CN111442657A - A low pressure vacuum condenser - Google Patents
A low pressure vacuum condenser Download PDFInfo
- Publication number
- CN111442657A CN111442657A CN202010289821.7A CN202010289821A CN111442657A CN 111442657 A CN111442657 A CN 111442657A CN 202010289821 A CN202010289821 A CN 202010289821A CN 111442657 A CN111442657 A CN 111442657A
- Authority
- CN
- China
- Prior art keywords
- shell
- tube
- tube bundle
- baffle
- pressure vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims abstract description 34
- 238000005192 partition Methods 0.000 claims abstract description 10
- 238000009826 distribution Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 abstract description 7
- 238000009833 condensation Methods 0.000 description 11
- 230000005494 condensation Effects 0.000 description 11
- 239000007788 liquid Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B1/00—Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B9/00—Auxiliary systems, arrangements, or devices
- F28B9/08—Auxiliary systems, arrangements, or devices for collecting and removing condensate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B9/00—Auxiliary systems, arrangements, or devices
- F28B9/10—Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/08—Tubular elements crimped or corrugated in longitudinal section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/24—Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Geometry (AREA)
- Fluid Mechanics (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
一种低压真空冷凝器,主要包括壳体及安装在壳体内的传热管束,壳体两端安装的管箱,壳体内纵向设置的分程隔板将管束壳程分为上部壳程和下部壳程两壳程结构,该分程隔板的两端开有通孔将上部壳程和下部壳程连通;所述上部壳程内的管束采用正方形布管,且管束折流方式采用异形折流杆折流;所述下部壳程内的管束采用正三角形布管,且管束折流方式采用异形折流板折流。本发明上、下两壳程的不同管束换热管布置和管束支撑方法相结合,不仅可以降低换热器壳程流体阻力降、降低管束振动可能,又可以兼顾换热器传热效率、提高设备紧凑度。
A low-pressure vacuum condenser mainly includes a shell and a heat transfer tube bundle installed in the shell, a tube box installed at both ends of the shell, and a split-pass partition plate longitudinally arranged in the shell to divide the shell side of the tube bundle into an upper shell side and a lower part. The shell-side two-shell-side structure, the two ends of the split-pass separator are provided with through holes to connect the upper shell side and the lower shell side; the tube bundles in the upper shell side are arranged in square tubes, and the tube bundles are deflected by special-shaped folds. The flow rod is deflected; the tube bundles in the lower shell side are arranged in a regular triangle, and the tube bundles are deflected by a special-shaped baffle plate. The combination of the different tube bundle heat exchange tube arrangement and the tube bundle support method of the upper and lower shell sides of the present invention can not only reduce the drop of fluid resistance on the shell side of the heat exchanger, reduce the possibility of tube bundle vibration, but also take into account the heat transfer efficiency of the heat exchanger and improve the Equipment compactness.
Description
技术领域technical field
本发明属于低压真空间壁冷凝传热技术领域,具体涉及一种低压真空冷凝器。The invention belongs to the technical field of low-pressure vacuum space wall condensation heat transfer, and in particular relates to a low-pressure vacuum condenser.
背景技术Background technique
目前低压真空间壁冷凝传热技术多采用单壳程结构或单外导流结构、壳程分程冷却技术。当采用分程冷凝技术时,管束换热管布置方式均相同,且管束折流方式均为折流板折流。当采用单壳程冷凝技术时,壳程不凝气与凝液分离不充分、冷凝效率低、不凝气中带液多等缺点。当采用现有的分程冷凝技术时,又存在设备壳程阻力降大、管束振动频率高等缺点。At present, the low-pressure vacuum space wall condensation heat transfer technology mostly adopts a single-shell-pass structure or a single-external guide structure, and a shell-pass split-pass cooling technology. When the split-range condensation technology is used, the arrangement of the heat exchange tubes of the tube bundle is the same, and the baffles of the tube bundle are all baffle baffles. When the single-shell-side condensation technology is adopted, the shell-side non-condensable gas and the condensed liquid are not sufficiently separated, the condensation efficiency is low, and the non-condensable gas contains a lot of liquid. When using the existing split-range condensation technology, there are disadvantages such as large drop of equipment shell-side resistance and high vibration frequency of tube bundles.
发明内容SUMMARY OF THE INVENTION
本发明提供一种低压真空冷凝器,兼顾壳程流体冷凝阻力和传热效率,同时使管束振动频率降低至很低的水平。The invention provides a low-pressure vacuum condenser, which takes into account the condensation resistance of the shell side fluid and the heat transfer efficiency, and at the same time reduces the vibration frequency of the tube bundle to a very low level.
本发明所采用的技术方案如下:The technical scheme adopted in the present invention is as follows:
一种低压真空冷凝器,主要包括壳体及安装在壳体内的传热管束,壳体两端安装的管箱,壳体内纵向设置的分程隔板将管束壳程分为上部壳程和下部壳程两壳程结构,该分程隔板的两端开有通孔将上部壳程和下部壳程连通;所述上部壳程内的管束采用正方形布管,且管束折流方式采用异形折流杆折流;所述下部壳程内的管束采用正三角形布管,且管束折流方式采用异形折流板折流。A low-pressure vacuum condenser mainly includes a shell and a heat transfer tube bundle installed in the shell, a tube box installed at both ends of the shell, and a split-pass partition plate longitudinally arranged in the shell to divide the shell side of the tube bundle into an upper shell side and a lower part. The shell-side two-shell-side structure, the two ends of the split-pass separator are provided with through holes to connect the upper shell side and the lower shell side; the tube bundles in the upper shell side are arranged in square tubes, and the tube bundles are deflected by special-shaped folds. The flow rod is deflected; the tube bundles in the lower shell side are arranged in a regular triangle, and the tube bundles are deflected by a special-shaped baffle plate.
所述壳体中部设有与其同轴的中部外导流筒,其上部设有壳程流体进口;中部外导流筒内同轴设中部内分布筒,中部外导流筒通过中部内分布筒和上部壳程连通;中部外导流筒和中部内分布筒之间通过纵向隔板分割为独立的两部分。The middle part of the shell is provided with a middle outer guide tube coaxial with it, and the upper part of the shell is provided with a shell side fluid inlet; the middle part of the outer guide tube is coaxial with a middle part inner distribution tube, and the middle outer guide tube passes through the middle inner distribution tube. It is connected with the upper shell side; the middle outer guide tube and the middle inner distribution tube are divided into two independent parts by longitudinal partitions.
所述异形折流杆为圆缺结构,折流圆杆纵或横均布在圆缺形支撑环上且两者间隔布置。The special-shaped baffle rods are of a round-cut structure, and the baffle round rods are evenly distributed on the round-cut-shaped support ring vertically or horizontally, and the two are arranged at intervals.
所述异形折流板为圆缺形结构,折流板下部不布管区域开缺,布管区域的换热管管桥区域内开导流孔。The special-shaped baffle has a circular notch-shaped structure, the lower part of the baffle is not cut out in the pipe layout area, and the guide hole is opened in the heat exchange pipe bridge area in the pipe layout area.
本发明卧式布置,壳程采用上、下两壳程结构,其中上部壳程内管束采用正方形布管,上部壳程内管束折流方式采用异形折流杆折流;下部壳程管束采用三角形布管,下部壳程管束折流方式采用异形折流板折流。上、下两壳程的不同管束换热管布置和管束支撑方法相结合,不仅可以降低换热器壳程流体阻力降、降低管束振动可能,又可以兼顾换热器传热效率、提高设备紧凑度。The present invention is arranged horizontally, and the shell side adopts upper and lower shell side structures, wherein the tube bundle in the upper shell side adopts square pipe layout, the baffle mode of the tube bundle in the upper shell side adopts special-shaped baffle rod for baffle; the tube bundle in the lower shell side adopts triangular shape Pipe layout, the lower shell-side tube bundles are baffled by special-shaped baffles. The combination of different tube bundle heat exchange tube arrangements on the upper and lower shell sides and the tube bundle support method can not only reduce the fluid resistance drop on the shell side of the heat exchanger, reduce the possibility of tube bundle vibration, but also take into account the heat transfer efficiency of the heat exchanger and improve the compactness of the equipment. Spend.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is the structural representation of the present invention;
图2为本发明的壳程剖面示意图;Fig. 2 is the shell side sectional schematic diagram of the present invention;
图3为本发明的中部导流筒截面示意图;3 is a schematic cross-sectional view of the middle guide tube of the present invention;
图4为本发明的一种异形折流杆结构示意图;4 is a schematic structural diagram of a special-shaped baffle rod of the present invention;
图5为本发明的另一种异形折流杆结构示意图;5 is a schematic structural diagram of another special-shaped baffle rod of the present invention;
图6为本发明的异形折流板示意图;6 is a schematic diagram of a special-shaped baffle of the present invention;
附图标号:前管箱1;壳体2;中部内分布筒3;后管箱4;支座5;管程排气口6;异形折流杆7;壳程流体进口8;中部外导流筒9;传热管束10;管程流体出口11;管程排液口12;异形折流板13;壳程凝液出口14;管程流体出口15;纵向隔板16;分程隔板17;壳程不凝气出口18;换热管19;圆缺形支撑环20;折流圆杆21;导流孔22;换热管孔23。Reference number: front pipe box 1; shell 2; middle
具体实施方式Detailed ways
下面结合附图对本发明及其有益效果作进一步说明。The present invention and its beneficial effects will be further described below in conjunction with the accompanying drawings.
如图1所示,一种低压真空冷凝器,包括前管箱1、壳体2、后管箱4、传热管束10和支座5。前管箱1和后管箱4与传热管束10两端的管板密封连接,壳体2与传热管束10两端管板相密封连接并将传热管束10包在壳体2内部;,支座5支撑整个冷凝器,冷凝器卧式布置。本发明传热管束内走冷流体,传热管束外走热流体,热流体与冷流体间壁传热,换热后热流体冷凝为液体并分离出少量不凝气。As shown in FIG. 1 , a low-pressure vacuum condenser includes a front tube box 1 , a shell 2 , a rear tube box 4 , a heat
如图2所示,管程流体由管程流体入口15流入前管箱1,由前管箱1再进入管束10与壳程流体间壁换热后流入后管箱4,由管程流体出口11流出,前管箱1上设有管程排气口6,后管箱4上设有管程排液口12。As shown in FIG. 2 , the tube-side fluid flows into the front tube box 1 from the tube-
如图3所示,所述壳体2内纵向设置的分程隔板17将管束壳程分为上部壳程和下部壳程两壳程结构,该分程隔板17的两端开有通孔将上部壳程和下部壳程连通;所述上部壳程内的管束采用正方形布管,且管束折流方式采用异形折流杆折流;所述下部壳程内的管束采用正三角形布管,且管束折流方式采用异形折流板折流。As shown in FIG. 3 , the split-
本发明壳程采用上部壳程和下部壳程两壳程结构,使上部壳体管束用以冷凝大部分壳程低压真空流体,所以大部分流体阻力也集中在此,管束的振动也更剧烈。此区域使用折流杆折流即可以有效降低流体阻力,也大大降低了管束振动的可能性。上部壳程管束采用正方形布管可满足使用折流杆折流条件,同时正方形布管也降低了此区域的流体流速,从而降低了流体流速,也降低了管束振动频率。The shell side of the present invention adopts the upper shell side and the lower shell side two shell side structures, so that the upper shell tube bundle is used to condense most of the low-pressure vacuum fluid of the shell side, so most of the fluid resistance is also concentrated here, and the vibration of the tube bundle is also more severe. The use of baffle rods in this area can effectively reduce fluid resistance and greatly reduce the possibility of tube bundle vibration. The upper shell-side tube bundle adopts square piping to meet the deflecting conditions of using baffle rods. At the same time, the square piping also reduces the fluid flow rate in this area, thereby reducing the fluid flow rate and the vibration frequency of the tube bundle.
下部壳体管束用以二次冷凝小部分未冷凝的壳程流体,此区域流体流速低,流体阻力小,因此应以尽可能小的空间增大传热面积。下部壳程管束采用正三角形布管,尽可能的利用了下部壳程空间增大换热面积。下部壳程管束折流方式采用异形折流板折流,异形折流板采用大间距布置,在降低冷凝器制造难度的同时兼顾压降、传热与振动。The lower shell tube bundle is used for secondary condensation of a small part of the uncondensed shell-side fluid. The fluid velocity in this area is low and the fluid resistance is small. Therefore, the heat transfer area should be increased with as little space as possible. The lower shell side tube bundle adopts the regular triangular layout, and the lower shell side space is utilized as much as possible to increase the heat exchange area. The baffle mode of the lower shell-side tube bundle adopts special-shaped baffles, and the special-shaped baffles are arranged with large spacing, which reduces the difficulty of condenser manufacturing and takes into account pressure drop, heat transfer and vibration.
上部壳体管束与下部壳体管束采用两种不同的布管方式与折流支撑方式,充分考虑了壳程低压真空气体冷凝的特点,即满足了其苛刻的阻力降需要,也充分考虑了冷凝器的传热效率,同时使管束振动频率降低至很低的水平。The upper shell tube bundle and the lower shell tube bundle adopt two different pipe layout methods and baffle support methods, which fully consider the characteristics of low-pressure vacuum gas condensation on the shell side, which not only meets its strict resistance drop requirements, but also fully considers condensation. The heat transfer efficiency of the device is improved, and the vibration frequency of the tube bundle is reduced to a very low level.
如图1、图2、图3所示,所述壳体2中部设有与其同轴的中部外导流筒9,其上部设有壳程流体进口8;中部外导流筒9内同轴设中部内分布筒3,其与壳体相连接,也可以是壳体的一部分,用以壳程流体的防冲、导流和均布流体。中部外导流筒9通过中部内分布筒3和上部壳程连通;中部外导流筒9和中部内分布筒3之间通过纵向隔板16分割为独立的两部分,纵向隔板位于壳程分程处用以隔离壳程进口流体和冷凝下来的凝液和不凝气。As shown in Figure 1, Figure 2, Figure 3, the middle part of the casing 2 is provided with a middle outer guide tube 9 coaxial with it, and the upper part is provided with a shell
如图3所示,为保证冷凝器的工艺性能,所述中部外导流筒9下部设有壳程凝液出口14;所述纵向隔板14下部的中部外导流筒9上设有壳程不凝气出口18。As shown in FIG. 3 , in order to ensure the technological performance of the condenser, a shell-
如图4、图5所示,所述异形折流杆为圆缺结构,折流圆杆21均布在圆缺形支撑环21上且两者间隔布置。圆缺形支撑环21与其上部壳程截面形状相对应,纵或横间隔布置的折流圆杆每四杆构成一组对换热管束形成夹持支撑并形成折流。As shown in FIG. 4 and FIG. 5 , the special-shaped baffle rods have a round-cut structure, and the
所述异形折流板为圆缺形结构,折流板下部不布管区域开缺,布管区域的换热管管桥区域内开导流孔22。异形折流板下边缘和壳程截面形状相对应。下部不布管区域开缺将冷凝的液相流引流出壳程,布管区域换热管管桥区域开导流孔即有折流强化传热作用,又有导流作用,同时该类型折流板对下部壳程换热管形成全支撑,大大降低了下部壳程换热管的振动。The special-shaped baffle has a circular notch-shaped structure, the lower part of the baffle is not cut out in the pipe-laying area, and the
为提高冷凝器的传热性能,传热管束10的换热管19选用螺纹管或波纹管。In order to improve the heat transfer performance of the condenser, the
如图1、图2所示,壳体2中部设置外导流筒9,外导流筒9内设内分布筒3。壳程流体先通过壳程流体进口8进入外导流筒9,壳程流体先流向内分布筒3,经阻挡防冲后,在外导流筒9内扩散减速,壳程流体内分布筒3端部不开孔,经内分布筒3分布孔均匀分布后进入管束20,在管束20内与管程流体间壁换热冷凝,大部分流体经第一壳程冷凝,冷凝后流体经管束壳程纵向分程隔板17两端开孔流入第二壳程,在第二壳程内与管程流体间壁换热并再次冷凝,冷凝后的不凝气和凝液再次进入壳体中部外导流筒9,不凝气经壳程不凝气出口18流出设备,凝液经壳程凝液出口14流出设备。两个壳程流体在外导流筒9内由外导流筒纵向隔板16分隔开。As shown in FIG. 1 and FIG. 2 , an outer guide tube 9 is arranged in the middle of the housing 2 , and an
冷凝器上、下两壳程采用不同的布管方式和不同的折流支撑方式,兼顾壳程低压真空流体的压降与传热、保证了不凝气与凝液的充分分离,同时也尽可能的较少了管束的振动频率,提高了换热器的传热效率、降低了设备造价和占地。The upper and lower shell sides of the condenser adopt different piping methods and different baffle support methods, taking into account the pressure drop and heat transfer of the low-pressure vacuum fluid on the shell side, ensuring the full separation of non-condensable gas and condensed liquid, and at the same time as possible. It is possible to reduce the vibration frequency of the tube bundle, improve the heat transfer efficiency of the heat exchanger, and reduce the equipment cost and footprint.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010289821.7A CN111442657B (en) | 2020-04-14 | 2020-04-14 | A low pressure vacuum condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010289821.7A CN111442657B (en) | 2020-04-14 | 2020-04-14 | A low pressure vacuum condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111442657A true CN111442657A (en) | 2020-07-24 |
CN111442657B CN111442657B (en) | 2024-12-10 |
Family
ID=71651832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010289821.7A Active CN111442657B (en) | 2020-04-14 | 2020-04-14 | A low pressure vacuum condenser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111442657B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117287997A (en) * | 2023-11-09 | 2023-12-26 | 连云港江海机械设备制造有限公司 | High-efficient heat transfer condenser device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA298460A (en) * | 1930-03-18 | Francis Kirgan John | Surface condenser | |
CN101349514A (en) * | 2008-09-05 | 2009-01-21 | 西安交通大学 | A high-temperature heat exchanger with inner and outer fins and tubes |
CN202101595U (en) * | 2011-05-05 | 2012-01-04 | 华东理工大学 | Longitudinal flow shell-and-tube heat exchanger |
CN202692806U (en) * | 2011-12-16 | 2013-01-23 | 中国石油化工集团公司 | Tube-shell type heat exchanger |
CN210180200U (en) * | 2019-04-02 | 2020-03-24 | 青岛海尔空调电子有限公司 | Condenser |
CN212378536U (en) * | 2020-04-14 | 2021-01-19 | 上海蓝滨石化设备有限责任公司 | Low-pressure vacuum condenser |
-
2020
- 2020-04-14 CN CN202010289821.7A patent/CN111442657B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA298460A (en) * | 1930-03-18 | Francis Kirgan John | Surface condenser | |
CN101349514A (en) * | 2008-09-05 | 2009-01-21 | 西安交通大学 | A high-temperature heat exchanger with inner and outer fins and tubes |
CN202101595U (en) * | 2011-05-05 | 2012-01-04 | 华东理工大学 | Longitudinal flow shell-and-tube heat exchanger |
CN202692806U (en) * | 2011-12-16 | 2013-01-23 | 中国石油化工集团公司 | Tube-shell type heat exchanger |
CN210180200U (en) * | 2019-04-02 | 2020-03-24 | 青岛海尔空调电子有限公司 | Condenser |
CN212378536U (en) * | 2020-04-14 | 2021-01-19 | 上海蓝滨石化设备有限责任公司 | Low-pressure vacuum condenser |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117287997A (en) * | 2023-11-09 | 2023-12-26 | 连云港江海机械设备制造有限公司 | High-efficient heat transfer condenser device |
CN117287997B (en) * | 2023-11-09 | 2024-06-11 | 连云港江海机械设备制造有限公司 | High-efficient heat transfer condenser device |
Also Published As
Publication number | Publication date |
---|---|
CN111442657B (en) | 2024-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100557364C (en) | A shell-and-tube heat exchanger with curved bow-shaped baffles | |
CN104390495B (en) | A kind of Overcold condensing heat exchanger and heat-exchange method thereof | |
US9677825B2 (en) | Shell and tube heat exchanger | |
CN201032431Y (en) | A shell-and-tube heat exchanger with curved bow-shaped baffles | |
CN107976101A (en) | A kind of outer fin heat exchange pipe and its application method | |
CN1544873A (en) | U-shaped tube-cantilever combined coil composite process heat exchanger | |
WO2009009928A1 (en) | Condensing and heat transferring method having automatic liquid dividing function and apparatus thereof | |
CN108007243A (en) | Combined type waved tube heat exchanger | |
JP2023539177A (en) | Vertical rod baffle heat exchanger system and method | |
CN107166983B (en) | High-efficient vertical tubular condenser | |
CN108721926A (en) | A kind of Falling Film Evaporator of Horizontal Tube | |
CN111442657A (en) | A low pressure vacuum condenser | |
US20240053102A1 (en) | Steam heat exchanger | |
CN109458853A (en) | A kind of condensing heat exchanger with U-shaped vapor-liquid separating structure | |
CN214384461U (en) | Steam heat exchanger | |
CN212378536U (en) | Low-pressure vacuum condenser | |
CN210345837U (en) | Multi-process heat exchange device and heat pump system | |
CN110307742A (en) | Multi-stage separated plate-fin heat exchanger and heat exchange method | |
CN202928384U (en) | Steam-liquid separation condenser | |
CN104374215B (en) | Supporting type heat exchanger with tube bundle sleeves and fixing pore plates | |
CN206113724U (en) | Shell -and -tube high -efficiency heat exchanger | |
CN214792027U (en) | Multi-process horizontal pipe internal condensation heat exchanger capable of achieving split liquid drainage | |
CN201748463U (en) | U-shaped pipe-type natural gas gasifier | |
CN116336835B (en) | Heat exchanger | |
CN106949672B (en) | A coil type double dryness split flow heat exchange evaporator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |