CN111460488B - 基于预存储和n维Arnold变换的多图像快速加密方法 - Google Patents

基于预存储和n维Arnold变换的多图像快速加密方法 Download PDF

Info

Publication number
CN111460488B
CN111460488B CN202010364034.4A CN202010364034A CN111460488B CN 111460488 B CN111460488 B CN 111460488B CN 202010364034 A CN202010364034 A CN 202010364034A CN 111460488 B CN111460488 B CN 111460488B
Authority
CN
China
Prior art keywords
image
encryption
transformation
wiarnold
transformation matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010364034.4A
Other languages
English (en)
Other versions
CN111460488A (zh
Inventor
张晓强
孙志康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202010364034.4A priority Critical patent/CN111460488B/zh
Publication of CN111460488A publication Critical patent/CN111460488A/zh
Application granted granted Critical
Publication of CN111460488B publication Critical patent/CN111460488B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/602Providing cryptographic facilities or services

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Bioethics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Facsimile Transmission Control (AREA)

Abstract

针对图像加密方法效率低和加密容量有限的问题,受著名的外部设备联机并行操作(Simultaneous Peripheral Operations On‑Line,Spooling)系统启发,采取空间换取时间的思想,设计了一种基于预存储和n维Arnold变换的多图像快速加密方法。在加密前,预计算周期T个新变换矩阵,并将其分别保存到T个文本文件中。在加密时,从第t∈[1,T‑1]个文本文件中读取对应的新变换矩阵,并对原始图像进行一次新n维Arnold变换,等价于t次传统n维Arnold变换迭代,可得加密图像。实验表明:该方法操作简单,可明显提高图像加密效率,能够同时保护多幅图像内容的安全。

Description

基于预存储和n维Arnold变换的多图像快速加密方法
技术领域
本发明涉及图像加密领域,具体涉及一种基于预存储和n维Arnold变换的多图像快速加密方法。
背景技术
随着信息化程度的不断提高和互联网的广泛使用,在政治、经济和军事等多个领域中,无时无刻都会产生大量的重要图像信息。因此,信息的泄露、篡改等问题不容忽视,研究高效、安全的图像加密方法意义重大。
大数据时代下,信息传输能力不断增强 ,单图像加密传输已经不能满足人们的需求。目前,多图像加密方法大多基于多种加密技术的结合,操作复杂。因此,有必要研究操作容易并且加密效果良好的多图像加密方法。
图像加密方法通常对算法效率要求较高,而对存储空间开销即占用的存储空间大小要求不高。
Arnold变换是一种常用的图像加密方法,具有周期性。然而,它计算量大,特别是当选取迭代次数较大时,会导致加密效率很低。基于此,受著名的外部设备联机并行操作(Simultaneous Peripheral Operations On-Line,Spooling)系统启发,考虑利用空间换取时间的思路来提高Arnold变换的效率。
发明内容
本发明的目的:针对图像加密方法效率低和加密容量有限的问题,提出一种基于预存储和n维Arnold变换的多图像快速加密方法。
本发明的技术方案:为实现上述发明目的,采用的技术方案为一种基于预存储和n维Arnold变换的多图像快速加密方法,图像加密步骤详述如下:
1. 基于预存储和n维Arnold变换多图像快速加密方法,其特征在于,加密过程步骤如下:
步骤1:计算变换周期:令原始图像为n幅大小为m×m的灰色图像I 1, I 2, …, I n ,计算:
Figure 956140DEST_PATH_IMAGE001
, (1)
其中,
Figure 190812DEST_PATH_IMAGE002
为变换矩阵,像素值x 1 0I 1, x 2 0I 2, …,x n 0I n x 1 1, x 2 1, …, x n 1表示变换后n幅图像的像素值;从集合{0, 1, …, 255}中任取n个数分别作为x 1 0, x 2 0, …, x n 0的值,利用公式(1)反复迭代数次,当迭代结果与x 1 0, x 2 0,…, x n 0的值完全相同时,此迭代次数即为n维Arnold变换的周期T
步骤2:计算新变换矩阵:
B k =A k mod 256,k=1, 2, …, T, (2)
可得T个新变换矩阵B 1, B 2, …, B T
步骤3:存储新变换矩阵:将B 1, B 2, …, B T 的元素值分别保存到T个文本文件中;
步骤4:选取迭代次数:随机选取任一整数t∈[1, T-1]作为此次加密的迭代次数;
步骤5:图像扩散:从第t个文本文件中读取新变换矩阵B t ,对I 1, I 2,…, I n 进行一次新n维Arnold变换,可得n幅加密图像J 1, J 2,…, J n
进一步地,所述步骤5中,新n维Arnold变换指:
Figure 454172DEST_PATH_IMAGE003
, (3)。
进一步地,利用数学归纳法,公式(3)的推导为:
证明:当n=1时,由公式(1)和(2)可知,显然成立;
假设n=t时成立,则有
Figure 661162DEST_PATH_IMAGE003
n=t+1时,根据n维Arnold变换定义得:
Figure 368087DEST_PATH_IMAGE004
因为
Figure 762159DEST_PATH_IMAGE003
所以
Figure 330675DEST_PATH_IMAGE005
根据公式(2)可得:A=B
Figure 188910DEST_PATH_IMAGE006
所以当n=t+1时,公式(3)成立;
因此,根据数学归纳法,可知公式(3)等价为tn维Arnold变换成立。
附图说明
图1:基于预存储和n维Arnold变换的多图像快速加密流程图;
图2:原始图像;
图3:加密图像。
具体实施方式
下面结合具体附图和实例对本发明的实施过程进一步详细说明。
图1是本方法的加密流程图。
采用的编程软件为Matlab R2017b,选取图2所示的4幅256×256的灰色图像作为原始图像,对其进行四维(即n=4)Arnold变换。采用本方法,对4幅原始图像加密的详细过程描述如下:
步骤1:计算变换周期:选取x 1 0, x 2 0, x 3 0, x 4 0的值分别为1, 1, 0, 4,根据公式(1),可得四维Arnold变换的周期T=448;
步骤2:计算新变换矩阵:根据公式(2),可得448个新变换矩阵B 1, B 2, …, B 448
步骤3:存储新变换矩阵:将448个新变换矩阵B 1, B 2, …, B 448的元素值分别保存到448个文本文件中;
步骤4:选取迭代次数:选取t=292作为此次加密的迭代次数;
步骤5:图像扩散:从第292个文本文件中读取新变换矩阵B 292,对原始图像I 1, I 2,I 3, I 4进行一次新四维Arnold变换(即公式(3)中n=4时),可得4幅加密图像J 1, J 2, J 3, J 4,如图3所示。

Claims (2)

1.基于预存储和n维Arnold变换的多图像快速加密方法,其特征在于,加密过程步骤如下:
步骤1:计算变换周期:令原始图像为n幅大小为m×m的灰色图像I 1, I 2, …, I n ,计算:
Figure QLYQS_1
(1)
其中,
Figure QLYQS_2
为变换矩阵,像素值x 1 0I 1, x 2 0I 2, …, x n 0I n x 1 1, x 2 1, …, x n 1表示变换后n幅图像的像素值;从集合{0, 1, …, 255}中任取n个数分别作为x 1 0, x 2 0, …, x n 0的值,利用公式(1)反复迭代数次,当迭代结果与x 1 0, x 2 0, …,x n 0的值完全相同时,此迭代次数即为n维Arnold变换的周期T
步骤2:计算新变换矩阵:
B k =A k mod 256,k=1, 2, …, T (2)
可得T个新变换矩阵B 1, B 2, …, B T
步骤3:存储新变换矩阵:将B 1, B 2, …, B T 的元素值分别保存到T个文本文件中;
步骤4:选取迭代次数:随机选取任一整数t∈[1, T-1]作为此次加密的迭代次数;
步骤5:图像扩散:从第t个文本文件中读取新变换矩阵B t ,对I 1, I 2, …, I n 进行一次新n维Arnold变换,可得n幅加密图像J 1, J 2, …, J n
2.根据权利要求1所述的方法,其特征在于:所述步骤5中,新n维Arnold变换指:
Figure QLYQS_3
(3)。
CN202010364034.4A 2020-04-30 2020-04-30 基于预存储和n维Arnold变换的多图像快速加密方法 Active CN111460488B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010364034.4A CN111460488B (zh) 2020-04-30 2020-04-30 基于预存储和n维Arnold变换的多图像快速加密方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010364034.4A CN111460488B (zh) 2020-04-30 2020-04-30 基于预存储和n维Arnold变换的多图像快速加密方法

Publications (2)

Publication Number Publication Date
CN111460488A CN111460488A (zh) 2020-07-28
CN111460488B true CN111460488B (zh) 2023-04-07

Family

ID=71678655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010364034.4A Active CN111460488B (zh) 2020-04-30 2020-04-30 基于预存储和n维Arnold变换的多图像快速加密方法

Country Status (1)

Country Link
CN (1) CN111460488B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111881438B (zh) * 2020-08-14 2024-02-02 支付宝(杭州)信息技术有限公司 基于隐私保护进行生物特征识别的方法、装置及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103455971A (zh) * 2013-09-04 2013-12-18 上海理工大学 三维Arnold变换和混沌序列结合的图像加密方法
CN107169911A (zh) * 2016-11-28 2017-09-15 黄宗美 一种基于二维Arnold变换的图像加密方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103455971A (zh) * 2013-09-04 2013-12-18 上海理工大学 三维Arnold变换和混沌序列结合的图像加密方法
CN107169911A (zh) * 2016-11-28 2017-09-15 黄宗美 一种基于二维Arnold变换的图像加密方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
韩峤磊.数字图像Arnold变换的快速算法.福建电脑.2016,第32卷(第10期),全文. *

Also Published As

Publication number Publication date
CN111460488A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
Lima et al. Audio encryption based on the cosine number transform
Norouzi et al. An image encryption algorithm based on DNA sequence operations and cellular neural network
Jiang et al. Quantum image encryption based on Henon mapping
Li et al. Privacy-preserving machine learning with multiple data providers
Zhou et al. Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations
Wu et al. Secure and efficient outsourced k-means clustering using fully homomorphic encryption with ciphertext packing technique
Huang et al. An image encryption algorithm based on hyper-chaos and DNA sequence
Patro et al. A novel multi-dimensional multiple image encryption technique
Gong et al. Quantum image encryption algorithm based on quantum image XOR operations
Kumar et al. IEHC: An efficient image encryption technique using hybrid chaotic map
Chen et al. On the convergence analysis of the alternating direction method of multipliers with three blocks
Liu et al. Uniform non-degeneracy discrete chaotic system and its application in image encryption
Luo et al. Image encryption based on Henon chaotic system with nonlinear term
Liu et al. Secure multi-label data classification in cloud by additionally homomorphic encryption
Saravanan et al. A hybrid chaotic map with coefficient improved whale optimization-based parameter tuning for enhanced image encryption
Chen et al. Multiple‐parameter fractional quaternion fourier transform and its application in colour image encryption
Hu et al. Batch image encryption using generated deep features based on stacked autoencoder network
An et al. Image encryption algorithm based on adaptive wavelet chaos
Wang et al. A new chaotic image encryption algorithm based on L-shaped method of dynamic block
CN111865581A (zh) 基于张量网络的量子秘密共享方法及量子通信系统
Bai et al. Image cryptosystem for visually meaningful encryption based on fractal graph generating
Ma et al. Quantum color image compression and encryption algorithm based on Fibonacci transform
Hou et al. A graded reversible watermarking scheme for relational data
Wang et al. Image encryption algorithm based on lattice hash function and privacy protection
Chong et al. Block color image encryption algorithm based on elementary cellular automata and DNA sequence operations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant