CN111460727A - Method for predicting service life of transformer by using multiple parameters - Google Patents
Method for predicting service life of transformer by using multiple parameters Download PDFInfo
- Publication number
- CN111460727A CN111460727A CN202010147569.6A CN202010147569A CN111460727A CN 111460727 A CN111460727 A CN 111460727A CN 202010147569 A CN202010147569 A CN 202010147569A CN 111460727 A CN111460727 A CN 111460727A
- Authority
- CN
- China
- Prior art keywords
- transformer
- state
- data
- score
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种利用多参量的变压器寿命预测方法,包括以下步骤:S1、利用变压器状态数据对变压器进行状态评估;S2、利用变压器历史数据与同类型变压器退役数据构建评估数据库;S3、利用Elman网络预测方法对变压器评估参数进行预测,得到预测剩余寿命。变压器状态数据包括有变压器电气试验项目数据、油中溶解气体分析数据、变压器油特性数据以及工况数据;油中溶解气体分析数据包括有氢气、甲烷、乙烷、乙烯、乙炔、一氧化碳以及二氧化碳;变压器油特性数据包括有微水含量、酸值、击穿电压、油介质损耗。该方法可以用来进行变压器寿命预测,对变压器的准确更换,保障变压器的健康运行提供技术方法。
The invention discloses a transformer life prediction method using multi-parameters, comprising the following steps: S1, using transformer state data to evaluate the state of the transformer; S2, using the historical data of the transformer and the decommissioning data of the same type of transformer to construct an evaluation database; S3, using The Elman network prediction method predicts the evaluation parameters of the transformer to obtain the predicted remaining life. Transformer status data includes transformer electrical test item data, oil dissolved gas analysis data, transformer oil characteristic data and working condition data; oil dissolved gas analysis data includes hydrogen, methane, ethane, ethylene, acetylene, carbon monoxide and carbon dioxide; Transformer oil characteristic data includes micro water content, acid value, breakdown voltage, and oil dielectric loss. The method can be used to predict the life of the transformer, accurately replace the transformer, and provide a technical method to ensure the healthy operation of the transformer.
Description
技术领域technical field
本发明涉及输变电设备寿命预测领域,具体的,涉及一种利用多参量的变压器寿命预测方法。The invention relates to the field of life prediction of power transmission and transformation equipment, in particular to a transformer life prediction method using multiple parameters.
背景技术Background technique
为满足我国经济发展的需要,电力系统不断发展、技术水平不断提高。电力变压器是电力系统中的重要电气设备,在发电、输电、配电环节中起着关键作用。In order to meet the needs of my country's economic development, the power system has been continuously developed and the technical level has been continuously improved. Power transformers are important electrical equipment in the power system and play a key role in power generation, transmission and distribution.
确保变压器健康运行是必要的,变压器健康运行寿命与诸多因素有关,内部绝缘是最重要的因素之一。变压器寿命评估是一个复杂的技术难题,必须深入研究变压器内部绝缘老化机理,对变压器老化程度进行现场无损的检测判断,探讨正确的方法来评估变压器绝缘的老化状况,以预测其运行的风险和可靠性,从而结合经济管理做出有效的维修和更换策略,减小事故发生率。It is necessary to ensure the healthy operation of the transformer. The healthy operation life of the transformer is related to many factors, and the internal insulation is one of the most important factors. Transformer life evaluation is a complex technical problem. It is necessary to deeply study the internal insulation aging mechanism of the transformer, conduct on-site non-destructive testing and judgment on the aging degree of the transformer, and discuss the correct method to evaluate the aging status of the transformer insulation, so as to predict the risk and reliability of its operation. Therefore, effective maintenance and replacement strategies can be made in combination with economic management to reduce the accident rate.
大容量变压器都要求配置在线监测系统,并且电力生产管理系统中必须建立完整的变压器档案,包括变压器基本信息以及运行状态、检修与维护、试验、缺陷及其消缺记录等。综合、有效地利用这些信息,正确评价电力变压器的运行水平,建立准确评估变压器运行寿命的方法,对于保障变压器高效稳定运行具有重要意义。Large-capacity transformers are required to be equipped with an online monitoring system, and a complete transformer file must be established in the power production management system, including the basic information of the transformer, as well as operating status, repair and maintenance, testing, defects and their elimination records. Comprehensive and effective use of this information, correct evaluation of the operation level of power transformers, and establishment of methods to accurately evaluate the operating life of transformers are of great significance for ensuring the efficient and stable operation of transformers.
发明内容SUMMARY OF THE INVENTION
本发明的目的是解决现有技术对于运用综合信息评价变压器运行寿命困难的问题,提出了一种利用多参量的变压器寿命预测方法,该方法可以用来进行变压器寿命预测,对变压器的准确更换,保障变压器的健康运行提供技术方法。The purpose of the present invention is to solve the problem that the existing technology is difficult to use comprehensive information to evaluate the operating life of the transformer, and proposes a multi-parameter transformer life prediction method, which can be used to predict the life of the transformer and accurately replace the transformer. Provide technical methods to ensure the healthy operation of transformers.
为实现上述技术目的,本发明提供的一种技术方案是,一种利用多参量的变压器寿命预测方法,包括以下步骤:In order to achieve the above technical purpose, a technical solution provided by the present invention is a method for predicting the life of a transformer using multiple parameters, comprising the following steps:
S1、利用变压器状态数据对变压器进行状态评估;S1. Use the transformer state data to evaluate the state of the transformer;
S2、利用变压器历史数据与同类型变压器退役数据构建评估数据库;S2. Use the historical data of the transformer and the decommissioning data of the same type of transformer to construct an evaluation database;
S3、利用Elman网络预测方法对变压器评估参数进行预测,得到预测剩余寿命。S3. Use the Elman network prediction method to predict the evaluation parameters of the transformer to obtain the predicted remaining life.
步骤S1中,In step S1,
S11、将变压器状态数据记录为状态向量:S11. Record the transformer state data as a state vector:
Y=(y1,y2,...,yi,...,yn)(n=17)Y=(y 1 ,y 2 ,...,y i ,...,y n )(n=17)
S12、确定各状态量yi的初始值和注意值并利用公式(1)计算得出各个状态数据的得分情况;S12, determine the initial value of each state quantity yi and attention value And use formula (1) to calculate the score of each state data;
其中,xi为第i项状态量的评分值,y′i为第i项状态的劣化值,若状态量属于正劣化情况,即状态量的值越大劣化约严重,若状态量为负劣化,取 Among them, x i is the score value of the i-th state quantity, and y′ i is the deterioration value of the i-th state. If the state quantity is negatively degraded, take
S13、采用层次分析法确定各个指标的常权权值:W=[w1,w2,...,wn];S13. Use AHP to determine the constant weight of each indicator: W=[w 1 ,w 2 ,...,w n ];
S14、由于在常权重体系下不能反映某一性能严重下降时变压器的真实状态,将变权理论中的状态变权向量用于权值的构造:S14. Since the real state of the transformer when a certain performance is seriously degraded cannot be reflected under the constant weight system, the state variable weight vector in the variable weight theory is used for the construction of the weight value:
其中状态变权向量S(X)=(S1(X),...,Sn(X))为:The state variable weight vector S(X)=(S 1 (X),...,S n (X)) is:
根据公式(2)可以得到变权重系数为:According to formula (2), the variable weight coefficient can be obtained as:
S15、根据各状态量的评分与状态量对应的变权重系数,利用公式(5)对变压器状态进行评估;S15, using the formula (5) to evaluate the transformer state according to the score of each state quantity and the variable weight coefficient corresponding to the state quantity;
所述变压器状态数据包括有变压器电气试验项目数据、油中溶解气体分析数据、变压器油特性数据以及工况数据;The transformer state data includes transformer electrical test item data, dissolved gas analysis data in oil, transformer oil characteristic data and working condition data;
所述电气试验项目数据包括有绝缘电阻、吸收比、泄露电流以及直流电阻不平衡系数;The electrical test item data includes insulation resistance, absorption ratio, leakage current and DC resistance unbalance coefficient;
所述油中溶解气体分析数据包括有氢气、甲烷、乙烷、乙烯、乙炔、一氧化碳以及二氧化碳;The dissolved gas analysis data in the oil includes hydrogen, methane, ethane, ethylene, acetylene, carbon monoxide and carbon dioxide;
所述变压器油特性数据包括有微水含量、酸值、击穿电压、油介质损耗;The transformer oil characteristic data includes micro water content, acid value, breakdown voltage, and oil dielectric loss;
所述工况数据包括有变压器负荷率以及变压器运行环境等级。The working condition data includes the transformer load rate and the transformer operating environment level.
进行状态评估时引入状态变权向量对其进行权重处理,具体步骤为:In state evaluation, state variable weight vector is introduced for weight processing. The specific steps are as follows:
A1、利用状态数据实测值、注意值和初始值计算该项目的单相得分;A1. Calculate the single-phase score of the item by using the measured value, attention value and initial value of the state data;
A2、利用层次分析法确定单个试验项目的初始权重;A2. Use AHP to determine the initial weight of a single experimental item;
A3、利用状态变权向量以及初始权重计算变权重系数;A3. Use the state variable weight vector and the initial weight to calculate the variable weight coefficient;
A4、利用变权重系数以及项目得分计算变压器状态评估结果。A4. Use the variable weight coefficient and item score to calculate the transformer state assessment result.
步骤S2中,包括如下步骤:In step S2, the following steps are included:
S21、将同类型变压器的出厂得分g0与故障频发、临近退役时的得分gend记录于此类变压器档案;S21. Record the ex-factory score g 0 of the same type of transformer and the score g end when the fault occurs frequently and when it is nearing retirement in such transformer files;
S22、定期测量变压器状态数据,并用步骤S1计算得到此时变压器的的状态评估得分,记录于变压器档案中,构建测试变压器状态评估数据库。S22 , measuring the transformer state data regularly, and calculating the state evaluation score of the transformer in step S1 , recording it in the transformer file, and constructing a test transformer state evaluation database.
步骤S3包括如下步骤:Step S3 includes the following steps:
S31、构建3输入1输出的Elman’网络;S31. Construct an Elman' network with 3 inputs and 1 output;
S32、使用前3年的变压器的状态评分为输入,后1年的状态评分为输出;S32. The state score of the transformer in the first 3 years is used as the input, and the state score of the last 1 year is used as the output;
S33、将变压器N年的历史数据划分得到N-3组训练集,进行网络的训练;S33. Divide the N-year historical data of the transformer to obtain N-3 groups of training sets, and train the network;
S34、使用训练完成的Elman网络进行变压器状态预测;S34. Use the trained Elman network to predict the transformer state;
S35、使用退役变压器状态进行阈值确定,利用预测状态进行变压器剩余寿命分析。S35, using the state of the retired transformer to determine the threshold value, and using the predicted state to analyze the remaining life of the transformer.
本发明的有益效果:本发明一种利用多参量的变压器寿命预测方法,其优点为综合利用变压器多特征量数据进行变压器状态评估,反映变压器各个部分老化的真实水平,并融入了状态变权向量,使得单项状态量的劣化程度随指标值改变,对老化中指标存在的木桶效应有更好的反映。利用Elman网络的局部反馈特性,以及动态记忆功能,用于变压器状态量时间序列预测,表现出较高的预测精度,能预测出变压器剩余寿命,给运维检修人员更换变压器提供指导意义。Beneficial effects of the present invention: The present invention is a method for predicting the life of a transformer using multiple parameters. , so that the deterioration degree of the single state quantity changes with the index value, which can better reflect the barrel effect of the index in the aging process. Using the local feedback characteristics of the Elman network and the dynamic memory function, it is used for the time series prediction of the state quantity of the transformer, showing a high prediction accuracy, and can predict the remaining life of the transformer, which provides guidance for the operation and maintenance personnel to replace the transformer.
附图说明Description of drawings
图1为本发明一种利用多参量的变压器寿命预测方法的流程图。FIG. 1 is a flow chart of a method for predicting the life of a transformer using multiple parameters according to the present invention.
图2为本发明一种利用多参量的变压器寿命预测方法的状态量指标体系。FIG. 2 is a state quantity index system of a multi-parameter transformer life prediction method according to the present invention.
图3为本发明一种利用多参量的变压器寿命预测方法的预测网络Elman网络拓扑图。FIG. 3 is a topological diagram of a prediction network Elman network using a multi-parameter transformer life prediction method according to the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案以及优点更加清楚明白,下面结合附图和实施例对本发明作进一步详细说明,应当理解的是,此处所描述的具体实施方式仅是本发明的一种最佳实施例,仅用以解释本发明,并不限定本发明的保护范围,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only the best of the present invention. The embodiments are only used to explain the present invention, and do not limit the protection scope of the present invention. All other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
实施例:如图1所示,一种利用多参量的变压器寿命预测方法的流程图,具体步骤如下:Embodiment: As shown in Figure 1, a flow chart of a transformer life prediction method using multiple parameters, the specific steps are as follows:
S1、利用变压器状态数据为变压器进行状态评估。S1. Use the transformer state data to evaluate the state of the transformer.
S11、如图2所示,变压器状态数据由变压器电气试验项目数据、油中溶解气体分析数据、变压器油特性数据以及工况数据组成,具体为:电气试验项目数据为绝缘电阻、吸收比、泄露电流、直流电阻不平衡系数;油中溶解气体分析数据为氢气、甲烷、乙烷、乙烯、乙炔、一氧化碳、二氧化碳;变压器油特性数据为微水含量、酸值、击穿电压、油介质损耗;工况数据为变压器负荷率以及变压器运行环境等级;记录为状态向量:S11. As shown in Figure 2, the transformer status data is composed of transformer electrical test item data, dissolved gas analysis data in oil, transformer oil characteristic data and working condition data, specifically: the electrical test item data is insulation resistance, absorption ratio, leakage Current and DC resistance unbalance coefficient; analytical data of dissolved gas in oil are hydrogen, methane, ethane, ethylene, acetylene, carbon monoxide, carbon dioxide; transformer oil characteristic data is micro-water content, acid value, breakdown voltage, oil dielectric loss; The working condition data is the load rate of the transformer and the operating environment level of the transformer; it is recorded as a state vector:
Y=(y1,y2,...,yi,...,yn)(n=17)。Y=(y 1 , y 2 ,...,y i ,...,y n ) (n=17).
S12、确定各状态量yi的初始值和注意值并利用公式(1)计算得出各个状态数据的得分情况:S12, determine the initial value of each state quantity yi and attention value And use formula (1) to calculate the score of each state data:
式(1)中,xi为第i项状态量的评分值,y′i为第i项状态的劣化值,若状态量属于正劣化情况,即状态量的值越大劣化约严重,若状态量为负劣化,取 In formula (1), x i is the rating value of the i-th state quantity, and y′ i is the deterioration value of the i-th state. If the state quantity is negatively degraded, take
S13、根据层次分析法确定各个指标的常权权值:S13. Determine the constant weights of each indicator according to the AHP:
W=[w1,w2,…,wn]。W=[w 1 ,w 2 ,...,w n ].
S14、在常权重体系下不能反映某一性能严重下降时变压器的真实状态,将变权理论中的状态变权向量用于权值的构造:S14. Under the constant weight system, the real state of the transformer when a certain performance is seriously degraded cannot be reflected, and the state variable weight vector in the variable weight theory is used for the construction of the weight value:
其中状态变权向量S(X)=(S1(X),…,Sn(X))为:The state variable weight vector S(X)=(S 1 (X),...,S n (X)) is:
根据式子(2)可以得到变权重系数为:According to formula (2), the variable weight coefficient can be obtained as:
S15、根据各状态量的评分与状态量对应的变权重系数,利用式子(5)对变压器状态进行评估,并记录至变压器档案。S15 , according to the score of each state quantity and the variable weight coefficient corresponding to the state quantity, use the formula (5) to evaluate the transformer state, and record it in the transformer file.
S2、利用变压器历史数据与同类型变压器退役数据构建评估数据库。S2. Use the historical data of the transformer and the decommissioning data of the same type of transformer to construct an evaluation database.
S21将同类型变压器的出厂得分g0与故障频发、临近退役时的得分gend记录于此类变压器档案。S21 records the ex-factory score g 0 of the same type of transformer and the score g end when the fault occurs frequently and when it is nearing retirement in such transformer files.
S22、定期测量变压器的状态数据,并用步骤1计算得到此时变压器的状态得分,记录于变压器档案,构建测试变压器状态评估数据库。S22. Regularly measure the state data of the transformer, and use step 1 to calculate the state score of the transformer at this time, record it in the transformer file, and construct a test transformer state evaluation database.
S3、如图3所示,利用预测方法对变压器评估参数进行预测,得到预测剩余寿命。S3. As shown in Fig. 3, using the prediction method to predict the evaluation parameters of the transformer to obtain the predicted remaining life.
S31、从状态数据库中选择变压器的历史状态评分数据GS31. Select the historical state score data G of the transformer from the state database
G=(g1,g2,...,gn)。G=(g 1 , g 2 , . . . , g n ).
S32、将其划分为训练样本和测试样本。其中,训练样本的划分规则为,抽取g1~gN为第一个样本,且(g1,g2,…,gN-1)为自变量,gN为目标函数;抽取g2~gN+1为第二个样本,且(g2,g3,…,gN)为自变量,gN+1为目标函数;依次取样,可以得到以下的训练集:S32. Divide it into training samples and test samples. Among them, the division rules of the training samples are: take g 1 ~g N as the first sample, and (g 1 , g 2 ,…,g N-1 ) are independent variables, and g N is the objective function; g N+1 is the second sample, and (g 2 , g 3 ,...,g N ) is the independent variable, and g N+1 is the objective function; by sampling in sequence, the following training set can be obtained:
S33、构建N-1输入,1输出的Elman神经网络,获得预测网络拓扑结构。S33 , constructing an Elman neural network with N-1 input and 1 output to obtain a predicted network topology.
S34、网络的训练,将训练集中的第一列的前N-1行数据作为网络输入,第N行作为输出,训练i组数据后得到训练后的网络参数以及网络模型。训练前,将输入和输出进行归一化处理,以便网络获得更好的性能和稳定性:S34 , for network training, the first N-1 rows of data in the first column of the training set are used as the network input, and the Nth row is used as the output. After training the i group of data, the trained network parameters and network model are obtained. Before training, normalize the input and output for better performance and stability of the network:
式子(6)中gmin表示得分gi数据中最小值;gmax表示得分gi数据中最大值。In formula (6), g min represents the minimum value in the score gi data; g max represents the maximum value in the score gi data.
S35、网络的测试。使用归一化后的数据进行网络测试,再将实际输出结果返归一化为得分值,得到网络的预测精度。S35, network test. Use the normalized data to test the network, and then normalize the actual output results to score values to obtain the prediction accuracy of the network.
S36、将变压器历年状态得分gn作为输入,输出得到下一次的状态得分,与退役变压器阈值进行比较,得到变压器的预测寿命。S36 , taking the state score g n of the transformer over the years as the input, and outputting the state score of the next time, and comparing it with the threshold value of the retired transformer to obtain the predicted life of the transformer.
以上所述之具体实施方式为本发明一种利用多参量的变压器寿命预测方法的较佳实施方式,并非以此限定本发明的具体实施范围,本发明的范围包括并不限于本具体实施方式,凡依照本发明之形状、结构所作的等效变化均在本发明的保护范围内。The specific embodiment described above is a preferred embodiment of a multi-parameter transformer life prediction method of the present invention, and is not intended to limit the specific implementation scope of the present invention. The scope of the present invention includes but is not limited to the specific embodiment. All equivalent changes made according to the shape and structure of the present invention are within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010147569.6A CN111460727A (en) | 2020-03-05 | 2020-03-05 | Method for predicting service life of transformer by using multiple parameters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010147569.6A CN111460727A (en) | 2020-03-05 | 2020-03-05 | Method for predicting service life of transformer by using multiple parameters |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111460727A true CN111460727A (en) | 2020-07-28 |
Family
ID=71680900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010147569.6A Pending CN111460727A (en) | 2020-03-05 | 2020-03-05 | Method for predicting service life of transformer by using multiple parameters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111460727A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112052625A (en) * | 2020-08-13 | 2020-12-08 | 五邑大学 | Method for estimating and predicting building life based on big data |
CN113011103A (en) * | 2021-04-06 | 2021-06-22 | 南京机电职业技术学院 | Multi-dimensional information fusion power transformer service life prediction model |
CN113177293A (en) * | 2021-04-06 | 2021-07-27 | 国网浙江省电力有限公司湖州供电公司 | Transformer evaluation method considering lightning stroke influence |
CN113760992A (en) * | 2021-07-29 | 2021-12-07 | 湖南五凌电力科技有限公司 | Method, device, equipment and storage medium for predicting running state of electrical equipment |
CN114219307A (en) * | 2021-12-16 | 2022-03-22 | 中国建设银行股份有限公司 | Product determination method, device, equipment and computer storage medium |
CN115221731A (en) * | 2022-08-11 | 2022-10-21 | 南京航空航天大学 | Transformer life evaluation method based on data fusion and Wiener model |
CN115759408A (en) * | 2022-11-21 | 2023-03-07 | 贵州电网有限责任公司 | Power transmission and transformation equipment service life prediction method, device, equipment and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102621421A (en) * | 2012-03-29 | 2012-08-01 | 贵阳供电局 | Transformer state evaluation method based on correlation analysis and variable weight coefficients |
CN106908674A (en) * | 2017-02-17 | 2017-06-30 | 国网上海市电力公司 | A kind of Transformer condition evaluation based on the prediction of multimode amount |
CN108320043A (en) * | 2017-12-19 | 2018-07-24 | 江苏瑞中数据股份有限公司 | A kind of distribution network equipment state diagnosis prediction method based on electric power big data |
CN108592352A (en) * | 2018-05-09 | 2018-09-28 | 国家计算机网络与信息安全管理中心 | The prediction technique of water cooling air conditioning system operating status health degree, apparatus and system |
CN109031014A (en) * | 2017-12-28 | 2018-12-18 | 国网湖北省电力公司宜昌供电公司 | A kind of transformer synthesis reliability assessment and prediction technique based on operation data |
-
2020
- 2020-03-05 CN CN202010147569.6A patent/CN111460727A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102621421A (en) * | 2012-03-29 | 2012-08-01 | 贵阳供电局 | Transformer state evaluation method based on correlation analysis and variable weight coefficients |
CN106908674A (en) * | 2017-02-17 | 2017-06-30 | 国网上海市电力公司 | A kind of Transformer condition evaluation based on the prediction of multimode amount |
CN108320043A (en) * | 2017-12-19 | 2018-07-24 | 江苏瑞中数据股份有限公司 | A kind of distribution network equipment state diagnosis prediction method based on electric power big data |
CN109031014A (en) * | 2017-12-28 | 2018-12-18 | 国网湖北省电力公司宜昌供电公司 | A kind of transformer synthesis reliability assessment and prediction technique based on operation data |
CN108592352A (en) * | 2018-05-09 | 2018-09-28 | 国家计算机网络与信息安全管理中心 | The prediction technique of water cooling air conditioning system operating status health degree, apparatus and system |
Non-Patent Citations (3)
Title |
---|
孙鹏等: "基于实时监测和例行试验数据的电力变压器状态动态评估方法", vol. 38, no. 3, pages 210 - 217 * |
汪培庄等: "认知负荷的评估与变化预测研究 以E-learning为例", 天津科学技术出版社, pages: 173 - 176 * |
谭焜予: "电力变压器状态评估及寿命预测", no. 01, pages 49 - 54 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112052625A (en) * | 2020-08-13 | 2020-12-08 | 五邑大学 | Method for estimating and predicting building life based on big data |
CN113011103A (en) * | 2021-04-06 | 2021-06-22 | 南京机电职业技术学院 | Multi-dimensional information fusion power transformer service life prediction model |
CN113177293A (en) * | 2021-04-06 | 2021-07-27 | 国网浙江省电力有限公司湖州供电公司 | Transformer evaluation method considering lightning stroke influence |
CN113177293B (en) * | 2021-04-06 | 2022-09-27 | 国网浙江省电力有限公司湖州供电公司 | Transformer evaluation method considering lightning stroke influence |
CN113760992A (en) * | 2021-07-29 | 2021-12-07 | 湖南五凌电力科技有限公司 | Method, device, equipment and storage medium for predicting running state of electrical equipment |
CN114219307A (en) * | 2021-12-16 | 2022-03-22 | 中国建设银行股份有限公司 | Product determination method, device, equipment and computer storage medium |
CN115221731A (en) * | 2022-08-11 | 2022-10-21 | 南京航空航天大学 | Transformer life evaluation method based on data fusion and Wiener model |
CN115759408A (en) * | 2022-11-21 | 2023-03-07 | 贵州电网有限责任公司 | Power transmission and transformation equipment service life prediction method, device, equipment and storage medium |
CN115759408B (en) * | 2022-11-21 | 2024-03-08 | 贵州电网有限责任公司 | Power transmission and transformation equipment life prediction method, device, equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111460727A (en) | Method for predicting service life of transformer by using multiple parameters | |
CN110441500A (en) | A kind of predicting model for dissolved gas in transformer oil method based on shot and long term memory network | |
CN104700321A (en) | Analytical method of state running tendency of transmission and distribution equipment | |
CN104020401B (en) | The appraisal procedure of transformer insulated heat ageing state based on cloud models theory | |
CN105512962A (en) | Method for comprehensively evaluating insulation status of gas insulated switchgear (GIS) | |
CN102590688B (en) | Method for estimating operation condition of sulfur hexafluoride transformers | |
CN110503305B (en) | Transformer performance evaluation method | |
CN110940374A (en) | Transformer health grade evaluation system and method based on big data fusion | |
CN115544793A (en) | A Method for State Assessment and Life Prediction of Power Transformers | |
Prasojo et al. | Development of analytic hierarchy process technique in determining weighting factor for power transformer health index | |
CN104462718A (en) | Method for evaluating economic operation year range of transformer substation | |
CN114354783A (en) | Health degree evaluation method of extra-high voltage oil chromatography monitoring device based on-operation data | |
CN114460445A (en) | A Transformer Aging Unavailability Evaluation Method Considering Aging Threshold and Life | |
CN107664690A (en) | A kind of method for predicting gas dissolved in oil of power trans-formers | |
CN118427607A (en) | Transformer fault early warning method based on multivariate time sequence | |
CN117672403A (en) | A method for predicting the trend of dissolved gas concentration in power transformer oil | |
Rediansyah et al. | Study on artificial intelligence approaches for power transformer health index assessment | |
CN113743801B (en) | Power transformer state evaluation method | |
CN110110816A (en) | A kind of Power Transformer Faults deduction method | |
CN111008779A (en) | Transformer health state assessment method based on multi-factor assessment model | |
CN116466067A (en) | A Gray Theory-Based Early Warning Method for the Remaining Life of Composite Insulator Silicone Rubber Materials | |
CN114861969A (en) | A LSTM-based Power System Oscillation Risk Prediction Method | |
CN112766657B (en) | A single equipment quality evaluation method based on failure probability and equipment status | |
CN115329672A (en) | A Condition Reliability Evaluation Method of Converter Transformer Based on Improved TOPSIS Grey Correlation | |
Li et al. | Research on prediction model of dissolved gas concentration in transformer oil based on deep learning algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200728 |
|
RJ01 | Rejection of invention patent application after publication |