CN111446886A - 一种能有效增大端差温度的温差发电装置 - Google Patents

一种能有效增大端差温度的温差发电装置 Download PDF

Info

Publication number
CN111446886A
CN111446886A CN202010207924.4A CN202010207924A CN111446886A CN 111446886 A CN111446886 A CN 111446886A CN 202010207924 A CN202010207924 A CN 202010207924A CN 111446886 A CN111446886 A CN 111446886A
Authority
CN
China
Prior art keywords
temperature
power generation
copper plate
heat
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010207924.4A
Other languages
English (en)
Other versions
CN111446886B (zh
Inventor
齐聪
丁子
涂江林
王宇星
孙亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202010207924.4A priority Critical patent/CN111446886B/zh
Publication of CN111446886A publication Critical patent/CN111446886A/zh
Application granted granted Critical
Publication of CN111446886B publication Critical patent/CN111446886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种能有效增大端差温度的温差发电装置,包括集热装置、温差发电片组件和冷却系统,三者由上自下依次设置,温差发电片组件的高温端与集热装置下表面固定接触,冷却系统包括散热板、支架、亚克力板、蠕动泵和冷却水箱,散热板下表面和多个亚克力板组成换热腔,换热腔固定在支架上,冷却水箱通过蠕动泵及管路与换热腔形成循环回路,散热板上表面与温差发电片组件的低温端固定接触,所述集热装置为上表面具有选择性吸收薄膜的紫铜板,所述散热板下表面为波纹表面。本发明通过涂覆选择性吸收薄膜能有效提高高温端的集热效率,同时通过波纹表面能提高低温端的散热效率,从而有效增大端差温度,提高温差发电装置的发电能力。

Description

一种能有效增大端差温度的温差发电装置
技术领域
本发明涉及一种温差发电装置,具体是一种能有效增大端差温度的温差发电装置。
背景技术
随着化石能源的日渐枯竭和环境污染的加剧,太阳能作为一种清洁能源受到了各国研究人员的广泛关注,温差发电技术是利用太阳能的其中一项应用技术。温差发电技术是一种基于塞贝克效应的技术,在温差发电片上下表面具有温度差后,就会产生电动势,输出电能。温差发电片高、低温端的端差温度越大,其输出电能的能力也就越大。因此增大高、低温端的温差是提高温差发电装置的输出电能效率方面极其重要的一环。
太阳能的辐射是近似黑体的发射,几乎所有受到太阳辐射的物体表面都会产生热效应,但这些材料并不都可以高效的吸收利用太阳能产生热能,想要最大限度的提高温差发电片高温端的温度,需要对高温端的集热板进行一些定制化设计,首先集热板材料要能够很好的吸收太阳能,且材料本身热辐射性能低,集热板材料才能够更有效率地收集热能,目前主要采用紫铜板作为集热板材料,但是其集热效果一般。另外,目前水冷散热在散热领域应用是最为广泛且冷却效果较好的冷却技术,可有效降低温差发电装置的低温端温度。
通过检索发现,中国专利、公开号为CN209823664U,公开日为2019年12月20日,其公开了一种太阳能温差发电装置。
中国专利、公开号为CN110630541A,公开日为2019年12月31日,其公开了一种温差喷雾风扇装置。
分析发现,考虑温差发电的前景,上述发明存在两个方面的不足,一是系统本身集热效果差,或是集热材料使用寿命较短,不适合长时间工作;二是系统的散热装置没有对内部散热面的结构进行设计,现有的散热面为光滑平面,这就使得冷却系统换热效率受到了限制,无法有效降低温差发电装置的低温端温度,导致整个系统的高、低温端的端差温度较小,因此能源利用率低。如何提供一种高温端能高效集热且低温端散热效率高的温差发电装置是本领域技术人员的研究方向。
发明内容
针对上述现有技术存在的问题,本发明提供一种能有效增大端差温度的温差发电装置,通过涂覆选择性吸收薄膜能有效提高高温端的集热效率,同时通过波纹表面能提高低温端的散热效率,从而有效增大端差温度,提高温差发电装置的发电能力。
为了实现上述目的,本发明采用的技术方案是:一种能有效增大端差温度的温差发电装置,包括集热装置、温差发电片组件和冷却系统,三者由上自下依次设置,温差发电片组件的高温端与集热装置下表面固定接触,冷却系统包括散热板、支架、亚克力板、蠕动泵和冷却水箱,散热板下表面和多个亚克力板组成换热腔,换热腔固定在支架上,冷却水箱通过蠕动泵及管路与换热腔形成循环回路,散热板上表面与温差发电片组件的低温端固定接触,所述集热装置为上表面具有选择性吸收薄膜的紫铜板,所述散热板下表面为波纹表面。
进一步,所述波纹表面的波纹峰谷差为10mm,峰间距2mm。
其中,所述具有选择性吸收薄膜的紫铜板制备步骤为:
A、溶胶配制:
1)称取一定量正硅酸乙酯(TEOS)、无水乙醇(EtOH)、去离子水(H2O)、盐酸(HCl)依次加入锥形瓶A中,水浴加热60℃条件下磁力搅拌30min;
2)称取一定量水杨酸(SA)和一定量无水乙醇依次加入烧杯B中,在室温条件下磁力持续搅拌直至水杨酸充分溶解在无水乙醇中;
3)称取一定量聚乙二醇置于烧杯C中,加入一定量无水乙醇,在室温条件下磁力搅拌30~60min充分混合;
4)将步骤2)搅拌完成的溶液和步骤3)搅拌完成的溶液依次缓慢滴加至锥形瓶A中,然后在水浴加热60℃条件下磁力搅拌30~60min;
5)将搅拌后的溶液静置陈化24h直至形成稀凝胶溶液;上述正硅酸乙酯、无水乙醇、去离子水、盐酸和水杨酸的体积摩尔比为1:(20~30):(4~8):0.2:(1~3);
B、溶胶镀膜:
①对紫铜板上表面分别使用400目、800目、金相抛光机进行抛光处理,清除表面氧化膜,置于培养皿内;
②将紫铜板放入匀胶机吸盘上,用滴管吸取少量步骤A制得的稀凝胶溶液滴于紫铜板上表面,直至使稀凝胶溶液布满整个基板后,使匀胶机以2000~4000r/min的速度运行30~60s;
③将紫铜板放入鼓风干燥箱升温至80℃,保温20~40min,从而在紫铜板上表面形成干凝胶薄膜;
C、薄膜热处理:将步骤B处理后具有干凝胶薄膜的紫铜板放入氮气保护的管式炉,以20℃/min的加热速率升温至600~900℃,保温1~2h,炉冷至室温后取出,即制成具有C-SiO2选择性吸收薄膜的紫铜板。
进一步,所述制得的C-SiO2选择性吸收薄膜对太阳能的吸收率在90%以上。
与现有技术相比,本发明采用具有C-SiO2选择性吸收薄膜的紫铜板和散热板下表面为波纹表面两者结合制作温差发电机,在进行温差发电时,太阳光照射在具有C-SiO2选择性吸收薄膜的紫铜板上表面,通过试验可知本发明制备的选择吸收薄膜在0.3μm~2.5μm波段反射率较低,具有较高的吸收性能,在2.5μm~25μm处反射率陡峭升高,因此具有较低的红外辐射率,即选择吸收薄膜具有选择吸收特性,因此选择吸收薄膜能有效吸收紫外-可见光-近红外光区域的辐射能,并在紫铜板表面产生热量,进而传递给温差发电片组件的高温端,有效提高温差发电片组件的高温端的温度;同时冷却系统工作,蠕动泵带动冷却水从冷却水箱进入换热腔内,冷却水在换热腔内与散热片下表面接触换热,从而使散热片的温度降低,由于散热片下表面为波纹表面,因此能有效增加冷却水与散热片的接触面积及接触时间,从而保证散热片与冷却水的换热效率,由于散热片与温差发电片组件的低温端固定接触,最终通过冷却系统的不断工作,能有效实现对温差发电片组件的低温端降温;故通过上述的作用,能有效提高温差发电片组件高温端的集热温度,同时能降低温差发电片组件的低温端温度,实现增大高温端和低温端的端差温度,最终有效增加温差发电机的发电效率;另外本发明制备具有C-SiO2选择性吸收薄膜的紫铜板,工艺简单且无污染,可实现对太阳光辐射99%以上的能量的利用,薄膜光热转换效率在90%以上。
附图说明
图1是本发明的剖面结构示意图;
图2是本发明中制备具有C-SiO2选择性吸收薄膜的紫铜板的工艺流程图;
图3是进行试验证明时实施例1、2、3和对照组在光照波长为0.3μm~2.5μm的反射率谱图;
图4是进行试验证明时实施例1、2、3在光照波长为2.5μm~25μm的反射率谱图。
图中:1、集热装置,2、温差发电片组件,3、散热板,4、支架,5、亚克力板,6、换热腔。
具体实施方式
下面将对本发明作进一步说明。
实施例1:
本实施例包括集热装置1、温差发电片组件2和冷却系统,三者由上自下依次设置,温差发电片组件2的高温端与集热装置1下表面固定接触,冷却系统包括散热板3、支架4、亚克力板5、蠕动泵和冷却水箱,散热板3下表面和多个亚克力板5组成换热腔6,换热腔6固定在支架4上,冷却水箱通过蠕动泵及管路与换热腔6形成循环回路,散热板3上表面与温差发电片组件2的低温端固定接触,所述集热装置1为上表面具有选择性吸收薄膜的紫铜板,所述散热板3下表面为波纹表面;波纹表面的波纹峰谷差为10mm,峰间距2mm。
其中,所述具有选择性吸收薄膜的紫铜板制备步骤为:
A、溶胶配制:
1)称取一定量正硅酸乙酯(TEOS)、无水乙醇(EtOH)、去离子水(H2O)、盐酸(HCl)依次加入锥形瓶A中,水浴加热60℃条件下磁力搅拌30min;
2)称取一定量水杨酸(SA)和一定量无水乙醇依次加入烧杯B中,在室温条件下磁力持续搅拌直至水杨酸充分溶解在无水乙醇中;
3)称取一定量聚乙二醇置于烧杯C中,加入一定量无水乙醇,在室温条件下磁力搅拌30~60min充分混合;
4)将步骤2)搅拌完成的溶液和步骤3)搅拌完成的溶液依次缓慢滴加至锥形瓶A中,然后在水浴加热60℃条件下磁力搅拌30~60min;
5)将搅拌后的溶液静置陈化24h直至形成稀凝胶溶液;上述正硅酸乙酯、无水乙醇、去离子水、盐酸和水杨酸的体积摩尔比为1:20:4:0.2:1;
B、溶胶镀膜:
①对紫铜板上表面分别使用400目、800目、金相抛光机进行抛光处理,清除表面氧化膜,置于培养皿内;
②将紫铜板放入匀胶机吸盘上,用滴管吸取少量步骤A制得的稀凝胶溶液滴于紫铜板上表面,直至使稀凝胶溶液布满整个基板后,使匀胶机以2000~4000r/min的速度运行30~60s;
③将紫铜板放入鼓风干燥箱升温至80℃,保温20~40min,从而在紫铜板上表面形成干凝胶薄膜;
C、薄膜热处理:将步骤B处理后具有干凝胶薄膜的紫铜板放入氮气保护的管式炉,以20℃/min的加热速率升温至600~900℃,保温1~2h,炉冷至室温后取出,即制成具有C-SiO2选择性吸收薄膜的紫铜板。
实施例2:
本实施例的温差发电装置的结构与实施例1相同,其中,所述具有选择性吸收薄膜的紫铜板制备步骤为:
A、溶胶配制:
1)称取一定量正硅酸乙酯(TEOS)、无水乙醇(EtOH)、去离子水(H2O)、盐酸(HCl)依次加入锥形瓶A中,水浴加热60℃条件下磁力搅拌30min;
2)称取一定量水杨酸(SA)和一定量无水乙醇依次加入烧杯B中,在室温条件下磁力持续搅拌直至水杨酸充分溶解在无水乙醇中;
3)称取一定量聚乙二醇置于烧杯C中,加入一定量无水乙醇,在室温条件下磁力搅拌30~60min充分混合;
4)将步骤2)搅拌完成的溶液和步骤3)搅拌完成的溶液依次缓慢滴加至锥形瓶A中,然后在水浴加热60℃条件下磁力搅拌30~60min;
5)将搅拌后的溶液静置陈化24h直至形成稀凝胶溶液;上述正硅酸乙酯、无水乙醇、去离子水、盐酸和水杨酸的体积摩尔比为1:30:6:0.2:2;
B、溶胶镀膜:
①对紫铜板上表面分别使用400目、800目、金相抛光机进行抛光处理,清除表面氧化膜,置于培养皿内;
②将紫铜板放入匀胶机吸盘上,用滴管吸取少量步骤A制得的稀凝胶溶液滴于紫铜板上表面,直至使稀凝胶溶液布满整个基板后,使匀胶机以2000~4000r/min的速度运行30~60s;
③将紫铜板放入鼓风干燥箱升温至80℃,保温20~40min,从而在紫铜板上表面形成干凝胶薄膜;
C、薄膜热处理:将步骤B处理后具有干凝胶薄膜的紫铜板放入氮气保护的管式炉,以20℃/min的加热速率升温至600~900℃,保温1~2h,炉冷至室温后取出,即制成具有C-SiO2选择性吸收薄膜的紫铜板。
实施例3:
本实施例的温差发电装置的结构与实施例1相同,其中,所述具有选择性吸收薄膜的紫铜板制备步骤为:
A、溶胶配制:
1)称取一定量正硅酸乙酯(TEOS)、无水乙醇(EtOH)、去离子水(H2O)、盐酸(HCl)依次加入锥形瓶A中,水浴加热60℃条件下磁力搅拌30min;
2)称取一定量水杨酸(SA)和一定量无水乙醇依次加入烧杯B中,在室温条件下磁力持续搅拌直至水杨酸充分溶解在无水乙醇中;
3)称取一定量聚乙二醇置于烧杯C中,加入一定量无水乙醇,在室温条件下磁力搅拌30~60min充分混合;
4)将步骤2)搅拌完成的溶液和步骤3)搅拌完成的溶液依次缓慢滴加至锥形瓶A中,然后在水浴加热60℃条件下磁力搅拌30~60min;
5)将搅拌后的溶液静置陈化24h直至形成稀凝胶溶液;上述正硅酸乙酯、无水乙醇、去离子水、盐酸和水杨酸的体积摩尔比为1:30:8:0.2:3;
B、溶胶镀膜:
①对紫铜板上表面分别使用400目、800目、金相抛光机进行抛光处理,清除表面氧化膜,置于培养皿内;
②将紫铜板放入匀胶机吸盘上,用滴管吸取少量步骤A制得的稀凝胶溶液滴于紫铜板上表面,直至使稀凝胶溶液布满整个基板后,使匀胶机以2000~4000r/min的速度运行30~60s;
③将紫铜板放入鼓风干燥箱升温至80℃,保温20~40min,从而在紫铜板上表面形成干凝胶薄膜;
C、薄膜热处理:将步骤B处理后具有干凝胶薄膜的紫铜板放入氮气保护的管式炉,以20℃/min的加热速率升温至600~900℃,保温1~2h,炉冷至室温后取出,即制成具有C-SiO2选择性吸收薄膜的紫铜板。
试验证明:
在对选择吸收薄膜的性能进行评价时,太阳光吸收率是一条最重要的标准,它能够表征选择吸收薄膜对太阳辐射能的吸收能力,计算数值越接近于1代表选择吸收薄膜吸收太阳光的能力越强。地表可接受的太阳能辐射能量主要集中在光谱范围在0.3μm~2.5μm的紫外-可见-近红外区域,因此太阳光吸收率可用上述光谱范围进行计算,计算公式如下:
Figure BDA0002421795340000071
式中Isol(λ)为太阳光辐射,通常为AM1.5(ISO,ASTM G179-03)标准光谱;R(λ)为选择吸收薄膜的反射率。
另一方面,红外辐射率是选择吸收薄膜的另一条重要的评判标准,它能够表征薄膜通过红外辐射向外散发能量的标准,数值越接近于0代表红外热辐射损失越少。对于应用于低温领域的材料,其辐射能量主要集中在中远红外光谱(即波长为2.5μm~25μm的波段),故仅需测量其在中远红外波段的辐射能力,具体计算公式如下:
Figure BDA0002421795340000081
式中IB(λ)通常设为100℃的黑体辐射功率,R(λ)为选择吸收薄膜的反射率。通过公式可知,在该波段情况下反射率越高,其在该波段的辐射能力越低。
采用实施例1的制备方法制成样品1,采用实施例2的制备方法制成样品2,采用实施例3的制备方法制成样品3,对照组为紫铜板,采用模拟氙灯光源系统模拟太阳光照射分别对各个样品和紫铜板进行光照试验,并通过调压器对太阳能辐射能量进行调整使各个样品和紫铜板照射时的辐射能量相同。
结果分析:
通过图3曲线变化看出样品1、2和3在整个光谱范围内的反射率均低于25%,并根据上述公式计算出样品1、2和3的吸收率分别为0.905、0.937、0.952,对照组的吸收率为0.256,因此说明具有选择吸收薄膜的样品1、2和3对太阳辐射能有着较高的吸收率,远远大于对照组的吸收率,因此说明具有选择吸收薄膜的样品1、2和3对太阳辐射能有着较高的吸收率;
通过图4曲线变化看出几个样品的反射率在中远红外波段反射率陡峭升高,并根据上述公式计算出3个样品的对外辐射率分别为0.236、0.203、0.226,即对外辐射率均较低,因此综合来看,在紫铜板上表面涂覆选择吸收薄膜可以更有效地提升集热平板的集热能力,以此有效提高温差发电装置输出电能的能力。

Claims (4)

1.一种能有效增大端差温度的温差发电装置,包括集热装置、温差发电片组件和冷却系统,三者由上自下依次设置,温差发电片组件的高温端与集热装置下表面固定接触,冷却系统包括散热板、支架、亚克力板、蠕动泵和冷却水箱,散热板下表面和多个亚克力板组成换热腔,换热腔固定在支架上,冷却水箱通过蠕动泵及管路与换热腔形成循环回路,散热板上表面与温差发电片组件的低温端固定接触,其特征在于,所述集热装置为上表面具有选择性吸收薄膜的紫铜板,所述散热板下表面为波纹表面。
2.根据权利要求1所述的一种能有效增大端差温度的温差发电装置,其特征在于,所述波纹表面的波纹峰谷差为10mm,峰间距2mm。
3.根据权利要求1所述的一种能有效增大端差温度的温差发电装置,其特征在于,所述具有选择性吸收薄膜的紫铜板制备步骤为:
A、溶胶配制:
1)称取一定量正硅酸乙酯、无水乙醇、去离子水、盐酸依次加入锥形瓶A中,水浴加热60℃条件下磁力搅拌30min;
2)称取一定量水杨酸和一定量无水乙醇依次加入烧杯B中,在室温条件下磁力持续搅拌直至水杨酸充分溶解在无水乙醇中;
3)称取一定量聚乙二醇置于烧杯C中,加入一定量无水乙醇,在室温条件下磁力搅拌30~60min充分混合;
4)将步骤2)搅拌完成的溶液和步骤3)搅拌完成的溶液依次缓慢滴加至锥形瓶A中,然后在水浴加热60℃条件下磁力搅拌30~60min;
5)将搅拌后的溶液静置陈化24h直至形成稀凝胶溶液;上述正硅酸乙酯、无水乙醇、去离子水、盐酸和水杨酸的体积摩尔比为1:(20~30):(4~8):0.2:(1~3);
B、溶胶镀膜:
①对紫铜板上表面分别使用400目、800目、金相抛光机进行抛光处理,清除表面氧化膜,置于培养皿内;
②将紫铜板放入匀胶机吸盘上,用滴管吸取少量步骤A制得的稀凝胶溶液滴于紫铜板上表面,直至使稀凝胶溶液布满整个基板后,使匀胶机以2000~4000r/min的速度运行30~60s;
③将紫铜板放入鼓风干燥箱升温至80℃,保温20~40min,从而在紫铜板上表面形成干凝胶薄膜;
C、薄膜热处理:将步骤B处理后具有干凝胶薄膜的紫铜板放入氮气保护的管式炉,以20℃/min的加热速率升温至600~900℃,保温1~2h,炉冷至室温后取出,即制成具有C-SiO2选择性吸收薄膜的紫铜板。
4.根据权利要求3所述的一种能有效增大端差温度的温差发电装置,其特征在于,所述制得的C-SiO2选择性吸收薄膜对太阳能的吸收率在90%以上。
CN202010207924.4A 2020-03-23 2020-03-23 一种能有效增大端差温度的温差发电装置 Active CN111446886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010207924.4A CN111446886B (zh) 2020-03-23 2020-03-23 一种能有效增大端差温度的温差发电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010207924.4A CN111446886B (zh) 2020-03-23 2020-03-23 一种能有效增大端差温度的温差发电装置

Publications (2)

Publication Number Publication Date
CN111446886A true CN111446886A (zh) 2020-07-24
CN111446886B CN111446886B (zh) 2021-10-29

Family

ID=71650636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010207924.4A Active CN111446886B (zh) 2020-03-23 2020-03-23 一种能有效增大端差温度的温差发电装置

Country Status (1)

Country Link
CN (1) CN111446886B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193788A (zh) * 2021-05-25 2021-07-30 河海大学 一种风光生互补的温差发电装置
CN113376461A (zh) * 2021-06-07 2021-09-10 中国南方电网有限责任公司超高压输电公司大理局 一种变压器壳体内故障的在线检测装置和方法
CN113391174A (zh) * 2021-06-07 2021-09-14 中国南方电网有限责任公司超高压输电公司大理局 一种变压器壳体内故障的定位装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814867A (zh) * 2009-02-20 2010-08-25 清华大学 热电发电装置
CN203504454U (zh) * 2013-07-22 2014-03-26 金安君 便携式温差发电机
CN103840713A (zh) * 2012-11-23 2014-06-04 财团法人工业技术研究院 热电转换装置及选择性吸收膜
US20160099397A1 (en) * 2013-06-24 2016-04-07 Fujifilm Corporation Composition for forming thermoelectric conversion layer, thermoelectric conversion element, and thermoelectric power generating component
CN110912460A (zh) * 2019-11-07 2020-03-24 武汉理工大学 全天候温差发电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814867A (zh) * 2009-02-20 2010-08-25 清华大学 热电发电装置
CN103840713A (zh) * 2012-11-23 2014-06-04 财团法人工业技术研究院 热电转换装置及选择性吸收膜
US20160099397A1 (en) * 2013-06-24 2016-04-07 Fujifilm Corporation Composition for forming thermoelectric conversion layer, thermoelectric conversion element, and thermoelectric power generating component
CN203504454U (zh) * 2013-07-22 2014-03-26 金安君 便携式温差发电机
CN110912460A (zh) * 2019-11-07 2020-03-24 武汉理工大学 全天候温差发电装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193788A (zh) * 2021-05-25 2021-07-30 河海大学 一种风光生互补的温差发电装置
CN113376461A (zh) * 2021-06-07 2021-09-10 中国南方电网有限责任公司超高压输电公司大理局 一种变压器壳体内故障的在线检测装置和方法
CN113391174A (zh) * 2021-06-07 2021-09-14 中国南方电网有限责任公司超高压输电公司大理局 一种变压器壳体内故障的定位装置和方法

Also Published As

Publication number Publication date
CN111446886B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN111446886B (zh) 一种能有效增大端差温度的温差发电装置
Liu et al. Thermodynamic and optical analysis for a CPV/T hybrid system with beam splitter and fully tracked linear Fresnel reflector concentrator utilizing sloped panels
CN202059353U (zh) 高倍聚光太阳能光伏光热复合发电系统
CN107255368A (zh) 一种分频式低倍聚光光伏‑高倍聚光光热/热电耦合的太阳能全光谱利用系统
CN101316082B (zh) 高效率低成本太阳能热电联产系统
CN105245184A (zh) 具有夜间辐射制冷功能的平板型光伏光热综合利用装置
CN107221996A (zh) 一种基于太阳能温差发电的供电系统
CN107275427B (zh) 一种基于金属型材基底的复合型光伏光热一体化构件
CN210297635U (zh) 一种新型太阳能利用系统
CN104935239A (zh) 一种新型太阳能光伏光热一体化装置
WO2023216617A1 (zh) 分光吸收集热组件、光伏热电联供系统及电能存储系统
CN201733250U (zh) 一种线聚焦的聚光光伏组件
CN204669308U (zh) 一种高效光热电一体化光伏组件
CN202581920U (zh) 太阳能制冷、制热水装置
CN112311323B (zh) 一种多晶硅平板型荧光太阳集光器的制备方法及其应用
CN101867320A (zh) 用于槽式聚光系统的光电光热联用真空直通式集热管
CN209896072U (zh) 一种碲化镉发电玻璃
CN210669989U (zh) 光伏光热一体化组件
WO2020199631A1 (zh) 一种用于光伏组件的选择性反射器及其制作方法
CN204216845U (zh) 一种菲涅尔式聚光光伏光热组件
CN111464131B (zh) 抗风型防冻高聚光光伏-光热太阳能综合利用系统
CN202996871U (zh) 一种聚光反射式光伏模组的发电、供热联产装置
CN207304044U (zh) 一种基于太阳能温差发电的供电系统
CN206060669U (zh) 一种太阳能聚光机构
CN205092254U (zh) 一种采用无镉量子点平面荧光聚光器的太阳能电池板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant