CN111460488B - 基于预存储和n维Arnold变换的多图像快速加密方法 - Google Patents
基于预存储和n维Arnold变换的多图像快速加密方法 Download PDFInfo
- Publication number
- CN111460488B CN111460488B CN202010364034.4A CN202010364034A CN111460488B CN 111460488 B CN111460488 B CN 111460488B CN 202010364034 A CN202010364034 A CN 202010364034A CN 111460488 B CN111460488 B CN 111460488B
- Authority
- CN
- China
- Prior art keywords
- image
- encryption
- transformation
- wiarnold
- transformation matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000009466 transformation Effects 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000011159 matrix material Substances 0.000 claims abstract description 15
- 238000009792 diffusion process Methods 0.000 claims description 3
- 101100391182 Dictyostelium discoideum forI gene Proteins 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims description 2
- 239000011782 vitamin Substances 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/602—Providing cryptographic facilities or services
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Bioethics (AREA)
- General Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Facsimile Transmission Control (AREA)
Abstract
针对图像加密方法效率低和加密容量有限的问题,受著名的外部设备联机并行操作(Simultaneous Peripheral Operations On‑Line,Spooling)系统启发,采取空间换取时间的思想,设计了一种基于预存储和n维Arnold变换的多图像快速加密方法。在加密前,预计算周期T个新变换矩阵,并将其分别保存到T个文本文件中。在加密时,从第t∈[1,T‑1]个文本文件中读取对应的新变换矩阵,并对原始图像进行一次新n维Arnold变换,等价于t次传统n维Arnold变换迭代,可得加密图像。实验表明:该方法操作简单,可明显提高图像加密效率,能够同时保护多幅图像内容的安全。
Description
技术领域
本发明涉及图像加密领域,具体涉及一种基于预存储和n维Arnold变换的多图像快速加密方法。
背景技术
随着信息化程度的不断提高和互联网的广泛使用,在政治、经济和军事等多个领域中,无时无刻都会产生大量的重要图像信息。因此,信息的泄露、篡改等问题不容忽视,研究高效、安全的图像加密方法意义重大。
大数据时代下,信息传输能力不断增强 ,单图像加密传输已经不能满足人们的需求。目前,多图像加密方法大多基于多种加密技术的结合,操作复杂。因此,有必要研究操作容易并且加密效果良好的多图像加密方法。
图像加密方法通常对算法效率要求较高,而对存储空间开销即占用的存储空间大小要求不高。
Arnold变换是一种常用的图像加密方法,具有周期性。然而,它计算量大,特别是当选取迭代次数较大时,会导致加密效率很低。基于此,受著名的外部设备联机并行操作(Simultaneous Peripheral Operations On-Line,Spooling)系统启发,考虑利用空间换取时间的思路来提高Arnold变换的效率。
发明内容
本发明的目的:针对图像加密方法效率低和加密容量有限的问题,提出一种基于预存储和n维Arnold变换的多图像快速加密方法。
本发明的技术方案:为实现上述发明目的,采用的技术方案为一种基于预存储和n维Arnold变换的多图像快速加密方法,图像加密步骤详述如下:
1. 基于预存储和n维Arnold变换多图像快速加密方法,其特征在于,加密过程步骤如下:
步骤1:计算变换周期:令原始图像为n幅大小为m×m的灰色图像I 1, I 2, …, I n ,计算:
其中,为变换矩阵,像素值x 1 0∈I 1, x 2 0∈I 2, …,x n 0∈I n ,x 1 1, x 2 1, …, x n 1表示变换后n幅图像的像素值;从集合{0, 1, …, 255}中任取n个数分别作为x 1 0, x 2 0, …, x n 0的值,利用公式(1)反复迭代数次,当迭代结果与x 1 0, x 2 0,…, x n 0的值完全相同时,此迭代次数即为n维Arnold变换的周期T;
步骤2:计算新变换矩阵:
B k =A k mod 256,k=1, 2, …, T, (2)
可得T个新变换矩阵B 1, B 2, …, B T ;
步骤3:存储新变换矩阵:将B 1, B 2, …, B T 的元素值分别保存到T个文本文件中;
步骤4:选取迭代次数:随机选取任一整数t∈[1, T-1]作为此次加密的迭代次数;
步骤5:图像扩散:从第t个文本文件中读取新变换矩阵B t ,对I 1, I 2,…, I n 进行一次新n维Arnold变换,可得n幅加密图像J 1, J 2,…, J n 。
进一步地,所述步骤5中,新n维Arnold变换指:
进一步地,利用数学归纳法,公式(3)的推导为:
证明:当n=1时,由公式(1)和(2)可知,显然成立;
根据公式(2)可得:A=B,
所以当n=t+1时,公式(3)成立;
因此,根据数学归纳法,可知公式(3)等价为t次n维Arnold变换成立。
附图说明
图1:基于预存储和n维Arnold变换的多图像快速加密流程图;
图2:原始图像;
图3:加密图像。
具体实施方式
下面结合具体附图和实例对本发明的实施过程进一步详细说明。
图1是本方法的加密流程图。
采用的编程软件为Matlab R2017b,选取图2所示的4幅256×256的灰色图像作为原始图像,对其进行四维(即n=4)Arnold变换。采用本方法,对4幅原始图像加密的详细过程描述如下:
步骤1:计算变换周期:选取x 1 0, x 2 0, x 3 0, x 4 0的值分别为1, 1, 0, 4,根据公式(1),可得四维Arnold变换的周期T=448;
步骤2:计算新变换矩阵:根据公式(2),可得448个新变换矩阵B 1, B 2, …, B 448;
步骤3:存储新变换矩阵:将448个新变换矩阵B 1, B 2, …, B 448的元素值分别保存到448个文本文件中;
步骤4:选取迭代次数:选取t=292作为此次加密的迭代次数;
步骤5:图像扩散:从第292个文本文件中读取新变换矩阵B 292,对原始图像I 1, I 2,I 3, I 4进行一次新四维Arnold变换(即公式(3)中n=4时),可得4幅加密图像J 1, J 2, J 3, J 4,如图3所示。
Claims (2)
1.基于预存储和n维Arnold变换的多图像快速加密方法,其特征在于,加密过程步骤如下:
步骤1:计算变换周期:令原始图像为n幅大小为m×m的灰色图像I 1, I 2, …, I n ,计算:
其中,为变换矩阵,像素值x 1 0∈I 1, x 2 0∈I 2, …, x n 0∈I n ,x 1 1, x 2 1, …, x n 1表示变换后n幅图像的像素值;从集合{0, 1, …, 255}中任取n个数分别作为x 1 0, x 2 0, …, x n 0的值,利用公式(1)反复迭代数次,当迭代结果与x 1 0, x 2 0, …,x n 0的值完全相同时,此迭代次数即为n维Arnold变换的周期T;
步骤2:计算新变换矩阵:
B k =A k mod 256,k=1, 2, …, T (2)
可得T个新变换矩阵B 1, B 2, …, B T ;
步骤3:存储新变换矩阵:将B 1, B 2, …, B T 的元素值分别保存到T个文本文件中;
步骤4:选取迭代次数:随机选取任一整数t∈[1, T-1]作为此次加密的迭代次数;
步骤5:图像扩散:从第t个文本文件中读取新变换矩阵B t ,对I 1, I 2, …, I n 进行一次新n维Arnold变换,可得n幅加密图像J 1, J 2, …, J n 。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010364034.4A CN111460488B (zh) | 2020-04-30 | 2020-04-30 | 基于预存储和n维Arnold变换的多图像快速加密方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010364034.4A CN111460488B (zh) | 2020-04-30 | 2020-04-30 | 基于预存储和n维Arnold变换的多图像快速加密方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111460488A CN111460488A (zh) | 2020-07-28 |
CN111460488B true CN111460488B (zh) | 2023-04-07 |
Family
ID=71678655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010364034.4A Active CN111460488B (zh) | 2020-04-30 | 2020-04-30 | 基于预存储和n维Arnold变换的多图像快速加密方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111460488B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111881438B (zh) * | 2020-08-14 | 2024-02-02 | 支付宝(杭州)信息技术有限公司 | 基于隐私保护进行生物特征识别的方法、装置及电子设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103455971A (zh) * | 2013-09-04 | 2013-12-18 | 上海理工大学 | 三维Arnold变换和混沌序列结合的图像加密方法 |
CN107169911A (zh) * | 2016-11-28 | 2017-09-15 | 黄宗美 | 一种基于二维Arnold变换的图像加密方法 |
-
2020
- 2020-04-30 CN CN202010364034.4A patent/CN111460488B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103455971A (zh) * | 2013-09-04 | 2013-12-18 | 上海理工大学 | 三维Arnold变换和混沌序列结合的图像加密方法 |
CN107169911A (zh) * | 2016-11-28 | 2017-09-15 | 黄宗美 | 一种基于二维Arnold变换的图像加密方法 |
Non-Patent Citations (1)
Title |
---|
韩峤磊.数字图像Arnold变换的快速算法.福建电脑.2016,第32卷(第10期),全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN111460488A (zh) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lima et al. | Audio encryption based on the cosine number transform | |
Norouzi et al. | An image encryption algorithm based on DNA sequence operations and cellular neural network | |
Jiang et al. | Quantum image encryption based on Henon mapping | |
Li et al. | Privacy-preserving machine learning with multiple data providers | |
Zhou et al. | Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations | |
Wu et al. | Secure and efficient outsourced k-means clustering using fully homomorphic encryption with ciphertext packing technique | |
Huang et al. | An image encryption algorithm based on hyper-chaos and DNA sequence | |
Patro et al. | A novel multi-dimensional multiple image encryption technique | |
Gong et al. | Quantum image encryption algorithm based on quantum image XOR operations | |
Kumar et al. | IEHC: An efficient image encryption technique using hybrid chaotic map | |
Chen et al. | On the convergence analysis of the alternating direction method of multipliers with three blocks | |
Liu et al. | Uniform non-degeneracy discrete chaotic system and its application in image encryption | |
Luo et al. | Image encryption based on Henon chaotic system with nonlinear term | |
Liu et al. | Secure multi-label data classification in cloud by additionally homomorphic encryption | |
Saravanan et al. | A hybrid chaotic map with coefficient improved whale optimization-based parameter tuning for enhanced image encryption | |
Chen et al. | Multiple‐parameter fractional quaternion fourier transform and its application in colour image encryption | |
Hu et al. | Batch image encryption using generated deep features based on stacked autoencoder network | |
An et al. | Image encryption algorithm based on adaptive wavelet chaos | |
Wang et al. | A new chaotic image encryption algorithm based on L-shaped method of dynamic block | |
CN111865581A (zh) | 基于张量网络的量子秘密共享方法及量子通信系统 | |
Bai et al. | Image cryptosystem for visually meaningful encryption based on fractal graph generating | |
Ma et al. | Quantum color image compression and encryption algorithm based on Fibonacci transform | |
Hou et al. | A graded reversible watermarking scheme for relational data | |
Wang et al. | Image encryption algorithm based on lattice hash function and privacy protection | |
Chong et al. | Block color image encryption algorithm based on elementary cellular automata and DNA sequence operations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |