CN111477355A - 堆芯燃料组件及其布置方法、微型中子源反应堆及其堆芯 - Google Patents

堆芯燃料组件及其布置方法、微型中子源反应堆及其堆芯 Download PDF

Info

Publication number
CN111477355A
CN111477355A CN202010298966.3A CN202010298966A CN111477355A CN 111477355 A CN111477355 A CN 111477355A CN 202010298966 A CN202010298966 A CN 202010298966A CN 111477355 A CN111477355 A CN 111477355A
Authority
CN
China
Prior art keywords
reactor
core
fuel
region
grid plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010298966.3A
Other languages
English (en)
Other versions
CN111477355B (zh
Inventor
吴小波
李义国
彭旦
鲁谨
王梦娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN202010298966.3A priority Critical patent/CN111477355B/zh
Publication of CN111477355A publication Critical patent/CN111477355A/zh
Application granted granted Critical
Publication of CN111477355B publication Critical patent/CN111477355B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/326Bundles of parallel pin-, rod-, or tube-shaped fuel elements comprising fuel elements of different composition; comprising, in addition to the fuel elements, other pin-, rod-, or tube-shaped elements, e.g. control rods, grid support rods, fertile rods, poison rods or dummy rods
    • G21C3/328Relative disposition of the elements in the bundle lattice
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/322Means to influence the coolant flow through or around the bundles
    • G21C3/3225Means to influence the coolant flow through or around the bundles by waterrods
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • G21C3/3424Fabrication of spacer grids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本发明的实施例提供了反应堆的堆芯燃料组件及其布置方法、微型中子源反应堆及其堆芯,其中,堆芯燃料组件包括:燃料元件、挤水棒和栅格组件,燃料元件设置成维持反应堆进行核裂变反应,挤水棒设置成调节堆芯水铀比;栅格组件设置孔位,孔位用于容纳燃料元件或挤水棒;孔位从堆芯的中心向外依次设置第一区域、第二区域及第三区域,第一区域的孔位设置成容纳燃料元件;第二区域的孔位设置成容纳燃料元件和挤水棒;第三区域的孔位设置成容纳燃料元件。本发明实施例的燃料元件布局有利于实现燃料元件效率最大化,以及减少燃料元件数量,从而降低反应堆建造成本。

Description

堆芯燃料组件及其布置方法、微型中子源反应堆及其堆芯
技术领域
本发明涉及反应堆堆芯设计技术领域,具体涉及一种反应堆的堆芯燃料组件及其布置方法、微型中子源反应堆及其堆芯。
背景技术
反应堆堆芯又称活性区,通常由核燃料和一些相关组件组成。核燃料用于在可控条件下发生链式裂变反应,并经一定的方式将核能转变为热能,热能用来发电或产生推动船舶前进的动力。
核燃料按一定方式排布,对应形成堆芯的中子通量分布;其中,相对堆芯中心的位置不同,燃料效率不同,燃料效率一方面影响中子注量率水平,另一方面在反应堆保持临界的前提下影响核燃料的整体用量。为提高中子注量率水平、减少燃料用量,有必要对堆芯的核燃料布局进行改进。
在一些反应堆中,例如微堆,早期微堆采用高浓铀燃料,然而为了更有利防止核扩散,燃料低浓化是目前燃料利用的趋势。在燃料低浓化的同时,对燃料进行合理布局,以改善堆芯的中子注量率水平,或者降低燃料用量,降低堆芯建造成本,对优化堆芯设计十分有利。
发明内容
本发明提供了反应堆的堆芯燃料组件及其布置方法、微型中子源反应堆及其堆芯,解决相关技术中燃料组件布局带来的问题。
根据本发明的一个方面,提供了一种反应堆的堆芯燃料组件,包括:燃料元件、挤水棒和栅格组件,其中,所述燃料元件设置成维持反应堆进行核裂变反应,所述挤水棒设置成调节堆芯水铀比;所述栅格组件设置孔位,所述孔位用于容纳所述燃料元件或所述挤水棒;所述孔位从所述堆芯的中心向外依次设置第一区域、第二区域及第三区域,所述第一区域的孔位设置成容纳所述燃料元件;所述第二区域的孔位设置成容纳所述燃料元件和所述挤水棒;所述第三区域的孔位设置成容纳所述燃料元件。
可选地,所述燃料元件包括壳体和芯体,所述芯体设置在所述壳体内。
可选地,所述燃料元件的壳体材料为锆合金,所述燃料元件的芯体为235U富集度20%以下的UO2
可选地,所述挤水棒为铝棒。
可选地,所述燃料元件和所述挤水棒的尺寸相同。
可选地,所述孔位设置成围绕所述堆芯的中心呈同心圆排布,所述圆的数量为11;所述第一区域包括第1圆周,所述第二区域包括第6圆周,所述第三区域包括第11圆周。
可选地,所述栅格组件包括:第一栅板、第二栅板、连接杆以及导向管;所述第一栅板和所述第二栅板分别对所述燃料组件的轴向的两端定位;所述连接杆设置成连接所述第一栅板和所述第二栅板;所述第一栅板和所述第二栅板设置相同数量的孔位,所述孔位用于所述燃料元件或所述挤水棒插入,或者所述孔位设置有导向管,所述导向管用于对棒控组件导向。
根据本发明的另一个方面,提供了一种微型中子源反应堆堆芯,包括:燃料组件和控制棒,其中,所述燃料组件为上述实施方式提供的堆芯燃料组件;所述控制棒设置在所述堆芯的中心位置,设置成调节所述反应堆功率或使所述反应堆停堆。
根据本发明的另一个方面,还提供了一种微型中子源反应堆,包括:反应堆水池和反应堆本体,其中,所述反应堆本体设置在所述反应堆水池内,所述反应堆水池设置成对所述反应堆冷却,以及屏蔽堆芯辐照;所述反应堆本体包括:堆容器、堆芯、铍反射层以及辐照孔道;所述堆容器设置成支撑和容纳所述堆芯,所述堆容器内设置轻水,所述轻水用于冷却所述堆芯,以及对中子慢化;所述铍反射层包围所述堆芯,设置成补偿所述堆芯的反应性损失,以及反射和减速所述堆芯泄露的中子;所述辐照孔道设置在所述铍反射层周向以及铍反射层外侧,用于容纳待辐照样品,进行中子活化分析;其中,所述堆芯为上述实施方式提供的堆芯。
根据本发明的另一个方面,还提供了一种反应堆的堆芯燃料组件的布置方法,包括以下步骤:将第一栅板和第二栅板连接;在所述第一栅板和所述第二栅板分布的N圈孔位,布置燃料元件和挤水棒;其中,所述布置燃料元件和挤水棒的步骤包括:将远离堆芯中心的第N圈孔位布置满所述燃料元件;将靠近堆芯中心的第一圈孔位布置满所述燃料元件;将第二圈至第N-1圈孔位布置所述燃料元件和所述挤水棒。
通过本发明提供的反应堆的堆芯燃料组件及其布置方法、微型中子源反应堆及其堆芯,解决相关技术中燃料组件布局带来的问题,改善堆芯的中子注量率水平以及燃料整体用量。
附图说明
通过下文中参照附图对本发明所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为根据本发明的实施例的微堆堆芯结构示意图;
图2为根据本发明的实施例的微堆结构示意图;
图3为根据本发明的实施例的微堆堆芯径向截面示意图;
图4为现有堆芯燃料元件相对效率分布图;
图5为根据本发明的实施例的微堆堆芯燃料元件布局图。
需要说明的是,附图并不一定按比例来绘制,而是仅以不影响读者理解的示意性方式示出。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均应当属于本发明保护的范围。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。
在本实施例中提供了一种反应堆的堆芯燃料组件,燃料组件包括:燃料元件、挤水棒和栅格组件,其中,燃料元件设置成维持反应堆进行核裂变反应,挤水棒设置成调节堆芯水铀比;栅格组件设置孔位,孔位用于容纳燃料元件或挤水棒;孔位从堆芯的中心向外依次设置第一区域、第二区域及第三区域,第一区域的孔位设置成容纳燃料元件;第二区域的孔位设置成容纳燃料元件和挤水棒;第三区域的孔位设置成容纳燃料元件。
具体的,为提供紧凑的堆芯结构,将燃料元件、挤水棒等组装成燃料组件组合体,以便于堆芯装卸、搬运及更换等,栅格组件为燃料组件提供支撑,或者对燃料元件、挤水棒导向、定位。燃料组件实质形成活性反应区,使堆芯在一定环境下进行核反应。
其中,燃料元件承载核燃料,是堆芯进行核链式裂变反应的中心;挤水棒用于在燃料元件数量满足需求并且堆芯孔位富余的情况下,占据多余的孔位,以替换孔位中的冷却剂。例如,当堆芯冷却剂为轻水、燃料元件采用铀燃料时,挤水棒用于改变堆芯的水铀比(水中氢原子数与燃料中铀-235原子数之比),使中子能谱硬化(即水的慢化减弱),从而有利于提高堆芯引出的中子的利用率。
为提供合适的中子通量分布,将燃料元件、挤水棒按一定方式排列,栅格组件提供用于排列的孔位,一方面,该孔位便于对燃料元件、挤水棒导向及定位,另一方面,能够为堆芯冷却剂提供流动通道,从而使堆芯更好冷却。以堆芯中心为参照点,这些孔位使燃料元件相对堆芯中心不同距离排列,从而使燃料元件具有不同效率分布。例如,孔位沿堆芯中心向远离中心排列,依次形成第一区域、第二区域及第三区域的孔位,其中,当燃料元件分别处于三个区域时,比较其相对效率,燃料元件处于第三区域的相对效率最高,其次是第一区域;另外,第三区域可提供相比第一区域、第二区域更多的孔位,由此,当第三区域尽可能多的排列燃料元件时,使得燃料元件的整体效率提高。
在本实施例中,第三区域的孔位用于排列燃料元件,并且第一区域的孔位也用于排列燃料元件,同时的,第二区域的孔位既可以排列燃料元件,也可以用于容纳挤水棒;即当燃料元件数量满足堆芯运行需求的情况下,第二区域中存在多余的孔位,这些多余的孔位可填充挤水棒。由此,处于第三区域的燃料元件的效率相对较高,且该区域燃料元件数量占比较大,能够从整体上提高元件效率。
根据本实施例的堆芯燃料组件,避免将第三区域孔位布置挤水棒,以实现燃料元件效率最大化;即在燃料元件效率相对大的区域排列较多的燃料元件,在燃料元件效率相对小的区域排列较少的燃料元件,同时,燃料元件效率最大化能够使得燃料元件总体数量减少,将多余的孔位布置挤水棒,可进一步提高中子利用价值。
孔位分布的区域,例如,距离堆芯中心同一距离的孔位形成周向排列,然后沿中心向远处依次形成各周向排列的孔位;其中,距离堆芯中心最远的周向排列的孔位全部布置燃料元件,以提高中子注量率。孔位的排列方式可根据实际需求设置,燃料元件和挤水棒的相对位置分布以实现提高燃料元件效率、提高中子注量率为目标。
进一步的,燃料元件包括壳体和芯体,芯体设置在壳体内。
燃料元件例如为燃料板、燃料棒等结构,在本实施例中,采用燃料棒束结构,从而多个燃料棒束排列成紧凑的燃料组件。燃料棒采用壳体将核燃料芯体包裹住,一方面壳体将燃料和冷却剂隔离开,防止燃料受到冷却剂的化学腐蚀,另一方面壳体将燃料产生的裂变产物包容住,构成强反射性裂变产物与外界环境之间的屏障。
燃料棒例如包括燃料芯体、柱状壳体、压紧弹簧、隔热片以及封闭壳体两端的端塞,将芯体置于壳体中,两端设置隔热片并经压紧弹簧用端塞密封。壳体和端塞之间例如焊接,以保证密封良好。
进一步的,燃料元件的壳体材料为锆合金,燃料元件的芯体为235U富集度20%以下的UO2
为满足堆芯低浓化需求,在不改变原堆芯尺寸的前提下,采用低富集度燃料替换高富集度燃料。具体的,采用235U富集度20%以下的铀燃料,例如UO2芯块,替换高浓铀的铀铝合金燃料;多个圆柱状UO2芯块叠置在壳体中形成燃料元件。
其中,UO2熔点高,有利于反应堆高温运行;UO2与冷却剂水、锆壳体相容性好,即使壳体破损,可减少裂变产物向冷却剂释放的数量;UO2允许较深的燃耗,耐腐蚀性能好,燃料后处理和再加工容易。同时的,采用锆合金作壳体材料,一方面可保证燃料元件整体密度满足堆芯低浓化需求,另一方面锆合金具有中子吸收截面小、机械性能和抗腐蚀性能良好等特性。
进一步的,挤水棒为铝棒。
挤水棒采用中子吸收弱的材料制成,以降低其对中子注量率水平的影响。挤水棒改变燃料组件中冷却剂体积,其与燃料元件棒共同调控堆芯后备反应性。本实施例中,挤水棒为铝棒,在原堆芯尺寸不变的情况下,挤水棒的尺寸满足燃料组件孔位需求。
在其他实施例中,挤水棒具有和燃料元件类似的结构,包括壳体和芯体,壳体例如采用锆合金,芯体为贫铀材料(235U含量为0.7%)。
进一步的,燃料元件和挤水棒的尺寸相同。
在原高浓铀堆芯尺寸不变的情况下,燃料元件及挤水棒的尺寸不变,仅改变燃料材料,从而使除燃料元件外的其他相关组件可循环使用,节约成本。
进一步的,孔位设置成围绕堆芯的中心呈同心圆排布,圆的数量为11;第一区域包括第1圆周,第二区域包括第6圆周,第三区域包括第11圆周。
具体的,燃料组件整体呈圆柱状结构,燃料元件和挤水棒按同心圆排列,同心圆的数量例如为十一个。由于位于第三区域的燃料元件相对效率最高,将第11圆周的孔位全部布置燃料元件;同时的,在靠近圆心的第1圆周全部布置燃料元件,使得当堆芯中心设置控制棒时,降低此区域对控制棒效率的影响;位于中间圆周区域(即第二区域)的燃料元件相对效率较低,当燃料元件布置满第一区域和第三区域的孔位时,继续在第二区域孔位布置,同时的,第二区域多余的孔位由挤水棒填充。
其中,燃料元件还可以是其他排列方式,根据实际应用的堆芯体积、尺寸等相关需求设置。
进一步的,栅格组件包括:第一栅板、第二栅板、连接杆以及导向管;第一栅板和第二栅板分别对燃料组件的轴向的两端定位;连接杆设置成连接第一栅板和第二栅板;第一栅板和第二栅板设置相同数量的孔位,孔位用于燃料元件或挤水棒插入,或者孔位设置有导向管,导向管用于对棒控组件导向。
具体的,采用第一栅板和第二栅板分别使圆柱形燃料组件的两端压紧、定位,燃料元件、挤水棒例如穿过第一栅板的孔位,插入到第二栅板的孔位中,第一栅板起导向作用,第二栅板起支撑燃料元件的作用。一些孔位用于容纳连接杆,使得连接杆连接第一栅板和第二栅板,例如连接杆的上端用螺帽将第一栅板压紧,下端与第二栅板的螺孔进行螺纹连接。还有一些孔位设置有导向管,使得堆芯的棒控组件在提升、下降时对其导向。
由此,上述实施例的燃料组件构成堆芯的核心部件,该燃料组件为紧凑型,可适用于小型反应堆,在原堆芯尺寸不变的前提下,改变燃料元件的材料,同时改变燃料元件的排布,使得元件效率提高的同时减少元件总体数量,从而降低反应堆建造成本。
本发明的其中一个实施例提供了一种微型中子源反应堆(以下简称微堆)堆芯,图1是根据本发明实施例的微堆堆芯的结构示意图,如图1所示,微堆堆芯10包括:燃料组件11和控制棒(图中未示出),其中,燃料组件11为上述实施例的堆芯燃料组件;控制棒设置在堆芯10的中心位置,设置成调节反应堆功率或使反应堆停堆。
具体的,燃料组件11包括燃料元件13、挤水棒14、上栅板15、下栅板16、连接杆17以及控制棒导管18,燃料元件13、挤水棒14穿过上栅板15的孔位,插入到下栅板16的孔位中,下栅板16将燃料元件13固定,上栅板15的孔位允许燃料元件13具有一定热膨胀;连接杆17在下栅板16的孔位中固定并支撑上栅板15;控制棒导管18为微堆的控制棒提供通道,便于控制棒提升或下降导向。
微堆堆芯设置一根中央控制棒,该控制棒既作安全棒又作补偿、调节棒,控制棒可提升、下降以调节稳定反应堆功率,或者在事故工况下快速落棒实现停堆。
本发明的其中一个实施例提供了一种微型中子源反应堆,图2是根据本发明实施例的微堆结构示意图,参照图1-2,微堆100包括:反应堆水池20和反应堆本体30,其中,反应堆本体30设置在反应堆水池20内,反应堆水池20设置成对反应堆冷却,以及屏蔽堆芯辐照;反应堆本体30包括:堆容器40、堆芯10、铍反射层以及辐照孔道;堆容器40设置成支撑和容纳堆芯10,堆容器40内设置轻水,轻水用于冷却堆芯,以及对中子慢化;铍反射层包围堆芯10,设置成补偿堆芯的反应性损失,以及反射和减速堆芯泄露的中子;辐照孔道设置在铍反射层周向以及铍反射层外侧,用于容纳待辐照样品,进行中子活化分析;其中,堆芯10为上述实施例的堆芯。
具体的,微堆采用罐池式设计,堆芯部件设置在堆容器40底部,堆容器40密封后吊装在反应堆水池20中,反应堆水池20既作为堆芯辐照的屏蔽防护,又包容反应堆释放出来的放射性,既是反应堆本体30的支撑结构,又构成反应堆的热阱。微堆采用自然循环导出堆芯裂变产生的热量,即燃料元件棒产生的热量由堆容器40内冷却剂以自然循环的方式带走,传递给堆容器40,然后传递给反应堆水池20。
堆容器40可设置成包括上筒体和下筒体,上筒体和下筒体可拆卸连接,便于进行堆芯换料操作;堆芯10设置在下筒体底部;堆容器40用于包容和支撑堆芯10,同时还能防止放射性物质外逸。
铍反射层可包括上铍托盘51、侧铍反射层52以及下铍反射层53,上铍托盘51设置在堆芯的上栅板上,侧铍反射层52包围堆芯呈空心圆柱形,下铍反射层53设置在堆芯的下栅板下方;铍反射层用于补偿燃料燃耗、氙毒、温度效应所引起的反应性损失,起着反射和减速堆内泄露出来的中子的作用;上铍托盘51中初始未放置铍片,随着反应堆运行时间增加,在上铍托盘51中补充铍片,用来补偿燃料燃耗和钐毒所引起的反应性损失,这些铍片和堆芯初始后备反应性共同作用,保证堆芯燃料元件的寿命足够长。
图3是根据本发明实施例的微堆堆芯径向截面示意图,如图2或3所示,辐照孔道可包括内辐照孔道61和外辐照孔道62,内辐照孔道61设置在侧铍反射层52的圆周上,外辐照孔道62设置在侧铍反射层52外侧,辐照孔道用于容纳待辐照样品,进行中子活化分析。
如图1-2所示,堆芯10包括燃料组件11和控制棒12,为提高侧铍反射层内即内辐照孔道61的热中子通量密度,可对燃料组件11中燃料元件的排布进行改进。
本发明的其中一个实施例提供了一种反应堆的堆芯燃料组件的布置方法,包括以下步骤:将第一栅板和第二栅板连接;在第一栅板和第二栅板分布的N圈孔位,布置燃料元件和挤水棒;其中,布置燃料元件和挤水棒的步骤包括:将远离堆芯中心的第N圈孔位布置满燃料元件;将靠近堆芯中心的第一圈孔位布置满燃料元件;将第二圈至第N-1圈孔位布置燃料元件和挤水棒。
本实施例提供一种优化的燃料元件布置方式,以实现燃料元件效率最大化,同时减少燃料元件总体数量。
为了使本领域技术人员更好地理解本发明,下面结合具体实施例对本发明作进一步详细说明。
参照图1-3,微堆100包括反应堆本体30,该反应堆本体30包括堆容器40、堆芯10、铍反射层以及辐照孔道,进一步的,堆芯10包括燃料组件11和控制棒12,为提高内辐照孔道61的中子注量率水平,设置改进的燃料组件11的布局方式。
图4为原有堆芯燃料元件相对效率分布图,如图4可知,分布于最外圈的燃料元件效率最高,中间位置燃料元件效率最低;然而,原有堆芯,最外圈除布置燃料元件,还布置了挤水棒,使得无法充分提升燃料元件效率。本实施例提供优化的燃料元件布局,在最外圈布置满燃料元件,从而利于实现燃料元件效率最大化。
具体的,燃料组件11包括燃料元件13、挤水棒14、上栅板15、下栅板16、连接杆17,上栅板15和下栅板16设置相同数量的孔位,孔位以堆芯中心为圆心呈多个同心圆排列;图5为根据本发明实施例的微堆堆芯燃料元件布局图,如图5所示,同心圆数量例如为十一个,布置燃料元件13时,优先将燃料元件13布置满第11圆周和第10圆周;然后在靠近堆芯中心的第1至第3圆周布置满燃料元件13,以降低燃料元件数量减少对控制棒效率的影响;同时的,在第4至第9圆周上继续布置燃料元件13以及,当燃料元件总数满足堆芯运行需求的情况下,利用挤水棒14填充剩余孔位(除布置连接杆17的5个孔位),挤水棒填充后降低了堆芯的水铀比,从而使中子能谱变硬(水的慢化减弱),有利于提高堆芯引出的中子的利用率。实际应用中,挤水棒的数量和位置由微堆临界要求等确定。
采用上述布局方式的燃料元件总体数量为303根,相比原有堆芯燃料元件总数354根减少,即满足微堆临界的燃料元件数量降低了约15%,使得核燃料用量节省了约15%,减少了微堆的建造成本;同时的,内辐照孔道61的中子注量率提高了约12%。
上述堆芯燃料元件布局方式是在保持原有堆芯尺寸不变的前提下实现的,其相对原有堆芯,改变了燃料元件的燃料材料,即原有堆芯采用高浓铀材料,本发明实施例的堆芯采用低浓铀材料。
进一步的,燃料元件布置时,例如包括如下步骤:
将下栅板16放置在平台上,将连接杆17的下端螺纹紧固在下栅板16的螺孔内,将上栅板15的孔位对齐下栅板16孔位并放入连接杆17上端的螺杆内并用螺帽紧固;
在第11圆周和第10圆周布置满燃料元件;
在第1圆周至第3圆周布置满燃料元件;
在第4圆周至第9圆周上继续布置燃料元件,同时,利用挤水棒填充剩余孔位;
其中,燃料元件、挤水棒的固定方法为:将燃料元件或挤水棒由上栅板15的孔位向下插入到下栅板16的孔位,并将燃料元件或挤水棒的下端螺纹在下栅板16的螺孔内紧固。
本发明实施例提供的是优选的燃料组件的布置方法,不作为对实际情况的限定。
根据本发明实施例的微堆堆芯,其燃料元件总体装填量减少,且实现了燃料元件效率提升,使得微堆辐照孔道的中子注量率提高,增加了反应堆中子利用率。
对于本发明的实施例,还需要说明的是,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

1.一种反应堆的堆芯燃料组件,包括:燃料元件、挤水棒和栅格组件,其中,
所述燃料元件设置成维持反应堆进行核裂变反应,所述挤水棒设置成调节堆芯水铀比;
所述栅格组件设置孔位,所述孔位用于容纳所述燃料元件或所述挤水棒;
所述孔位从所述堆芯的中心向外依次设置第一区域、第二区域及第三区域,所述第一区域的孔位设置成容纳所述燃料元件;所述第二区域的孔位设置成容纳所述燃料元件和所述挤水棒;所述第三区域的孔位设置成容纳所述燃料元件。
2.根据权利要求1所述的堆芯燃料组件,其中,
所述燃料元件包括壳体和芯体,所述芯体设置在所述壳体内。
3.根据权利要求2所述的堆芯燃料组件,其中,
所述燃料元件的壳体材料为锆合金,所述燃料元件的芯体为235U富集度20%以下的UO2
4.根据权利要求3所述的堆芯燃料组件,其中,
所述挤水棒为铝棒。
5.根据权利要求4所述的堆芯燃料组件,其中,
所述燃料元件和所述挤水棒的尺寸相同。
6.根据权利要求1-5任一项所述的堆芯燃料组件,其中,
所述孔位设置成围绕所述堆芯的中心呈同心圆排布,所述圆的数量为11;
所述第一区域包括第1圆周,所述第二区域包括第6圆周,所述第三区域包括第11圆周。
7.根据权利要求1所述的堆芯燃料组件,其中,
所述栅格组件包括:第一栅板、第二栅板、连接杆以及导向管;
所述第一栅板和所述第二栅板分别对所述燃料组件的轴向的两端定位;
所述连接杆设置成连接所述第一栅板和所述第二栅板;
所述第一栅板和所述第二栅板设置相同数量的孔位,所述孔位用于所述燃料元件或所述挤水棒插入,或者所述孔位设置有导向管,所述导向管用于对棒控组件导向。
8.一种微型中子源反应堆堆芯,包括:燃料组件和控制棒,其中,
所述燃料组件为权利要求1-7任一项所述的堆芯燃料组件;
所述控制棒设置在所述堆芯的中心位置,设置成调节所述反应堆功率或使所述反应堆停堆。
9.一种微型中子源反应堆,包括:反应堆水池和反应堆本体,其中,
所述反应堆本体设置在所述反应堆水池内,所述反应堆水池设置成对所述反应堆冷却,以及屏蔽堆芯辐照;
所述反应堆本体包括:堆容器、堆芯、铍反射层以及辐照孔道;
所述堆容器设置成支撑和容纳所述堆芯,所述堆容器内设置轻水,所述轻水用于冷却所述堆芯,以及对中子慢化;
所述铍反射层包围所述堆芯,设置成补偿所述堆芯的反应性损失,以及反射和减速所述堆芯泄露的中子;
所述辐照孔道设置在所述铍反射层周向以及铍反射层外侧,用于容纳待辐照样品,进行中子活化分析;
其中,所述堆芯为权利要求8所述的堆芯。
10.一种反应堆的堆芯燃料组件的布置方法,包括以下步骤:
将第一栅板和第二栅板连接;
在所述第一栅板和所述第二栅板分布的N圈孔位,布置燃料元件和挤水棒;其中,
所述布置燃料元件和挤水棒的步骤包括:
将远离堆芯中心的第N圈孔位布置满所述燃料元件;
将靠近堆芯中心的第一圈孔位布置满所述燃料元件;
将第二圈至第N-1圈孔位布置所述燃料元件和所述挤水棒。
CN202010298966.3A 2020-04-16 2020-04-16 堆芯燃料组件及其布置方法、微型中子源反应堆及其堆芯 Active CN111477355B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010298966.3A CN111477355B (zh) 2020-04-16 2020-04-16 堆芯燃料组件及其布置方法、微型中子源反应堆及其堆芯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010298966.3A CN111477355B (zh) 2020-04-16 2020-04-16 堆芯燃料组件及其布置方法、微型中子源反应堆及其堆芯

Publications (2)

Publication Number Publication Date
CN111477355A true CN111477355A (zh) 2020-07-31
CN111477355B CN111477355B (zh) 2022-07-01

Family

ID=71754157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010298966.3A Active CN111477355B (zh) 2020-04-16 2020-04-16 堆芯燃料组件及其布置方法、微型中子源反应堆及其堆芯

Country Status (1)

Country Link
CN (1) CN111477355B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331375A (zh) * 2020-11-23 2021-02-05 四川玄武岩纤维新材料研究院(创新中心) 一种玄武岩等纤维蜂窝织物核屏蔽复合材料及其制备方法和应用
CN114121308A (zh) * 2021-11-24 2022-03-01 西安交通大学 一种具有超高通量的铅铋冷却快中子研究堆堆芯结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719384A (zh) * 2009-12-03 2010-06-02 中国核动力研究设计院 具有快中子转换区的核反应堆堆芯
FR3011118A1 (fr) * 2013-09-25 2015-03-27 Hitachi Ge Nuclear Energy Ltd Assemblage de transmutation et centrale nucleaire a reacteur rapide l'utilisant.
JP2016109585A (ja) * 2014-12-08 2016-06-20 株式会社東芝 高速炉炉心および高速炉
CN109192332A (zh) * 2018-09-13 2019-01-11 中国核动力研究设计院 六边形套管型燃料堆芯钴靶组件核设计检验堆芯及方法
CN110111913A (zh) * 2018-09-13 2019-08-09 中国核动力研究设计院 六边形套管型燃料堆芯中子注量率测量的试验堆芯及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719384A (zh) * 2009-12-03 2010-06-02 中国核动力研究设计院 具有快中子转换区的核反应堆堆芯
FR3011118A1 (fr) * 2013-09-25 2015-03-27 Hitachi Ge Nuclear Energy Ltd Assemblage de transmutation et centrale nucleaire a reacteur rapide l'utilisant.
JP2016109585A (ja) * 2014-12-08 2016-06-20 株式会社東芝 高速炉炉心および高速炉
CN109192332A (zh) * 2018-09-13 2019-01-11 中国核动力研究设计院 六边形套管型燃料堆芯钴靶组件核设计检验堆芯及方法
CN110111913A (zh) * 2018-09-13 2019-08-09 中国核动力研究设计院 六边形套管型燃料堆芯中子注量率测量的试验堆芯及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331375A (zh) * 2020-11-23 2021-02-05 四川玄武岩纤维新材料研究院(创新中心) 一种玄武岩等纤维蜂窝织物核屏蔽复合材料及其制备方法和应用
CN114121308A (zh) * 2021-11-24 2022-03-01 西安交通大学 一种具有超高通量的铅铋冷却快中子研究堆堆芯结构

Also Published As

Publication number Publication date
CN111477355B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US6512805B1 (en) Light water reactor core and fuel assembly
Sinha Advanced nuclear reactor systems–an Indian perspective
US20100054389A1 (en) Mixed oxide fuel assembly
CN111477355B (zh) 堆芯燃料组件及其布置方法、微型中子源反应堆及其堆芯
US10020079B2 (en) Core of light water reactor and fuel assembly
US11276502B2 (en) Nuclear fuel bundle containing thorium and nuclear reactor comprising same
JP6096834B2 (ja) 軽水炉の炉心
Kambe et al. RAPID-L operator-free fast reactor concept without any control rods
CA2097412C (en) Fuel bundle for use in heavy water cooled reactors
EP0152206A2 (en) Radial neutron reflector
Hartanto et al. Conceptual study of a long-life prototype gen-IV sodium-cooled fast reactor (PGSFR)
JP7426335B2 (ja) 下部端栓および燃料棒
JP7394047B2 (ja) 炉心構造および原子炉
US11929183B2 (en) Thorium-based fuel design for pressurized heavy water reactors
JP2013145246A (ja) 軽水炉の炉心及び燃料集合体
JP5611279B2 (ja) 沸騰水型原子炉の炉心及び沸騰水型原子炉用燃料集合体
US20240177876A1 (en) Fuel assemblies in fast reactor and fast reactor core
EP4141890A1 (en) Fuel element for a water-cooled water-moderated nuclear reactor
CN115394459A (zh) 一种基于板形燃料组件的超高通量反应堆堆芯
Kambe et al. RAPID-L and RAPID operator free fast reactor concepts without any control rods
JP2022091259A (ja) 炉心構造および原子炉
Jatuff et al. Liquid neutron absorber alternatives for the MPTRR
CN115394458A (zh) 一种基于棒束型燃料组件的超高通量反应堆堆芯
Baugnet et al. The BR2 materials testing reactor and the RERTR Program-Present status and future trends
Weber Nuclear reactor installation containment construction.[PWR]

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant