CN111445946B - 一种利用pet/ct图像推算肺癌基因分型的演算方法 - Google Patents
一种利用pet/ct图像推算肺癌基因分型的演算方法 Download PDFInfo
- Publication number
- CN111445946B CN111445946B CN202010224526.3A CN202010224526A CN111445946B CN 111445946 B CN111445946 B CN 111445946B CN 202010224526 A CN202010224526 A CN 202010224526A CN 111445946 B CN111445946 B CN 111445946B
- Authority
- CN
- China
- Prior art keywords
- lung cancer
- correlation
- tumor
- pet
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 206010058467 Lung neoplasm malignant Diseases 0.000 title claims abstract description 22
- 201000005202 lung cancer Diseases 0.000 title claims abstract description 22
- 208000020816 lung neoplasm Diseases 0.000 title claims abstract description 22
- 238000003205 genotyping method Methods 0.000 title claims abstract description 14
- 238000004364 calculation method Methods 0.000 title abstract description 3
- 238000002591 computed tomography Methods 0.000 title description 21
- 238000002600 positron emission tomography Methods 0.000 title description 20
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 42
- 238000003745 diagnosis Methods 0.000 claims abstract description 25
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 18
- 238000007637 random forest analysis Methods 0.000 claims abstract description 16
- 238000013135 deep learning Methods 0.000 claims abstract description 10
- 230000006798 recombination Effects 0.000 claims abstract description 5
- 238000005215 recombination Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 22
- 238000003066 decision tree Methods 0.000 claims description 17
- 210000001519 tissue Anatomy 0.000 claims description 13
- 238000012549 training Methods 0.000 claims description 13
- 238000003709 image segmentation Methods 0.000 claims description 7
- 210000004072 lung Anatomy 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 239000008280 blood Substances 0.000 claims description 5
- 210000004369 blood Anatomy 0.000 claims description 5
- 230000002596 correlated effect Effects 0.000 claims description 5
- 230000000875 corresponding effect Effects 0.000 claims description 5
- 238000013136 deep learning model Methods 0.000 claims description 5
- 230000004927 fusion Effects 0.000 claims description 4
- 210000001165 lymph node Anatomy 0.000 claims description 4
- 239000000439 tumor marker Substances 0.000 claims description 4
- 238000012952 Resampling Methods 0.000 claims description 3
- 210000004204 blood vessel Anatomy 0.000 claims description 3
- 238000013138 pruning Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 abstract description 8
- 238000013178 mathematical model Methods 0.000 abstract description 4
- 238000013499 data model Methods 0.000 abstract description 2
- 230000002285 radioactive effect Effects 0.000 abstract 2
- 238000011002 quantification Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 230000010354 integration Effects 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 238000000605 extraction Methods 0.000 description 6
- 238000004393 prognosis Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 210000000481 breast Anatomy 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013170 computed tomography imaging Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 208000019693 Lung disease Diseases 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 206010054107 Nodule Diseases 0.000 description 1
- 206010056342 Pulmonary mass Diseases 0.000 description 1
- 238000012152 algorithmic method Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004791 biological behavior Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Biology (AREA)
- Public Health (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biomedical Technology (AREA)
- Databases & Information Systems (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Pathology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Epidemiology (AREA)
- Artificial Intelligence (AREA)
- Primary Health Care (AREA)
- Multimedia (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010224526.3A CN111445946B (zh) | 2020-03-26 | 2020-03-26 | 一种利用pet/ct图像推算肺癌基因分型的演算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010224526.3A CN111445946B (zh) | 2020-03-26 | 2020-03-26 | 一种利用pet/ct图像推算肺癌基因分型的演算方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111445946A CN111445946A (zh) | 2020-07-24 |
CN111445946B true CN111445946B (zh) | 2021-07-30 |
Family
ID=71650890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010224526.3A Active CN111445946B (zh) | 2020-03-26 | 2020-03-26 | 一种利用pet/ct图像推算肺癌基因分型的演算方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111445946B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111968742A (zh) * | 2020-08-14 | 2020-11-20 | 上海市肺科医院 | 一种肺癌基因突变的跨模态预测系统及方法 |
CN112488992B (zh) * | 2020-11-13 | 2024-04-02 | 上海健康医学院 | 表皮生长因子受体突变状态判断方法、介质及电子设备 |
CN112365980B (zh) * | 2020-11-16 | 2024-03-01 | 复旦大学附属华山医院 | 脑肿瘤多靶点辅助诊断与前瞻性治疗演化可视化方法及系统 |
CN112465824B (zh) * | 2021-01-28 | 2021-08-03 | 之江实验室 | 基于pet/ct图像亚区影像组学特征的肺腺鳞癌诊断装置 |
CN113113130A (zh) * | 2021-03-15 | 2021-07-13 | 湖南医云智享医疗科技有限公司 | 一种肿瘤个体化诊疗方案推荐方法 |
CN113611390B (zh) * | 2021-07-27 | 2023-04-07 | 四川大学华西医院 | 胸腔镜肺癌切除术中转开胸风险诊断预测模型及构建系统 |
CN113889261B (zh) * | 2021-09-23 | 2022-06-10 | 之江实验室 | 基于病理特征辅助的pet/ct自动肺癌诊断分类模型训练方法 |
CN115018836A (zh) * | 2022-08-08 | 2022-09-06 | 四川大学 | 一种癫痫病灶自动分割与预测方法、系统及设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105931224A (zh) * | 2016-04-14 | 2016-09-07 | 浙江大学 | 基于随机森林算法的肝脏平扫ct图像病变识别方法 |
CN108765411A (zh) * | 2018-06-05 | 2018-11-06 | 东北大学 | 一种基于影像组学的肿瘤分型方法 |
CN108897984A (zh) * | 2018-05-07 | 2018-11-27 | 上海理工大学 | 基于ct影像组学特征与肺癌基因表达间相关性分析方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9881135B2 (en) * | 2012-12-13 | 2018-01-30 | Metabogen Ab | Identification of a person having risk for developing type 2 diabetes |
US10748040B2 (en) * | 2017-11-20 | 2020-08-18 | Kavya Venkata Kota Sai KOPPARAPU | System and method for automatic assessment of cancer |
CN109785963A (zh) * | 2019-01-16 | 2019-05-21 | 成都蓝景信息技术有限公司 | 基于深度学习技术的肺结节筛查算法 |
CN110458948A (zh) * | 2019-08-13 | 2019-11-15 | 易文君 | 基于智能化3d重建系统中图像的处理方法 |
CN110400601A (zh) * | 2019-08-23 | 2019-11-01 | 元码基因科技(无锡)有限公司 | 基于rna靶向测序和机器学习的癌症亚型分型方法及装置 |
-
2020
- 2020-03-26 CN CN202010224526.3A patent/CN111445946B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105931224A (zh) * | 2016-04-14 | 2016-09-07 | 浙江大学 | 基于随机森林算法的肝脏平扫ct图像病变识别方法 |
CN108897984A (zh) * | 2018-05-07 | 2018-11-27 | 上海理工大学 | 基于ct影像组学特征与肺癌基因表达间相关性分析方法 |
CN108765411A (zh) * | 2018-06-05 | 2018-11-06 | 东北大学 | 一种基于影像组学的肿瘤分型方法 |
Non-Patent Citations (3)
Title |
---|
CT Texture Analysis of Renal Masses: Pilot Study Using Random Forest Classification for Prediction of Pathology;Siva P. Raman等;《Acad Radiol》;20150307;第21卷(第12期);第2-10页 * |
基于LC-MS的肝癌血清及组织代谢组学研究;陆欣;《中国博士学位论文全文数据库 医药卫生科技辑》;20180115(第01期);第E072-102页 * |
基于Spark和随机森林的乳腺癌风险预测分析;苗立志等;《计算机技术与发展》;20190831;第29卷(第8期);第143-145页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111445946A (zh) | 2020-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111445946B (zh) | 一种利用pet/ct图像推算肺癌基因分型的演算方法 | |
US20230010515A1 (en) | Method and system for identifying biomarkers using a probability map | |
da Cruz et al. | Kidney segmentation from computed tomography images using deep neural network | |
Wu et al. | Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy | |
Lee et al. | Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art | |
Gore et al. | A review of radiomics and deep predictive modeling in glioma characterization | |
Park et al. | Prediction of core signaling pathway by using diffusion-and perfusion-based MRI radiomics and next-generation sequencing in isocitrate dehydrogenase wild-type glioblastoma | |
Mahrooghy et al. | Pharmacokinetic tumor heterogeneity as a prognostic biomarker for classifying breast cancer recurrence risk | |
Wu et al. | A supervoxel classification based method for multi-organ segmentation from abdominal ct images | |
Chen et al. | MRI radiomics for prediction of tumor response and downstaging in rectal cancer patients after preoperative chemoradiation | |
CN113889261B (zh) | 基于病理特征辅助的pet/ct自动肺癌诊断分类模型训练方法 | |
CN115497623A (zh) | 一种基于影像、病理和基因多组学的肺癌预后预测系统 | |
Florez et al. | Emergence of radiomics: novel methodology identifying imaging biomarkers of disease in diagnosis, response, and progression | |
Meng et al. | Artificial intelligence-based radiomics in bone tumors: Technical advances and clinical application | |
CN114360718B (zh) | 一种基于特征拟合的pet/ct自动肺癌诊断分类系统及构建方法 | |
Mitra | Deep learning with radiogenomics towards personalized management of gliomas | |
VK | An intelligent brain tumor segmentation using improved Deep Learning Model Based on Cascade Regression method | |
Zargar et al. | Using VGG16 Algorithms for classification of lung cancer in CT scans Image | |
CN117711615A (zh) | 基于影像组学的淋巴结转移状态分类预测方法及设备 | |
Cheng et al. | Prediction of egfr mutation status in lung adenocarcinoma using multi-source feature representations | |
Xia | Auxiliary diagnosis of lung cancer with magnetic resonance imaging data under deep learning | |
Zhang et al. | Support vector machine combined with magnetic resonance imaging for accurate diagnosis of paediatric pancreatic cancer | |
Li et al. | Kinet: a non-invasive method for predicting Ki67 index of glioma | |
CN112001882A (zh) | 一种基于影像组学小样本学习的肺癌诊断方法 | |
Laudicella et al. | Artificial Intelligence Clinical Application in Prostate Cancer Molecular Imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210707 Address after: No. 440, Yankuang Road, Ji'nan, Shandong Province Applicant after: SHANDONG CANCER HOSPITAL & INSTITUTE (SHANDONG CANCER Hospital) Applicant after: SHANDONG University Applicant after: Jinan Bishan Network Technology Co.,Ltd. Address before: 100025 906, West District, 9th floor, No. 100, Sili, Balizhuang, Chaoyang District, Beijing Applicant before: Beijing Yikang Medical Technology Co.,Ltd. Applicant before: SHANDONG CANCER HOSPITAL & INSTITUTE (SHANDONG CANCER Hospital) Applicant before: SHANDONG University Applicant before: Jinan Bishan Network Technology Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |