探测装置10可快速将入射光的光信号转化为电信号。
本发明提供的所述光电转换方法具有以下优点:采用非晶二硫化钼作为光电半导体材料,且该非晶二硫化钼的带隙仅为0.196eV,因此,采用该非晶二硫化钼的光电探测装置10具有波长为345纳米至6340纳米的宽光谱探测范围和快的光响应速度。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (10)

1.一种光电探测装置,其包括:一二硫化钼半导体层、一电信号检测器、一第一电极、一第二电极及一基底;所述二硫化钼半导体层设置在所述基底的表面,所述二硫化钼半导体层分别与第一电极和第二电极电连接,所述电信号检测器用于检测所述二硫化钼半导体层的电学性能的变化,其特征在于,所述二硫化钼半导体层为非晶二硫化钼。
2.如权利要求1所述的光电探测装置,其特征在于,所述非晶二硫化钼的带隙为0.196eV。
3.如权利要求1所述的光电探测装置,其特征在于,所述非晶二硫化钼的吸收光的波长范围为345纳米至6340纳米。
4.如权利要求1所述的光电探测装置,其特征在于,所述二硫化钼半导体层的厚度范围为10纳米-150纳米。
5.如权利要求1所述的光电探测装置,其特征在于,所述非晶二硫化钼是在室温下通过磁控溅射法制备的,所述磁控溅射法的射频功率为350W-450W。
6.如权利要求1所述的光电探测装置,其特征在于,所述电信号检测器与所述第一电极、第二电极与所述二硫化钼半导体层串联形成一电路回路。
7.如权利要求6所述的光电探测装置,其特征在于,该电信号检测器包括一电源和一电流计,所述电源用于为所述二硫化钼半导体层提供偏压,所述电流计用于检测电路回路中的电流变化。
8.如权利要求6所述的光电探测装置,其特征在于,该电信号检测器包括一电源和一电压计,所述电源用于为所述二硫化钼半导体层提供偏压,所述电流计用于检测所述二硫化钼半导体层的电压变化。
9.一种光电转换方法,该方法包括以下步骤:
提供一光电探测装置,所述光电探测装置为权利要求1-8中任意一项中的光电探测装置;以及
采用入射光照射所述光电探测装置。
10.如权利要求9所述的光电转换方法,其特征在于,所述入射光的波长范围为345纳米至4814纳米。
CN201910073718.6A 2019-01-25 2019-01-25 光电探测装置及光电转换方法 Pending CN111490113A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910073718.6A CN111490113A (zh) 2019-01-25 2019-01-25 光电探测装置及光电转换方法
TW108107938A TWI727275B (zh) 2019-01-25 2019-03-08 光電探測裝置及光電轉換方法
US16/713,329 US20200243698A1 (en) 2019-01-25 2019-12-13 Photoelectric detector and method for photoelectric conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910073718.6A CN111490113A (zh) 2019-01-25 2019-01-25 光电探测装置及光电转换方法

Publications (1)

Publication Number Publication Date
CN111490113A true CN111490113A (zh) 2020-08-04

Family

ID=71731577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910073718.6A Pending CN111490113A (zh) 2019-01-25 2019-01-25 光电探测装置及光电转换方法

Country Status (3)

Country Link
US (1) US20200243698A1 (zh)
CN (1) CN111490113A (zh)
TW (1) TWI727275B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774321A (zh) * 2021-09-09 2021-12-10 山东大学 一种PtSx高性能光电器件及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120118566A (ko) * 2011-04-19 2012-10-29 성균관대학교산학협력단 박막 트랜지스터
CN108336151A (zh) * 2017-01-20 2018-07-27 清华大学 肖特基二极管、肖特基二极管阵列及肖特基二极管的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821598A (en) * 1995-02-01 1998-10-13 Research Corporation Technologies, Inc. Uncooled amorphous YBaCuO thin film infrared detector
US10323980B2 (en) * 2013-03-29 2019-06-18 Rensselaer Polytechnic Institute Tunable photocapacitive optical radiation sensor enabled radio transmitter and applications thereof
CN104278241B (zh) * 2013-07-02 2017-10-31 中国科学院兰州化学物理研究所 一种具有多环境适应性的薄膜材料的制备技术
TWI648864B (zh) * 2017-09-26 2019-01-21 國立清華大學 感測裝置及離子檢測方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120118566A (ko) * 2011-04-19 2012-10-29 성균관대학교산학협력단 박막 트랜지스터
CN108336151A (zh) * 2017-01-20 2018-07-27 清华大学 肖特基二极管、肖特基二极管阵列及肖特基二极管的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHANG HU等: ""Origin of the Ultrafast Response of the Lateral Photovoltaic Effect in Amorphous MoS2/Si Junctions"", 《ACS APPLIED MATERIALS & INTERFACES》 *
JOHN FRANCIS CURRY等: ""The Impact of Microstructure on MoS2 Oxidation and Friction"", 《ACS APPLIED MATERIALS & INTERFACES》 *
WOONG CHOI等: ""High-Detectivity Multilayer MoS 2 Phototransistors with Spectral Response from Ultraviolet to Infrared"", 《ADV. MATER.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774321A (zh) * 2021-09-09 2021-12-10 山东大学 一种PtSx高性能光电器件及其制备方法和应用
CN113774321B (zh) * 2021-09-09 2022-10-04 山东大学 一种PtSx高性能光电器件及其制备方法和应用

Also Published As

Publication number Publication date
US20200243698A1 (en) 2020-07-30
TWI727275B (zh) 2021-05-11
TW202036924A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
Hasan et al. Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates
Kumar et al. High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes
Chen et al. Schottky solar cells based on CsSnI3 thin-films
Li et al. Flexible ultraviolet photodetector based ZnO film sputtered on paper
Hu et al. Oxides/graphene heterostructure for deep-ultraviolet photovoltaic photodetector
Bhardwaj et al. High responsivity Mg x Zn 1–x O based ultraviolet photodetector fabricated by dual ion beam sputtering
CN110459548B (zh) 一种基于范德瓦尔斯异质结的光电探测器及其制备方法
Zhou et al. High-performance β-Ga 2 O 3-based solar-blind photodetector with ultralow dark current and fast photoresponse for deep-ultraviolet communication
Patel et al. High-performing transparent photodetectors based on Schottky contacts
Wang et al. Flexible, transparent and self-powered deep ultraviolet photodetector based on Ag NWs/amorphous gallium oxide Schottky junction for wearable devices
Sarkar et al. Enhanced UV–visible photodetection characteristics of a flexible Si membrane-ZnO heterojunction utilizing piezo-phototronic effect
Locovei et al. Physical properties of Cu and Dy co-doped ZnO thin films prepared by radio frequency magnetron sputtering for hybrid organic/inorganic electronic devices
Xiao et al. Flexible and highly stable solar-blind photodetector based on room-temperature synthesis of amorphous Ga2O3 film
Feng et al. Performance of metal-semiconductor-metal structured diamond deep-ultraviolet photodetector with a large active area
Han et al. Mid‐Infrared Bipolar and Unipolar Linear Polarization Detections in Nb2GeTe4/MoS2 Heterostructures
Zhao et al. A spectrally selective self-powered photodetector utilizing a ZnO/Cu2O heterojunction
WO2010110475A1 (ja) ショットキー型接合素子とこれを用いた光電変換素子及び太陽電池
CN111490113A (zh) 光电探测装置及光电转换方法
CN113049096A (zh) 室温周期对数天线集成的碲化镍太赫兹探测器及制备方法
Wang et al. Wavelength-tunable multispectral photodetector with both ultraviolet and near-infrared narrowband detection capability
Hu et al. Thickness effect of 2D PdSe2 film on performance of PdSe2/Si heterostructure photodetectors
CN219350245U (zh) 一种铊镍硒和硒化铋异质结构光电探测器
Chang et al. Zn/Mg co-alloyed for higher photoelectric performance and unchanged spectral response in β-Ga2O3 solar-blind photodetector
KR20180069607A (ko) 광전 소자 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200804

RJ01 Rejection of invention patent application after publication