CN111436225A - 预失真电路、生成预失真基带信号的方法、用于预失真电路的控制电路、确定预失真电路的参数的方法以及使基带信号预失真的装置和方法 - Google Patents

预失真电路、生成预失真基带信号的方法、用于预失真电路的控制电路、确定预失真电路的参数的方法以及使基带信号预失真的装置和方法 Download PDF

Info

Publication number
CN111436225A
CN111436225A CN201780097294.6A CN201780097294A CN111436225A CN 111436225 A CN111436225 A CN 111436225A CN 201780097294 A CN201780097294 A CN 201780097294A CN 111436225 A CN111436225 A CN 111436225A
Authority
CN
China
Prior art keywords
predistortion
circuit
baseband signal
signal
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780097294.6A
Other languages
English (en)
Other versions
CN111436225B (zh
Inventor
A·蒙霍夫
G·克劳特
A·兰格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Priority to CN202310675977.2A priority Critical patent/CN116708099A/zh
Publication of CN111436225A publication Critical patent/CN111436225A/zh
Application granted granted Critical
Publication of CN111436225B publication Critical patent/CN111436225B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3258Modifications of amplifiers to reduce non-linear distortion using predistortion circuits based on polynomial terms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • H04L27/368Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3206Multiple channels are combined and amplified by only one amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3215To increase the output power or efficiency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3227Adaptive predistortion based on amplitude, envelope or power level feedback from the output of the main amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3233Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

本发明公开了一种用于无线发射器的预失真电路,其包括被配置为接收基带信号的信号输入端。此外,该预失真电路包括预失真器,该预失真器被配置为使用基带信号以及对第一预失真器配置和第二预失真器配置中的一者的选择来生成预失真基带信号。

Description

预失真电路、生成预失真基带信号的方法、用于预失真电路的 控制电路、确定预失真电路的参数的方法以及使基带信号预 失真的装置和方法
技术领域
本公开涉及用于无线发射器的预失真电路和用于预失真电路的控制电路。
附图说明
以下将仅以举例的方式并参考附图来描述装备和/或方法的一些示例,其中
图1示出了用于无线发射器的预失真电路的示例;
图2示出了发射器内的预失真电路的示例;
图3示出了可用于在至少两个预失真器特性之间进行选择的操作特性的示例;
图4示出了用于生成预失真基带信号的方法的示例的流程图;
图5示出了具有以不同速率操作的计算节点的预失真电路的示例;
图6示出了具有以不同速率操作的计算节点的预失真电路的另一示例;
图7示出了可通过预失真电路的示例减轻的预失真基带信号的混叠劣化;
图8示出了控制电路的示例;
图9示出了发射器内的控制电路的示例;
图10示出了信号频谱的示例;
图11示出了被配置为比较参考信号和反馈信号的带宽限制部分的控制电路的示例;
图12示出了比较参考信号1210和反馈信号1220的方法的概览;
图13示出了根据图11的带限信号的生成的图形表示;
图14示出了毫米波具体实施的示例;
图15示出了待优化以确定预失真器参数的方程组;
图16示出了用于使基带信号预失真的装置的示例;
图17示出了以第一采样率采样的信号;
图18示出了以第二采样率采样的信号;
图19示出了预失真基带信号;
图20至图22示出了信号频谱的另外的示例;
图23示出了无线收发器的示例;
图24示出了用于使基带信号预失真的方法的示例的流程图;以及
图25示出了使用预失真的移动设备的示例。
具体实施方式
现在将参考附图更充分地描述各种示例,在附图中示出了一些示例。在附图中,为了清楚起见,线、层和/或区域的厚度可被放大。
因此,虽然另外的示例能够进行各种修改和另选形式,但是其一些特定示例在附图中示出并且随后将被详细描述。然而,该具体实施方式不将另外的示例限制于所描述的特定形式。另外的示例可涵盖落入本公开的范围内的所有修改、等同形式和另选形式。类似的数字在整个图的说明书中是指相似或类似的元件,这些元件可在彼此比较时以相同或修改的形式实现,同时提供相同或类似的功能。
应当理解,当元件被称为“连接”或“耦接”到另一个元件时,元件可直接连接或耦接或经由一个或多个居间元件连接或耦接。如果使用“或”组合两个元件A和B,则应理解为公开了所有可能的组合,即仅A、仅B以及A和B。相同组合的另选的措辞为“A和B中的至少一者”。对于多于2个元件的组合,情况亦如此。
本文中所使用的术语仅仅是为了描述特定示例并非旨在对另外的示例进行限制。每当使用单数形式诸如“一个”、“一种”和“该”并且仅使用没有被明确或隐含地限定为强制性的单个元件时,另外的示例也可使用多个元件来实现相同的功能。同样,当随后将功能描述为使用多个元件来实现时,另外的示例可使用单个元件或处理实体来实现相同的功能。还应当理解,术语“包括”在使用时是指定存在所陈述的特征、整数、步骤、操作、过程、动作、元件和/或部件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、过程、动作、元件、部件和/或其任何分组。
除非另有限定,否则所有术语(包括技术和科学术语)在本文中均以其在示例所属领域中的普通含义来使用。
图1示意性地示出了用于无线发射器的预失真电路100的示例。预失真电路100包括被配置为接收基带信号102的信号输入端110。预失真器120被配置为使用基带信号102以及对第一预失真器配置120a或第二预失真器配置120b的选择来生成预失真基带信号104。
预失真可用于在传输之前线性化用于放大无线信号的功率放大器的输出。无线发射器的功率放大器根据待放大的基带信号和功率放大器的另外操作特性引入非线性。例如,如果功率放大器在饱和状态下操作(在包络跟踪(ET)中),则其趋于呈现出比在不以饱和状态操作的操作模式下(使用平均功率跟踪(APT))更多的非线性。预失真电路对基带信号执行预失真函数以改变基带信号,从而预期并预补偿功率放大器的非线性。如果预失真函数完美地工作,则基带信号将被转换成预失真基带信号,使得用于放大基于基带信号的无线传输信号(例如,通过对预失真基带信号上混频而生成的射频信号)的功率放大器的输出不会因功率放大器的非线性而劣化。换句话讲,预期功率放大器的非线性并将其反向叠加在基带信号上,以产生具有所需信号特性和所需信号质量的放大的射频信号。换句话讲,为了在PA输出处对信号进行线性化,预失真电路需要创建在其输出处消除PA的IM频谱的IM频谱。
预失真电路的示例允许在至少两个预失真器配置之间进行选择以生成预失真基带信号,而对应于预失真器配置的预失真器函数可具有不同的复杂性。
在第一预失真器配置120a中,预失真电路100执行第一预失真函数,并且在第二预失真器配置120b中,其执行第二预失真函数。预失真函数用于修改基带信号并生成预失真基带信号。
预失真器配置或在该配置内执行的预失真函数的复杂性例如由乘法器和/或加法器的数量给出,或者通常由在当前选择的预失真器配置内使用以执行预失真函数的计算节点的数量给出。预失真器内的计算节点可以是执行单项基本计算(例如,加法或乘法)的硬件实体或软件部分。因此,更复杂的预失真函数比更简单的预失真函数具有更多的计算节点。
所要求的预失真函数的复杂性例如由传输链的传输带宽和记忆贡献驱动。例如,如果传输带宽更高,则宽带线性化可能需要更高数量的乘法器。这同样适用于记忆贡献。如果传输链包括强记忆效应(例如,由于ET操作,特别是在滤波器裙边开始的频带边缘处),则所要求的预失真函数的复杂性可进一步增加,从而导致乘法器/计算节点的数量可进一步增加。
另一方面,在复杂模型的情况下,预失真可能对电流消耗KPI(关键性能指标)具有显著影响。例如,乘法器的数量可确定预失真电路的电流消耗。在常规方法中,预失真器配置的复杂性由发射器支持的最差情况波形(例如,最大传输带宽、星座密度、峰均功率比)、TX链的最差情况记忆贡献、所要求的线性化带宽等驱动,使得单个预失真器配置适合所有可能的场景。然而,对于无线发射器支持的不太复杂的波形,具有较低复杂性的预失真器配置可能足够好以实现例如由ACLR和EVM定义的线性性能或信号质量要求。
根据图1所示的示例,预失真器被配置为使用至少两种配置中的一种配置,该配置可允许使用对于给定操作特性消耗较少功率同时满足所有信号质量要求的配置。如果预失真电路的更简单配置足以使给定波形被放大(取决于无线传输电路的当前操作特性),则可选择此类更简单的配置以便节约或节省能量。然而,预失真函数生成满足所有信号质量要求的预失真基带信号。
根据一些示例,第一数量的计算节点在第一预失真器配置中是活动的,并且第二数量的计算节点在第二预失真器配置中是活动的。假设第二预失真器配置更复杂,则计算节点的第二数量可高于第一数量。如果预失真器的更简单配置足以放大基带信号的波形(例如,第一预失真器配置可以是比第二预失真器配置更简单的配置),则预失真器电路120能够从第二预失真器配置切换到第一预失真器配置。此类切换到预失真器(例如,此处的第一预失真器120a)的更简单配置的灵活性允许节省能量,因为第一预失真器配置需要更少的计算节点来生成预失真基带信号。
现有的移动设备已经支持从相对简单的3G语音信号开始直到例如具有256QAM的LTE-60的更复杂波形的许多不同调制方案。5G NR的引入和LTE标准的即将到来的增强将进一步增加“最简单”、最不复杂波形与最复杂波形之间的差距。因此,被设计成支持最差情况或最复杂波形的常规预失真器的不必要功率消耗可能随着未来标准而增加。在常规方法中,对于大量受支持的波形(例如,具有低RB分配的LTE信号),预失真块或电路的电流消耗将不必要地高,这将浪费电池电流并劣化关键KPI测试中的结果。
根据一些示例,预失真电路100包括配置处理电路,该配置处理电路被配置为根据无线发射器的操作特性来选择第一预失真器配置或第二预失真器配置。可用于选择预失真器配置的操作特性还可取决于无线发射器内的其他元件的操作模式和/或待传输的基带信号的特性,如随后相对于图2所讨论的。图2示出了发射器内的预失真电路的示例,该预失真电路允许响应于预定义的标准来调整预失真器复杂性。因此,可减少电流消耗,可实现更短的校准时间,并且可节约用于存储数字预失真(DPD)系数的存储器区域。
如图2中大体所示,DPD系统的具体实施包括若干任务,如前向路径中基带信号的预失真、借助于观察路径监测和捕获失真信号以及基于参考数据与由观察路径捕获的数据之间的比较来学习预失真函数。在预失真系统中,对应于当前选择的预失真器配置(实施对应的预失真函数)的系数可以被这样动态地更新。如图2所示,根据示例的预失真电路250位于前向路径中,并且因此可实施下文所述的对应技术。
观察路径主要包括连接到RF前端子系统220的观察块210。观察块210接收失真功率放大器(PA)信号212的一部分作为其输入信号214。失真PA信号212可通过作为RF前端子系统220的一部分的耦合器222被捕获。输入信号214被下变频到基带(BB)域并例如通过在信号调节块230内运行与参考数据的时间对准、缩放、偏移移除等进一步处理。仍然包括TX信号的失真的经处理的输入信号216被用作DPD更新块240的第一输入。对应的参考信号218或对应的参考数据是DPD更新块240的第二输入。参考信号对应于用于生成失真PA信号212的基带信号。在另外的示例中,参考信号可从预失真电路250的输出252导出。此类另选配置的示例随后在图11中示出。
DPD更新块240通过将经处理的输入信号216的序列与参考信号218的时间对准序列进行比较来更新当前使用的预失真器配置的预失真函数(例如,在预失真电路250的特定配置内使用的参数)。
配置处理电路280基于无线发射器的各种操作特性中的至少一者来决定要在预失真电路250内使用的适当的预失真器配置。新的预失真器配置被传输到预失真块或电路250并且被传输到DPD更新块240。预失真电路250可能需要新的预失真器配置来选择适当或正确的预失真函数并应用正确的预失真函数来生成预失真基带信号。预失真基带信号被提供给RF信号产生电路270,该电路将预失真基带信号上变频为RF信号并将RF信号提供给PA260以进行放大。DPD更新块240需要新配置来确定和更新由预失真电路250内的新预失真器配置所使用的系数。换句话讲,配置处理电路280被配置为根据无线发射器的操作特性来选择第一预失真器配置或第二预失真器配置。
根据一些示例,由配置处理电路280考虑的操作特性包括平均功率跟踪模式、包络跟踪模式、输出功率范围、基带信号的峰均功率比、输入信号214的峰均功率比(例如,如果PA饱和或者由于用于波形的瞬时峰的功率余量不足而引入显著的波形截断,不同的预失真器函数可能是有益的)、用于生成基带信号的调制方案、天线的匹配条件、传输带宽、传输频带、传输频带内的传输频率范围、频域中的传输集群的数量、传输集群之间的频率间隔、每个传输集群的带宽,以及可接受的频谱掩模中的至少一者。虽然一些示例可以仅使用上述操作特性中的一个,但是其他示例可以使用它们的任意组合来推断要使用的预失真器配置。例如,各个标准可在组合它们以推断出适当的预失真器配置之前接收不同的权重。
图3示出了关于不同配置的决定可如何基于带宽标准(LTE-40/-60或LTE-20/15/10/5/3/1.4)和模式标准(APT/ET)的示例。两个曲线图都在y轴上示出了传输功率,并且在x轴上示出了使用的频率资源。上部曲线图示出了具有20MHz及更低带宽的LTE 20配置。预失真器配置取决于传输带宽和DC/DC转换器模式,其可以是APT或ET。在低于第一阈值303的较低传输功率情况下,PA可以APT模式操作,因为总体功率消耗仍然是适度的。在该设置中并且对于LTE20信号的相对不复杂的信号波形,考虑到APT模式中的PA可能不表现出强的非线性效应,预失真可能是根本不必要的。对于第一阈值303和第二阈值305之间的中间功率304,可能需要PA在ET模式下操作,从而产生更强的非线性。这可能需要使用中等复杂性的预失真器模型,例如具有3个系数的模型,如图3的上部曲线图的列308中所示。对于高于第三阈值305的高传输功率306,还可能需要具有对应于中间功率下ET模式的一者的复杂性的预失真。
下部曲线图示出了具有带宽为40MHz及以上的基带信号的LTE 40/60配置。类似于在上部曲线图中那样,PA模式从针对较低功率范围312、314和316的APT改变为针对较高功率范围318和320的ET模式。由于高带宽LTE-40/60信号的复杂波形,APT模式可能已经需要具有中等复杂性的预失真。在图3所示的示例中,对应的预失真器函数具有8个参数,如列322中所示。LTE40/60信号在高传输功率318和320下需要最复杂的预失真器配置,其中PA以ET模式操作,并且其中预失真器函数具有25个参数。在图3的示例中,传输功率318和320的最复杂的预失真器配置可比LTE 20和以下中的中间功率304的最简单配置消耗多于三倍或四倍的电流或功率。使用本文所述的预失真电路的示例可允许节省电流的增量(例如,功率范围320或318的25个参数与功率范围320的3个参数相比的差值),因为它们允许在不同的预失真器配置之间切换,每个配置都足以用于无线发射器的当前设置。随着即将出现的通信标准和未来通信标准(例如,5G)的带宽进一步增加,潜在节省可能显著增加。
在另外的示例中,配置处理程序280可进一步根据来自DPD更新块240的反馈,例如,基于优化之后的残余误差、矩阵的条件等,改变与某个标准匹配的预失真器配置。在这些示例中,配置处理电路280还包括输入接口,该输入接口被配置为根据发射器的功率放大器260的输出来接收反馈信号,其中配置处理电路280被进一步配置为根据反馈信号来选择第一预失真器配置或第二预失真器配置。
虽然预失真电路的示例不限于对应于不同预失真器配置的不同预失真函数的特定实现,但随后描述了一种特定具体实施。在以下示例中,使用基于Volterra级数的预失真器配置,而不限制另外的示例的范围。
下式示出了基于Volterra级数的预失真器的通用基带(BB)表示。
Figure BDA0002514740550000081
N为记忆深度,P为内核的阶数,并且K为最大阶数。再次注意,示例不限于特定多项式表示。上述多项式表示仅仅是用于更好地理解不同预失真器配置的使用的示例。
在该特定示例中,单个配置对应于实际使用的一组Volterra内核。Volterra内核由此通过多项式p的阶数、通过记忆深度N以及通过时间索引来表征。
实施例
x(n-k1)*|x(n-k1)|p-1
x(n-k1)*|x(n-k2)|p-1
x(n-k1)*x(n-k2)*x(n-k3)*
每个内核由系数h(p)k1..kp加权。内核的总和生成预失真基带信号252,该预失真基带信号252用于通过预补偿功率放大器260的非线性来线性化传输链,该功率放大器260在射频信号在射频生成块270内生成之后对其进行接收。
然而,改变系数不会生成新配置,因为系数由DPD更新块240连续更新以通过当前选择的预失真器配置来实现最佳预失真。因此,从不等于零的第一值到不等于零的第二值的系数更新改变预失真函数,但在示例的上下文中不被视为新配置。
将系数从非零值改变为零或反之可被解释为改变配置,因为具有零值的系数意味着不使用内核。在示例的上下文中,如果与第一配置相关联的第一组活动内核(具有第一数量的计算节点)不同于与第二配置相关联的第二组活动内核(具有第二数量的计算节点),则第一配置不同于第二配置。因此,活动内核意味着内核被使用并对由预失真电路生成的信号有贡献。
虽然预失真电路的示例可用于期望对信号进行预失真的所有具体实施中,但以下考虑详述了无线通信领域中的应用。实施数字预失真(DPD)的一些示例以支持LTE升级版或5G调制方案。5G NR(新无线电)是预期在2020年开始商业部署的新通信标准。5G NR的特征将是在上行链路中比例如4G具有更高的带宽和更复杂的调制方案。例如,移动站可能需要在6GHz以下中支持高达200MHz的聚合带宽(2x100MHz),以及在mmW范围内(>24GHz)支持高于1GHz。可在5G NR中使用的基线上行链路调制方案是DFT-s-OFDM(其类似于在LTE上行链路中使用的SC-FDMA)或CP-OFDM。
如已经提及的,示例不限于根据LTE或5G NR标准的调制方案。另外的示例同样适用于向TX链施加严格的线性要求的任何调制方案。
概括地说,对于支持5G NR的移动终端出现了至少两个挑战:
-6GHz以下范围内的较高信道带宽(高达200MHz),在mmW范围内预期大于1GHz。
-具有较高峰均功率比(PAPR)的信号,以通过使用类似SC-FDMA 256QAM和OFDM的高效率调制方案来增加吞吐量。
具有较高PAPR和较高星座密度(例如,256QAM、1024QAM)的较复杂信号对TX链的线性具有更苛刻的要求。较高的线性要求意味着较少的AMAM和AMPM转换。这通常可通过足够的PA余量防止调制峰的截断以及通过增加PA静态电流使PA的AMPM响应变平来实现。然而,这两种措施都将显著增加PA的电流消耗。根据一个示例的数字预失真(例如,在基带域中)可用于实现线性要求,同时减轻PA电流消耗的增加。通过PA输入信号的适当预失真,需要较少的PA余量和PA静态电流,同时保持足够的线性以例如满足ACLR(相邻信道泄漏比率)和EVM(误差矢量幅度)目标。
图4示意性地示出了用于为无线发射器生成预失真基带信号的方法的示例的流程图。该方法包括选择410,用于选择第一预失真器配置或第二预失真器配置,以及预失真420,用于使用基带信号和选择的预失真器配置生成预失真基带信号。
上述考虑依赖于以下原理,并且可基于以下考虑来确定用于选择预失真器配置的另外的决策标准。传输带宽的增加同样将提高预失真器的复杂性,因为TX链的线性特性取决于瞬时RF频率以及经调制的RF信号的包络变化的速度。这是因为线性特性取决于调制RF载波的IQ数据流。在较高带宽下,AMAM和AMPM响应不再恒定,并且取决于调制符号的序列。这也被称为记忆效应,并且在更高的传输带宽下变得更明显。有多种潜在效应在TX链中引入记忆效应。对于ET(包络跟踪)和APT(平均功率跟踪)系统,效应是部分不同的。与APT操作相比,ET在传输链中引入严重的非线性效应,而非线性效应部分地取决于RF频率。因此,非线性特性可在几个MHz内变化,从而导致分散的TX信道。在分散的TX信道中,预失真特性被强有力地映射到绝对RF频率。如果信道是分散的,如果第2频率范围偏移几个MHz,则针对第1频率范围优化的给定预失真函数的DPD系数将在第2频率范围展示出更小的线性改善。为了克服AMAM和AMPM响应的频率依赖性,需要记忆预失真。
导致ET模式中的分散信道的一些相关效应为:
-频率上的ET延迟分散
-太低的跟踪器带宽切割包络带宽并引入延迟变化。
-PA模块中的VCC带宽过低
-归因于TX滤波器的PA负载牵引:在具有在压缩中操作的PA的ET系统中(其中该ET系统表现出更高的负载敏感性),该效应更严重。TX滤波器的特征在于输入阻抗(=PA负载阻抗),其由于谐振器被用于形成滤波器特性而具有高度的频率依赖性。
ET延迟分散和归因于TX滤波器的负载牵引是分散信道的支配效应。虽然这两种效应也都发生在TX频带的中心,但它们在频带边缘处随着从通带到阻带的过渡变得更加严重。
在高传输带宽(例如,>400MHz)下,如果可能难以实施能够以合理效率和系统复杂性支持>400MHz的ET方式,则APT操作可为PA供应方案。在APT中,有至少两个主要效应在TX链中引入记忆:
-归因于TX滤波器的PA负载牵引。该效应也在ET中发生,但在PA以其线性方式操作的APT操作中不太明显。
-有限的PA偏置带宽:该效果也发生在ET系统中,但通常被ET系统中的VCC带宽限制所隐藏。在APT系统中,该效应更为显著。
设计良好的PA偏置网络从DC直到BB调制带宽都提供低阻抗。需要低阻抗以避免重新调制效应,该重新调制效应在PA输出信号的频谱中引入互调误差。
由有限PA偏置带宽引起的信号劣化取决于RF信号的包络以及包络变化的速度。
PA负载牵引效应取决于瞬时RF频率和TX滤波器在调制带宽上的阻抗响应。当瞬时调制频率处于第1频率时,PA由第1阻抗加载,当瞬时调制频率处于第2频率时,PA由第2阻抗加载。这两个阻抗可能相当不同,尤其是在瞬时频率之间的间隔较大的情况下,对于具有高传输带宽的信号可能发生这种情况。因此,第一频率下的所得AMAM和AMPM响应不同于第二频率下的响应。
为了在此类情况下线性化PA输出,预失真电路需要创建消除PA在其输出处的互调(IM)频谱的IM频谱。假设传输带宽为1GHz,示例性地描述了对预失真电路的需求。IM3频谱的带宽(→x^3)因此为3GHz,IM5频谱的带宽(→x^5)为5GHz。预失真器需要在BB域中生成IM3和IM5频谱以实现PA输出的线性化的期望目标。例如,如果应取消IM3频谱和IM5频谱两者,则BB域中的所需带宽为+/-2.5GHz。因此,用于生成预失真信号的计算节点(例如乘法器)需要以5GHz的采样率操作,以防止IM5频谱与其在频域中的副本重叠(混叠)。
然而,在5GHz下操作的计算节点或乘法器可能汲取大量电流。
图5所示的预失真电路500的示例允许在传输系统中部署记忆预失真,该传输系统以高传输带宽为特征,同时降低预失真电路500的电流消耗和设计复杂性。图5示出了一个示例,其中不同的预失真器配置可通过不同配置内的计算节点组的操作速率来区分。
在图5的示例中,预失真电路500被分成3个部分或子电路510、520和530(也被称为块),这可有助于单个预失真器配置或者可有助于子电路510、520和530的任意组合中的不同预失真器配置。每个子电路510、520和530的计算节点以不同的采样率操作。具体地,第一数量的计算节点被配置为以第一速率操作,并且第二数量的计算节点被配置为以第二速率操作,第二速率高于第一速率。另外的示例还可具有针对预失真器配置选择性地或联合地激活的2个子电路。根据要实现的预失真函数和要考虑的IM频谱的顺序,多于三个子电路可能也是适当的。另外的示例不限于特定数量的块或由块执行的特定数学运算。由预失真电路500执行的总预失真函数被分解成具有不同带宽要求的部分函数,并且部分函数被映射到以不同适当速率运行的子电路。
如果在一种预失真器配置内使用所有子电路,则每个子电路生成部分信号512、514和516作为预失真信号518的一部分。在施加速率匹配以均衡不同采样率之后,在子电路510、520、530的输出处组合部分信号512、514、516。例如,采样率转换器可被配置为将第一数量的计算节点的输出与第二速率匹配,以生成第一数量的计算节点的速率匹配输出。此外,组合电路可被配置为组合第二数量的计算节点的输出与第一数量的计算节点的速率匹配输出。在图5中,假设子电路510(#1)包括不增加输入信号的带宽的所有线性项,子电路520(#2)包括生成具有输入信号的带宽的3倍的信号的所有3阶内核,并且子电路530#(3)包括生成具有输入信号的带宽的5倍的信号的所有5阶内核。因此,子电路520在子电路510的采样率的3倍下操作,并且子电路530在子电路510的采样率的5倍下操作,以避免混叠。
因此,最高采样率和最高电流消耗仅为需要最高采样率以避免混叠的五阶内核使用。这同样适用于三阶内核。预失真电路500的示例确保预失真电路500的计算节点仅以防止混叠所需的采样率操作。与所有计算节点(乘法器)将以最高速率运行的单速率具体实施相比,预失真电路500的该示例有助于节省能量。与将增加在较低采样率下操作的乘法器的数量的多相具体实施(这可减少在高采样率下的一些设计挑战,但不会有助于降低电流消耗)相比,预失真电路500的该示例也节省了能量。
与替代方法相比,通过根据例如信号带宽以不同速率运行计算节点(例如乘法器)显著降低了预失真器电路500的电流消耗。
图7示出了如果将为预失真电路的操作选择不足的速率,预失真基带信号的频谱可能由于混叠而遭受的劣化。在图7中,假设第3阶互调失真将被预失真函数考虑。预失真基带信号的主频谱710与预失真基带信号的第一副本712重叠,从而在选择的计算节点的采样率过低的情况下使预失真基带信号的质量劣化。在根据预失真电路的示例使用预失真器配置时,可针对要考虑的每个IM阶次选择足够高的采样率,而不增加电流消耗超过实现该目标所需的电流消耗。换句话讲,图7示出了由过低采样率引起的IM频谱的有害干扰。在图3中,IM3频谱的重叠将劣化线性化结果,因为重叠在预失真器电路的频谱中添加了不希望的IM贡献。
图6示出了预失真电路600的另一个示例。第一阶计算在第一子电路610(#1)内以最低速率执行,第二阶计算在第二子电路620(#2)内以中等速率执行,并且第三阶计算在第三子电路630(#3)内以最高速率执行。除了在图5的示例中之外,子电路610、620、630串联连接并且包括采样率转换器612、622和632以调节串联连接的子电路链的后续子电路之间的采样率。
在另一个示例中,实现了在适当的速率匹配之后,在至少第二块中使用在第一块中生成的中间结果来减少乘法器的总数。这通过图5中的子电路510、520和530之间的竖直连接示出。
概括地说,移动终端中的超高带宽信号的数字预失真可能受到电池电流消耗的严重约束。在移动终端中,电流消耗对于良好的客户体验以及对于解决在小外形设备中发生的关键散热问题是关键的。例如,对于很高带宽的信号,具有中等复杂性的预失真器配置可能已经需要30到60个乘法器,根据技术和数字具体实施,这可能汲取预失真电路(除了PA电流之外)的几百mA。
由5G NR引入的传输带宽的增加将为移动终端带来新的挑战。传输带宽的增加可能快于逐年人为地改善基线电流的新工艺节点(例如,28nm、16nm、10nm)的部署。作为不利的后果,尽管存在新的工艺节点,常规数字预失真器的电流消耗也将大幅增加。强烈需要引入新方法和演进的数字电路,使得电流消耗随着传输带宽的增加而增大较少。否则,数字部分在超高带宽下的过度电流消耗将阻止或延迟其部署。通过本文所述的示例可减轻电流消耗的增加。
概括地说,前述方法和预失真电路的示例运行在至少两个采样率上生成预失真信号所需的计算,而采样率取决于在应用预失真特定数学运算之后信号的带宽。预失真电路的示例包括至少两个子电路,而每个子电路生成预失真信号的部分信号,而第一子电路的采样率不同于第二子电路的采样率。
预失真电路的示例可有助于部署具有超高带宽的信号的预失真,该超高带宽例如将在5G mmW应用中发生。它们减小了由于传输带宽的即将到来的提升而导致的电流消耗和设计复杂性的增加。预失真电路的示例允许提供小外形且具有前沿电池电流消耗的移动手机。
例如,在5G NR移动终端中,预计预失真电路对电池电流(→操作时间)和耗散功率/发热(→设备尺寸和形状因数)具有显著影响。
适于实现根据图5或图6的预失真电路的预失真函数的特定示例是基于Volterra级数的函数。下式示出了基于Volterra的预失真器的通用BB表示。
Figure BDA0002514740550000141
Figure BDA0002514740550000142
N为记忆深度,P为内核的阶数,并且K为最大阶数。然而,另外的示例不限于该特定多项式表示。给出多项式表示仅仅是为了在更广泛的上下文中更好地说明x^3、x^5、x^7项的含义。
虽然前面的示例论述了采用预失真的系统的前向路径,但另外的示例论述了用于更新在预失真电路中用于生成预失真基带信号的预失真参数的观察路径和控制电路。
图8中示出了用于预失真电路的控制电路800的示例。用于预失真电路的控制电路800包括被配置为接收与功率放大器的输出相关的反馈信号812的反馈信号输入端810,以及被配置为限制反馈信号812的带宽以导出带限反馈信号822的带宽限制电路820。参数处理电路830被配置为基于带限反馈信号822来更新在预失真电路中使用的预失真参数。任选地,另外的示例还可包括输出接口840以输出更新的预失真参数。带宽的限制可由数字域或模拟域中的任意滤波器电路执行。例如,FIR滤波器可以用于数字域中。
使用带限反馈信号822来更新在预失真电路中使用的预失真参数可显著降低控制电路800以及反馈路径或观察路径内的其他部件的功率消耗,因为可避免能够在高带宽下操作的功率消耗部件。
然而,常规具体实施使用连续且宽广的频谱进行预失真学习并计算更新的预失真参数。预失真学习描述了生成预失真函数的过程,该预失真函数旨在补偿由模拟传输系统引入的非线性效应。对于预失真学习,需要观察路径,观察路径捕获传输系统的失真RF输出信号的一部分(例如,由功率放大器生成)并且将其下变频到BB域以用于进一步处理,如例如图9所示。例如,对于之前已经阐述的未来通信标准,与常规方法相比,图8所示的示例的节能可能是显著的。假设1GHz的信号带宽,则IM频谱可表现出5GHz的带宽(覆盖IM3和IM5乘积)。因此,常规解决方案的观察路径在RF域中在5GHz的带宽上在延迟和振幅方面必须是平坦的,并且例如,将需要5GHz的ADC采样率以满足奈奎斯特标准。然而,5GHz ADC是复杂的并且汲取大量电流。
相反,控制电路的本示例提供了如何在传输系统中部署记忆预失真的良好解决方案,该传输系统以高传输带宽(例如,5G NR)为特征,同时降低预失真具体实施的电流消耗和设计复杂性。随后示出的示例论述了由功率放大器输出的信号的观察,并且引入了降低观察路径复杂性的概念。
图9示出了发射器电路内的控制电路940的示例。发射器电路包括预失真电路910,该预失真电路被配置为接收基带信号912并生成预失真基带信号922。为了生成预失真基带信号922,预失真电路使用选择的预失真器模型。预失真器模型的预失真函数使用动态更新的预失真参数来优化预失真的结果。基于来自放大的射频信号932的反馈,借助控制电路940连续更新预失真参数。上混频器920使用预失真基带信号922和本地振荡器信号来生成射频信号。功率放大器930耦接到上混频器920的输出端并且生成放大的射频信号932。
用于预失真电路910的控制电路940包括反馈信号输入端941,该反馈信号输入端被配置为接收与功率放大器930的输出相关的反馈信号934。根据一些示例,反馈信号934是具有低功率的放大的射频信号932的副本。带宽限制电路942被配置为限制反馈信号934的带宽以导出带限反馈信号936。控制电路940还包括被配置为接收基带信号或参考信号912的基带信号输入端943。另外的带宽限制电路944被配置为限制基带信号912的带宽以导出带限基带信号914。参数处理电路946被配置为基于带限反馈信号936和带限基带信号914来更新在预失真电路910内使用的预失真参数。在图9的特定示例中,带限反馈信号936通过ADC 945被进一步数字化。使用信号调节电路947和采样电路949来执行进一步的信号整形,以能够直接比较带限反馈信号936(作为来自采样电路949的输出)和带限基带信号914。例如,信号调节电路947和采样电路949可执行采样率转换和/或时间对准,使得可通过比较器电路946a(该比较器电路是参数处理电路940的一部分)直接比较带限反馈信号936和带限基带信号914的对应样本。基于该比较,参数处理电路946内的更新电路946b计算并更新预失真参数,该预失真参数然后被传送到预失真电路910以闭合控制回路并优化由所选择的预失真器模型实现的线性化。
换句话讲,图9的发射器电路/通信系统包括:前向路径,其中数字预失真用于改善传输信号的线性;观察路径,该观察路径耦接到传输路径,使得耦合的信号(反馈信号934)包括传输路径的非线性失真;比较器块,该比较器块将耦合的信号与参考信号进行比较;以及更新块,该更新块基于比较器块的结果来改变前向路径中的预失真函数。
概括地说,基于在传输频谱内的离散频点处的反馈信号和参考信号之间的比较来执行预失真参数的更新。可选择反馈信号和参考信号的观察带宽,使得相邻观察信道不重叠。参考信号可在预失真之前从基带信号导出,如图9所示。另外的示例同样可从预失真电路的输出处的预失真基带信号导出参考信号。
图10示出了在频域中使用离散样本间隔而不是使用全频谱来确定预失真参数的构思。在相同频率偏移下,以相同测量带宽对两个信号(参考信号和反馈信号)进行采样。图10示意性地示出了传输带宽1010内以及相邻频率部分1020a和1020b的频谱。待监测的相邻频率部分1020a和1020b的宽度取决于待考虑的IM失真的阶次。
图10示出了具有有限带宽的13个观察信道1030a至1030m的特定示例。可以针对观察信道1030a至1030m中的每个观察信道独立地更新预失真参数。根据一些示例,随后以预先确定的顺序处理观察信道1030a至1030m以考虑来自用于更新预失真参数的整个频谱的贡献。相邻观察信道之间的间距不需要是等距的。根据互调频谱的响应,例如在IM频谱随频率的变化与IM频谱随第二频率偏移的变化相比更明显的情况下,在第一频率偏移下选择更紧密的间隔也可能是有益的。如图10所示,针对参考信号的参考频谱和反馈信号的耦合频谱,将频谱分成块1030a至1030m,并且基于块的比较来更新预失真函数(预失真参数)。根据一些示例,参考信号和反馈信号的比较块具有相同的带宽。然而,相邻块可具有不同带宽。
如图10所示,示例使用窄带信号来确定预失真参数。根据一些示例,测量带宽为几兆赫,例如1MHz、3MHz、5MHz、10MHz。使用带限信号可大大降低复杂性和电流消耗。此外,在一些示例中,预失真参数(DPD系数)的确定可按较低的速率进行,这取决于测量带宽和(例如)奈奎斯特公式。然而,创建预失真基带信号的预失真电路或块自身可以全速率运行,以避免预失真器电路生成的IM频谱的混叠。
图11示出了关于可如何生成对应频率块的示例。与图9的示例相反,参考信号由预失真电路1110的输出处的预失真基带信号生成。与图9中一样,期望通过在频域中对反馈信号和参考信号进行窄带采样来减小观察路径的带宽。因此,观察路径内的部件的带宽不需要足够高以捕获完整的反馈信号,从而导致复杂性和功率消耗的降低。类似于图9,图11示出了使用本地振荡器信号1121生成射频信号的上混频器1120。功率放大器1130放大RF信号。控制电路1140包括带宽限制电路1142以限制反馈信号的带宽,从而导出带限反馈信号1146。在图11的示例中,带宽限制电路1142包括可调节混频器1143,该可调节混频器被配置为使用反馈振荡器信号1144对反馈信号1141进行下混频以生成下混频反馈信号1145。反馈振荡器信号1144具有本地振荡器信号1121的频率加上观察频率偏移Δf。
带通滤波器电路1147被配置为对下混频反馈信号1145进行带通滤波以生成带限反馈信号1146。在滤波之前,下混频反馈信号1145由ADC1149进行数字化。概括地说,带宽限制反馈信号通过以下方式生成:首先将RF信号与反馈振荡器信号的频率进行下混频,随后对信号进行带通滤波以得到以反馈振荡器信号的频率为中心且具有由带通滤波器给出的带宽的观察频率块。
控制电路1140还包括参考信号产生电路1150,该参考信号产生电路包括被配置为从预失真电路1110的输出接收预失真基带信号1111的参考信号输入端。参考信号产生电路1150还包括带宽限制电路,该带宽限制电路被配置为限制参考信号的带宽以导出带限参考信号。另外的带宽限制电路包括:频率移位器1151,该频率移位器被配置为使预失真基带信号移位该频率偏移;以及另外的带通滤波器电路1153,该带通滤波器电路被配置为对移位的预失真基带信号1111进行带通滤波以生成带限预失真信号1114。带限预失真信号1114和带限参考信号被如此创建为频谱内的对应频率块,使得优化电路1155可直接比较两个信号以导出更新的预失真参数。换句话讲,另外的带宽限制电路1150包括频率移位器1151,该频率移位器被配置为使参考信号移位观察频率偏移的倒数。
概括地说,为了实现适当的频域采样,扫描观察路径中混频器的LO频率,并且通常将所述LO频率设定为频率块的中频。LO频率从块到块扫描,信号被下变频、滤波(使得参考信号/预失真基带信号和耦合反馈信号经历相同滤波)并馈送到优化电路1155(优化器块)。
当扫描LO频率时,在一些情况下,新频率下的LO相位可能是未知的。未知LO相位将阻止预失真系数的学习,因为优化电路1155不能区分所观察到的相移是由PA引起的还是由LO频率变化引起的。一些示例任选地包括开关1170,该开关可被配置为将来自PA 1130之前的输入信号连接到混频器1143。在第一测量中,输入信号然后可以连接到混频器1143。由于输入相位然后不包括PA相位失真,信号可用于确定LO相位,而无需来自PA 1130的贡献。在第二测量中,PA反馈信号1145的输出信号然后可作为优化器电路1155的输入而被测量。换句话讲,控制电路1140还可包括相位控制输入端,该相位控制输入端耦接到上混频器的输出端以接收相位控制信号,其中控制电路1140被进一步配置为基于相位控制信号来调节反馈信号的相位。
图12再次示意性地示出了在图11的示例中执行以构建旨在确定所选预失真器配置的预失真系数的方程组的处理。
在优化过程期间,例如借助于最小二乘(LS)算法求解线性方程组。图15示出了用于基于Volterra级数的预失真函数的此类线性方程组的示例。
矩阵A的行从不同的块或观察信道导出,每个观察信道至少有一行。对于观察信道,可累积数据,如图12所示。参考信号1210和反馈信号1220可分别借助于滤波器1230和1240而被收集和受到带宽限制。为了能够使用两个信号的样本来计算预失真参数,可在优化电路1255内执行信号样本的进一步匹配。例如,速率匹配电路1262和1264可用于对准采样率。任选地,可对反馈信号执行相位校准,如上文所示。为此,可存在用于本地振荡器信号1144的任选相位校正电路1266以及后续时间对准电路1268。在补偿模糊度和正确的时间对准之后,参考信号1210和反馈信号1220的样本可用作图15所示线性方程的输入。
矩阵A的每一行包括由预失真函数(来自带限预失真基带信号)预失真的参考数据点。将矢量b的每个预失真数据点与矢量h的耦合数据/带限反馈信号的点进行比较。这是针对大量(例如,几千)数据点进行的,并且预失真系数hk被确定为使得它们满足某个度量,例如,最小二乘方误差。
根据一些示例,如果使用低通滤波数据,则优化电路1155可以低速率运行。
图13再次示出了图11的带宽限制电路和另外的带宽限制电路可如何配合以保证通过优化电路1155使用预失真基带信号和反馈信号的对应频率块。
图14是可如何在mmW应用中使用另外的示例的示例。在mmW设计中,具有包括用于传输、接收和天线波束形成的关键模拟功能的RF头端1410可能是有吸引力的。由于通信设备将具有用于MIMO目的的多个头端,RF信号和LO信号由特殊的同轴电缆提供。因此,观察路径可在发射器电路1430内被多路复用。
概括地说,先前的示例可使得能够实际上对具有超高带宽的信号使用预失真,该超高带宽例如将在5G mmW应用中发生。这将减小由于传输带宽的即将到来的提升而导致的电流消耗和设计复杂性的增加。这些示例论述了观察路径并介绍了方法,该方法通过使用多个窄带信号而不是单个宽带信号来降低观察路径的复杂性,这至少可提供以下效果:
·ADC的较低采样率(100倍或更大,这取决于信号带宽)。
·窄带信号引起的对观察路径的振幅和频率响应的要求放宽→在数字域中为均衡观察路径和不太关键的RF模拟设计所需的补偿努力更少。
对耦合信号和参考信号之间的延迟误差的要求放宽。到目前为止,带宽为60MHz的信号可容许1...3ns的延迟误差。对于1GHz带宽,容许误差将为<<1ns,这将使得难以找到用于全带宽监测的可行具体实施。
此外,蜂窝数据传输标准不仅可以提高带宽,还可以提高输出功率。在常规具体实施中,移动终端可以最大23dBm的输出功率传输。即将到来的功率类别2为所有TDD频带定义了26dBm的输出功率,功率类别1为低频带Band14定义了31dBm的输出功率。由于高带宽、高信道频率、功率节省包络跟踪技术和更高的输出功率,模拟电路的时间依赖性非线性(即,记忆效应)变得越来越明显。由于非线性产生较高频率(谐波),必须以高采样率计算与预失真模型相关的计算。由于复杂数学模型(Volterra级数)、高字长(由于谐波的取幂)和高采样频率(由于谐波的频率扩展)可能引起很多乘法运算,伴随大量电流的消耗。
图16示出了用于对基带信号1601进行预失真的装置1600的示例,其可允许(显著地)降低电流消耗。
装置1600包括预失真电路1610,该预失真电路被配置为以第一采样率确定基带信号1601的样本。例如,第一采样率可等于或高于基带信号1601的采样率。此外,预失真电路1610被配置为基于预失真参数(例如,基于Volterra级数)和基带信号1601的样本以第二采样率计算和输出预失真基带信号1602的样本。第二采样率低于第一采样率。即,预失真电路1610使用比基带信号1601的输入采样率低的输出采样率来计算预失真基带信号1602。
装置1600还包括上采样滤波器1620,该上采样滤波器被配置为基于预失真基带信号1602在第二采样率下的样本来计算预失真基带信号1602在第一采样率下的样本。
较高的第一采样率可允许跟踪基带信号1601中的所有较高阶指数谐波,使得以足够的精度获悉基带信号1601的过程。另一方面,较低的第二采样率可允许节省电流,因为预失真在该较低采样率下完成。上采样滤波器然后恢复预失真电路1610的输入采样率。然而,由于上采样滤波器使用固定系数并且由于不发生指数阶,仅上采样计算比在较高采样率下的预失真简单得多。因此,可节省电流并且可实现谐波的合理衰减。
这可从以下结合图17至图20给出的非限制性数值示例而变得更加明显。
图17示出了根据表达式|∑n=1...5exp(It)/n|的模拟信号1710的从–π到π的一个周期长度。信号1710由载波加上其衰减的2阶、3阶、4阶和5阶谐波组成。此外,图17示出了信号的数字样本1700,……,1709。在图17的示例中,信号1710被过采样十次。
图18示出了相同的信号1710。然而,在图18的示例中,信号1710仅被过采样五次,如数字样本1801,……,1805所示。
假设信号1710表示将被预失真的基带信号的过程,则从图17和图18显而易见,预失真电路/算法(例如,用于记忆数字预失真,MDPD)几乎不能估计/遵循低采样率下的五阶指数谐波。在图18的示例中,数字样本1803具有1.8的振幅值,而后续功率放大器实际上接收具有2.3的最大振幅值的模拟输入信号。因此,用于MDPD的预失真电路/算法将利用若干加权指数函数尝试使数字样本值1.8预失真,而正确的数字样本应为2.3。在如图17所示的十次过采样的情况下,误差比五次过采样小得多(数字样本1705具有约2.3的振幅值)。
基带信号1910和相应的预失真基带信号1920的示例在图19中示出。与基带信号1910比较,预失真基带信号1920包括与3阶谐波和5阶谐波相关的附加信号分量(3阶互调失真和5阶互调失真)。与载波频率周围的所需信号分量(约0MHz频率偏差)相比,高阶指数谐波被衰减。
装置1600的预失真电路1610允许跟踪更高阶指数谐波,因为第一采样率(即,输入采样率)足够高。此外,第二采样率(即,输出采样率)足够低以节省电流并实现更高阶指数谐波的合理衰减。换句话讲,装置1600可被理解为新型下采样MDPD方法。在第二步骤中,(更高阶)上采样滤波器1620允许恢复原始MDPD输入采样率。由于上采样滤波器1620使用固定系数并且由于不发生指数阶,其比MDPD计算(例如,Volterra级数)简单得多。因此,装置1600可允许节省电流。
虽然预失真电路1610的下采样可导致预失真基带信号中的五阶谐波的混叠,但接收下采样信号作为输入的上采样滤波器1620的自适应算法将固有地优化混叠信号到原始信号的添加。
上文结合图16至图19所述的预失真的效果在图20中示出。图20示出了两个LTE 20信号2010和2020的频谱。信号2010是基于没有预失真的基带信号a生成的,而信号2020是通过将装置1600用于MDPD基于相同基带信号生成的。
MDPD的输入信号是具有±19MHz带宽的LTE载波聚合信号。基于Volterra的五阶MDPD用于预失真。预失真电路的输入采样率(即,第一采样率)为184MHz,而预失真电路的输出采样率为92MHz。该采样频率产生92/2MHz=46MHz的MDPD边缘。通过比较信号2010和2020,显而易见的是,根据所提出的概念的MDPD提供高达奈奎斯特速率(即,采样率的一半,在图20的示例中为46MHz)的信号衰减。因此,可减小ACLR。
然而,在一些示例中,不降低采样率可能是有益的。这在图21和图22中示例性地示出。图21示出了两个LTE 20信号2110和2120的频谱。信号2110是基于没有预失真的基带信号a生成的,而信号2120是使用下采样MDPD基于相同基带信号生成的。MDPD的输入信号同样是具有±19MHz带宽的LTE载波聚合信号。基于Volterra的五阶MDPD用于预失真。如从图21可见,LTE载波聚合信号包括彼此分隔很宽的两个窄带分配的频谱(即喇叭频谱)。由于下采样MDPD,在LTE 20信号2120中生成了用于3阶谐波和5阶谐波的第二混叠。
通过在不进行下采样的情况下执行MDPD,可避免混叠的生成,并且可减少3阶谐波和5阶谐波。这在图22中被示出,图22示出了两个LTE20信号2210和2220的频谱。信号2210基本上对应于图21中所示的信号2110。使用不进行下采样的MDPD(即,正常MDPD),基于与信号2210相同的基带信号生成信号2220。
由于对MDPD进行下采样对于某些罕见频谱可能是不利的,可相应地调整装置1600。具体地,预失真电路1610可被进一步配置为接收关于基带信号的数据在频谱中的频谱分配(即,所得信号频谱的形状;例如,由所分配的资源块指示)的信息。如果频谱分配满足第一决策标准(分配的频谱的最小/最大带宽或分配的频谱之间的最小/最大距离;例如,如图20所示的频谱),预失真电路1610可被进一步配置为以第二采样率(即,输入采样率)计算预失真基带信号的样本。如果频谱分配满足第二决策标准(例如,如图22所示的频谱),预失真电路1610可被进一步配置为以第一采样率(即,较低输出采样率)计算预失真基带信号的样本。因此,如果频谱分配满足第二决策标准,则可去激活上采样滤波器1620。
换句话讲,装置1600可支持多速率DPD。根据已知的传输信号,用于预失真的电路或算法可不同。例如,其可利用N个乘法器在抽取模式下运行,或者其可利用每个多相器N/n个乘法器在N倍高的采样率下运行。另选地,可使用更好地抑制混叠分量的经改进的上采样滤波器。此外另选地,可关闭MDPD,并且可在更线性的平均功率跟踪模式下操作PA。
图23中示出了使用下采样预失真的无线收发器2300的示例。基带电路2330向预失真电路2310提供基带信号2301。预失真电路2310以其采样率对基带信号2301进行采样,并以较低采样率输出预失真基带信号2302。上采样滤波器2320将预失真基带信号2302上采样到基带信号2301的原始采样率。
预失真基带信号2302然后使用上混频器2340上混频到射频,并通过ADC 2350进一步转换成模拟表示。模拟预失真基带信号由PA 2360放大并经由双工器2380提供给天线2390。如图23所示,PA 2360的供电电压Vcc由包络跟踪电路2370(包括用于确定预失真基带信号2302的包络的包络跟踪路径、用于数字化的ADC以及用于基于数字化的包络信息提供Vcc的DC到DC转换器)提供。
用于无线收发器2300中的下采样MPDP可允许生成用于辐射到环境的RF信号,该RF信号具有减小的信号失真并且具有减小的功率消耗。
预失真电路2310还可支持如上所述的不同/多种配置。因此,无线收发器2300包括从天线2390到自适应电路2315的反馈路径。反馈路径(例如,通过耦合器)接收失真PA输出信号的一部分。反馈信号被下变频到基带域,随后被ADC 2325数字化。反馈接收器2335进一步处理反馈信号。自适应电路2315通过将经处理的反馈信号的序列与如上所述的基带信号2301的时间对准序列进行比较来更新当前使用的预失真器配置的预失真参数(例如,预失真函数)。另选地或除此之外,反馈信号可由无线收发器2300的常规接收路径2395提供。
为了总结关于下采样MDPD的上述方面,图24还示出了用于对基带信号进行预失真的方法2400的流程图。方法2400包括在第一采样率下确定2402基带信号的样本。此外,方法2400包括基于预失真参数和基带信号的样本以第二采样率计算2404预失真基带信号的样本。第二采样率低于第一采样率。方法2400还包括基于预失真基带信号在第二采样率下的样本来计算2406预失真基带信号在第一采样率下的样本。
由于MDPD的输入采样率高,可以高精度跟踪基带信号的振幅值。此外,由于MDPD的输出采样率低,MDPD仅计算所需的输出样本,这实现了低电流消耗。因此,MDPD同时实现了高精度和低电流消耗两者。
结合所提出的技术或上文描述的一个或多个示例(例如图16至图23)提及了该方法的更多细节和方面。该方法可包括对应于所提出的技术的一个或多个方面或上文描述的一个或多个示例的一个或多个附加可选特征。
图25中示出了使用根据所提出的技术的一个或多个方面或上述一个或多个示例的预失真的具体实施的示例。图25示意性地示出了移动设备2500(例如,移动电话、智能电话、平板电脑或膝上型电脑)的示例。
移动设备2500包括根据所提出的技术的一个或多个方面或上述一个或多个示例的无线发射器或发射器电路2510。移动设备2500的至少一个天线2260耦接到无线发射器或发射器电路2510。
根据所提出的技术的一个或多个方面或上述一个或多个示例,无线发射器或发射器电路2510可以包括预失真电路2520、用于预失真电路2520的控制电路2530和/或用于使基带信号2540预失真的装置。预失真电路2520和/或用于使基带信号2540预失真的装置的输出可以耦接到PA 2550以用于放大预失真信号。
为此,可提供能够以降低的电流消耗生成高带宽传输信号的移动设备。
使用根据所提出的技术或上述一个或多个示例的预失真的上述无线通信电路可被配置为根据第三代合作伙伴计划(3GPP)标准化移动通信网络或系统中的一者进行操作。移动或无线通信系统可对应于例如5G新无线电(5G NR)、长期演进(LTE)、LTE升级版(LTE-A)、高速分组接入(HSPA)、通用移动通信系统(UMTS)或UMTS陆地无线电接入网络(UTRAN)、演进UTRAN(e-UTRAN)、全球移动通信系统(GSM)或增强型数据速率GSM演进(EDGE)网络、GSM/EDGE无线电接入网络(GERAN)。另选地,无线通信电路可被配置为根据采用不同标准的移动通信网络进行操作,例如,全球微波接入互操作性(WIMAX)网络IEEE802.16或无线局域网(WLAN)IEEE 802.11,通常是正交频分多址(OFDMA)网络、时分多址(TDMA)网络、码分多址(CDMA)网络、宽带CDMA(WCDMA)网络、频分多址(FDMA)网络、空分多址(SDMA)网络等。
本文所述的实施例可总结如下:
实施例1是一种用于无线发射器的预失真电路,包括:被配置为接收基带信号的信号输入端;以及预失真器,该预失真器被配置为使用基带信号以及对第一预失真器配置和第二预失真器配置中的一者的选择来生成预失真基带信号。
在实施例2中,实施例1所述的预失真电路中的第一预失真器配置执行第一预失真函数,并且其中第二预失真器配置执行第二预失真函数。
在实施例3中,实施例1或2所述的预失真电路还包括:在第一预失真器配置中活动的第一数量的计算节点;以及在第二预失真器配置中活动的第二数量的计算节点。
在实施例4中,实施例3所述的预失真电路中的第二数量高于第一数量。
在实施例5中,实施例3所述的预失真电路中的第一数量的计算节点被配置为以第一速率操作,其中第二数量的计算节点被配置为以第二速率操作,并且其中第二速率高于第一速率。
在实施例6中,实施例5所述的预失真电路还包括采样率转换器,该采样率转换器被配置为将第一数量的计算节点的输出与第二速率匹配,以生成第一数量的计算节点的速率匹配输出。
在实施例7中,实施例6所述的预失真电路还包括组合电路,该组合电路被配置为组合第二数量的计算节点的输出和第一数量的计算节点的速率匹配输出。
在实施例8中,前述实施例中任一项所述的预失真电路还包括配置处理电路,该配置处理电路被配置为根据无线发射器的操作特性来选择第一预失真器配置或第二预失真器配置。
在实施例9中,实施例8所述的预失真电路中的操作特性包括平均功率跟踪模式、包络跟踪模式、输出功率范围、基带信号的峰均功率比、用于生成基带信号的调制方案和天线的匹配条件中的至少一者。
在实施例10中,实施例8或9所述的预失真电路中的操作特性包括传输带宽、传输频带、传输频带内的传输频率范围、频域中的传输集群的数量、传输集群之间的频率间隔和每个传输集群的带宽中的至少一者。
在实施例11中,实施例8至10中任一项所述的预失真电路中的操作特性包括可接受的频谱掩模。
在实施例12中,实施例8所述的预失真电路中的配置处理电路还包括输入接口,该输入接口被配置为根据发射器的功率放大器的输出来接收反馈信号,其中配置处理电路被进一步配置为根据反馈信号来选择第一预失真器配置或第二预失真器配置。
实施例13是一种用于无线发射器的预失真电路,包括:被配置为接收基带信号的信号输入端;以及预失真器,该预失真器被配置为使用第一子电路以第一速率计算预失真基带信号的第一部分,并且使用第二子电路以第二速率计算预失真基带信号的第一部分,从而生成预失真基带信号。
在实施例14中,实施例13所述的预失真电路还包括速率匹配电路,该速率匹配电路被配置为将第一速率和第二速率调节至预失真基带信号的采样率。
在实施例15中,实施例13或14所述的预失真电路还包括组合电路,该组合电路被配置为组合预失真基带信号的第一部分和预失真基带信号的第二部分以生成预失真基带信号。
实施例16是一种用于为无线发射器生成预失真基带信号的方法,包括:选择第一预失真器配置或第二预失真器配置;以及使用基带信号和所选择的预失真器配置来生成预失真基带信号。
在实施例17中,实施例16所述的方法还包括:在第一预失真器配置中执行第一预失真函数;以及在第二预失真器配置中执行第二预失真函数。
在实施例18中,实施例16或17所述的方法还包括:在第一预失真器配置中使用第一数量的计算;以及在第二预失真器配置中使用第二数量的计算。
在实施例19中,在实施例18所述的方法中,第二数量高于第一数量。
在实施例20中,实施例18所述的方法还包括:以第一速率执行第一数量的计算;以及以第二速率执行第二数量的计算,第一速率高于第二速率。
在实施例21中,实施例18所述的方法还包括将第一数量的计算的输出与第二速率匹配以生成第一数量的计算节点的速率匹配输出。
在实施例22中,实施例21所述的方法还包括组合第二数量的计算的输出与第一数量的计算的速率匹配输出。
在实施例23中,实施例16至22中任一项所述的方法还包括根据无线发射器的操作特性来选择第一预失真器配置或第二预失真器配置。
在实施例24中,实施例23所述的方法中的操作特性包括平均功率跟踪模式、包络跟踪模式、输出功率范围、基带信号的峰均功率比、用于生成基带信号的调制方案和天线的匹配条件中的至少一者。
在实施例25中,实施例23或24所述的方法中的操作特性包括传输带宽、传输频带、传输频带内的传输频率范围、频域中的传输集群的数量、传输集群之间的频率间隔和每个传输集群的带宽中的至少一者。
在实施例26中,实施例23至25中任一项所述的方法中的操作特性包括可接受的频谱掩模。
在实施例27中,实施例16至26中任一项所述的方法还包括:根据发射器的功率放大器的输出来接收反馈信号;以及根据反馈信号来选择第一预失真器配置或第二预失真器配置。
实施例28是一种包括根据实施例1至15中任一项的预失真电路的无线发射器。
在实施例29中,实施例28所述的无线发射器还包括耦接到预失真电路的输出端的功率放大器。
实施例30是一种包括根据实施例28或29中的一项的无线发射器的移动设备。
在实施例31中,实施例30所述的移动设备还包括耦接到无线发射器的至少一个天线。
实施例32是一种其上存储有程序的非暂态计算机可读介质,该程序具有用于在计算机或处理器上执行程序时执行实施例16至27中任一项所述的方法的程序代码。
实施例33是一种具有程序代码的计算机程序,该程序代码被配置为在计算机或处理器上执行计算机程序时执行实施例16至27中任一项所述的方法。
实施例34是一种用于预失真电路的控制电路,该控制电路包括:反馈信号输入端,该反馈信号输入端被配置为接收与功率放大器的输出相关的反馈信号;带宽限制电路,该带宽限制电路被配置为限制反馈信号的带宽以导出带限反馈信号;以及参数处理电路,该参数处理电路被配置为基于带限反馈信号来更新在预失真电路中使用的预失真参数。
在实施例35中,实施例34所述的控制电路还包括被配置为输出更新的预失真参数的输出接口。
在实施例36中,实施例34或35所述的控制电路中的带宽限制电路包括:可调节混频器,该可调节混频器被配置为使用反馈振荡器信号对反馈信号进行下混频以生成下混频反馈信号,该反馈振荡器信号具有本地振荡器信号的频率加上观察频率偏移;以及带通滤波器电路,该带通滤波器电路被配置为对下混频反馈信号进行带通滤波以生成带限反馈信号。
在实施例37中,根据实施例34至36中任一项所述的控制电路还包括参考信号产生电路,该参考信号产生电路包括:参考信号输入端,该参考信号输入端被配置为接收与预失真电路的输出相关或与预失真电路的输入相关的参考信号;以及另外的带宽限制电路,该另外的带宽限制电路被配置为限制参考信号的带宽以导出带限参考信号,其中配置处理电路被配置为基于带限观察信号和带限参考信号来更新预失真参数。
在实施例38中,实施例37所述的控制电路中的另外的带宽限制电路包括:频率移位器,该频率移位器被配置为将参考信号移位一频率偏移;以及另外的带通滤波器电路,该另外的带通滤波器电路被配置为对移位的参考信号进行带通滤波以生成带限反馈信号。
在实施例39中,实施例38所述的控制电路中的频率偏移对应于反馈信号的观察频率偏移。
实施例40是一种发射器电路,包括:预失真电路,该预失真电路被配置为接收基带信号并基于预失真参数生成预失真基带信号;上混频器,该上混频器被配置为使用预失真基带信号和本地振荡器信号来生成射频信号;功率放大器,该功率放大器耦接到上混频器的输出端并且被配置为生成放大的射频信号;以及用于预失真电路的控制电路,该控制电路包括:反馈信号输入端,该反馈信号输入端被配置为接收与功率放大器的输出相关的反馈信号;带宽限制电路,该带宽限制电路被配置为限制反馈信号的带宽以导出带限反馈信号;参考信号输入端,该参考信号输入端被配置为接收与预失真电路的输出相关或与预失真电路的输入相关的参考信号;另外的带宽限制电路,该另外的带宽限制电路被配置为限制参考信号的带宽以导出带限参考信号;以及参数处理电路,该参数处理电路被配置为基于带限反馈信号和带限参考信号来更新在预失真电路内使用的预失真参数。
在实施例41中,带限反馈信号的带宽和带限参考信号的带宽在实施例40所述的发射器电路中是相等的。
在实施例42中,实施例40或41所述的发射器电路中的控制电路还包括相位控制输入端,该相位控制输入端耦接到上混频器的输出端以接收相位控制信号,其中控制电路被进一步配置为基于相位控制信号来调节反馈信号的相位。
在实施例43中,实施例40至42中任一项所述的发射器电路中的带宽限制电路还包括可调节混频器,该可调节混频器被配置为使用反馈振荡器信号来对反馈信号进行下混频,该反馈振荡器信号具有相对于本地振荡器信号的频率的观察频率偏移;并且该另外的带宽限制电路包括频率移位器,该频率移位器被配置为使参考信号移位观察频率偏移的倒数。
实施例44是一种包括根据实施例40至43中的一项的发射器电路的移动设备。
在实施例40中,实施例40的移动设备还包括耦接到发射器电路的至少一个天线。
实施例46是一种用于确定预失真电路的参数的方法,该方法包括:接收与功率放大器的输出相关的反馈信号;限制反馈信号的带宽以导出带限反馈信号;以及基于带限反馈信号来更新在预失真电路中使用的预失真参数。
在实施例47中,实施例46所述的方法还包括:使用反馈振荡器信号对反馈信号进行下混频以生成下混频反馈信号,从而生成下混频反馈信号,该反馈振荡器信号具有本地振荡器信号的频率加上观察频率偏移;以及对下混频反馈信号进行带通滤波。
在实施例48中,实施例46或47所述的方法还包括:接收与预失真电路的输出相关或与预失真电路的输入相关的参考信号;限制参考信号的带宽以导出带限参考信号;以及基于带限观察信号和带限参考信号来更新预失真参数。
在实施例49中,实施例46至48中任一项所述的方法还包括将参考信号移位一频率偏移。
在实施例50中,实施例49所述的方法中的频率偏移对应于反馈信号的观察频率偏移。
实施例51是一种其上存储有程序的非暂态计算机可读介质,该程序具有用于在计算机或处理器上执行程序时执行实施例46至50中任一项所述的方法的程序代码。
实施例52是一种具有程序代码的计算机程序,该程序代码被配置为当在计算机或处理器上执行计算机程序时执行实施例46至50中任一项所述的方法。
实施例53是一种用于使基带信号预失真的装置,包括:预失真电路,该预失真电路被配置为以第一采样率确定基带信号的样本,并基于预失真参数和基带信号的样本来以第二采样率计算预失真基带信号的样本,其中第二采样率低于第一采样率;以及上采样滤波器,该上采样滤波器被配置为基于预失真基带信号在第二采样率下的样本来计算预失真基带信号在第一采样率下的样本。
在实施例54中,实施例53所述的装置中的第一采样率等于或高于基带信号的采样率。
在实施例55中,实施例53或实施例54所述的装置中的预失真电路被进一步配置为:接收关于基带信号的数据在频谱中的频谱分配的信息;如果频谱分配满足第一决策标准,则以第二采样率计算预失真基带信号的样本;并且如果频谱分配满足第二决策标准,则以第一采样率计算预失真基带信号的样本。
在实施例56中,如果频谱分配满足第二决策标准,则实施例55所述的装置中的上采样滤波器被去激活。
实施例57是一种包括根据实施例53至56中任一项的用于使基带信号预失真的装置的无线发射器。
在实施例58中,实施例57所述的无线发射器还包括耦接到用于使基带信号预失真的装置的输出端的功率放大器。
实施例59是一种包括根据实施例57或实施例58的无线发射器的移动设备。
在实施例60中,实施例59所述的移动设备还包括耦接到无线发射器的至少一个天线。
实施例61是一种用于使基带信号预失真的方法,包括:在第一采样率下确定基带信号的样本;基于预失真参数和基带信号的样本以第二采样率计算预失真基带信号的样本,其中第二采样率低于第一采样率;以及基于预失真基带信号在第二采样率下的样本来计算预失真基带信号在第一采样率下的样本。
在实施例62中,实施例61所述的方法中的第一采样率等于或高于基带信号的采样率。
在实施例63中,实施例61或实施例62所述的方法还包括:接收关于基带信号的数据在频谱中的频谱分配的信息,其中如果频谱分配满足第一决策标准,则以第二采样率计算预失真基带信号的样本;并且如果频谱分配满足第二决策标准,则以第一采样率计算预失真基带信号的样本。
在实施例64中,实施例63所述的方法中使用上采样滤波器来基于预失真基带信号在第二采样率下的样本来计算预失真基带信号在第一采样率下的样本,其中该方法还包括如果频谱分配满足第二决策标准,则去激活上采样滤波器。
实施例65是一种其上存储有程序的非暂态计算机可读介质,该程序具有用于在计算机或处理器上执行程序时执行实施例61至64中任一项所述的方法的程序代码。
实施例66是一种具有程序代码的计算机程序,该程序代码被配置为当在计算机或处理器上执行程序时执行实施例61至64中任一项所述的方法。
结合一个或多个先前详述的示例和附图所提及和描述的方面和特征也可与其他示例中的一个或多个组合,以便替换其他示例的相似特征或为了另外将该特征引入到其他示例中。
当计算机程序在计算机或处理器上执行时,示例还可以是或涉及具有用于执行上述方法中的一个或多个的程序代码的计算机程序。可通过编程的计算机或处理器来执行各种上述方法的步骤、操作或过程。这些示例还可涵盖程序存储设备诸如数字数据存储介质,这些程序存储设备是机器可读、处理器可读或计算机可读的,并且对指令的机器可执行程序、处理器可执行程序或计算机可执行程序进行编码。这些指令执行或致使执行上述方法中的一些或全部动作。程序存储设备可包括或可以是例如数字存储器、磁性存储介质诸如磁盘和磁带、硬盘驱动器或光学可读数字数据存储介质。另外的示例还可涵盖被编程用于执行上述方法或(现场)可编程逻辑阵列((F)PLA)或(现场)可编程门阵列((F)PGA)的动作的计算机、处理器或控制单元,所述计算机、处理器或控制单元被编程用于执行上述方法的动作。
说明书和附图仅示出本公开的原理。此外,本文所阐述的所有示例主要旨在明确地仅用于教学目的,以帮助读者理解本公开的原理以及发明人为推进本领域贡献的概念。本文中列举本公开的原理、方面和示例的所有陈述以及它们的具体示例均旨在包括它们的等同形式。
表示为执行特定功能的“用于...的装置”的功能框可指被配置为执行特定功能的电路。因此,“用于...的装置”可被实现为“被配置为或适用于...的装置”,诸如被配置为或适用于相应任务的设备或电路。
在图中示出的各种元件的功能包括标记为“装置”、“用于提供信号的装置”、“用于生成信号的装置”等的任何功能框,这些功能框可以专用硬件的形式实现,诸如“信号提供器”、“信号处理单元”、“处理器”、“控制器”等,以及能够与适当的软件相关联地执行软件的硬件。当由处理器提供时,这些功能可由单个专用处理器、单个共享处理器或多个单独处理器提供,可共享其中一些或全部。然而,术语“处理器”或“控制器”远不限于唯一能够执行软件的硬件,但是可包括数字信号处理器(DSP)硬件、网络处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、用于存储软件的只读存储器(ROM)、随机存取存储器(RAM)和非易失性存储器。还可包括常规和/或定制的其他硬件。
框图可例如示出实现本公开的原理的高电平电路图。类似地,流程图、流程图表,状态转变图、伪代码等可表示各种过程、操作或步骤,这些过程、操作或步骤可例如基本上表示在计算机可读介质中,并且因此由计算机或处理器执行,无论是否明确地示出了此类计算机或处理器。可由具有用于执行这些方法的每个相应动作的装置的设备来实现本说明书或权利要求中所公开的方法。
应当理解,本说明书或权利要求中所公开的多种动作、过程、操作、步骤或功能的公开内容可不理解为是在特定顺序内,除非例如因为技术原因另外明确或隐含地说明。因此,多种动作或功能的公开内容将不会把这些动作或功能局限于特定顺序,除非此类动作或功能因为技术原因而不可互换。此外,在一些示例中,单个动作、功能、过程、操作或步骤可分别包括或可分为多个子动作、子功能、子过程、子操作或子步骤。除非明确排除,否则此类子动作可被包括在内并且为该单个动作的公开内容的一部分。
此外,据此将以下权利要求并入具体实施方式中,其中每项权利要求可独立地作为单独的示例。虽然每项权利要求可独立地作为单独的示例,但应当指出的是,尽管可在权利要求中提及从属权利要求与一个或多个其他权利要求的特定组合,但其他示例也可包括从属权利要求与每个其他从属或独立权利要求的主题的组合。除非说明不旨在使用特定组合,否则本文明确提出此类组合。此外,还旨在同时将权利要求的特征包括在任何其他独立权利要求中,即使该权利要求没有直接依赖于独立权利要求。

Claims (25)

1.一种用于无线发射器的预失真电路,包括:
信号输入端,所述信号输入端被配置为接收基带信号;和
预失真器,所述预失真器被配置为使用所述基带信号以及对第一预失真器配置和第二预失真器配置中的一者的选择来生成预失真基带信号。
2.根据权利要求1所述的预失真电路,其中所述第一预失真器配置执行第一预失真函数,并且其中所述第二预失真器配置执行第二预失真函数。
3.根据权利要求1或2所述的预失真电路,还包括:
第一数量的计算节点,所述第一数量的计算节点在所述第一预失真器配置中是活动的;和
第二数量的计算节点,所述第二数量的计算节点在所述第二预失真器配置中是活动的。
4.根据权利要求3所述的预失真电路,其中所述第二数量高于所述第一数量。
5.根据权利要求3所述的预失真电路,其中
所述第一数量的计算节点被配置为以第一速率操作;
所述第二数量的计算节点被配置为以第二速率操作;
所述第二速率高于所述第一速率。
6.根据权利要求5所述的预失真电路,还包括:
采样率转换器,所述采样率转换器被配置为将所述第一数量的计算节点的输出与所述第二速率匹配,以生成所述第一数量的计算节点的速率匹配输出。
7.根据权利要求6所述的预失真电路,还包括:
组合电路,所述组合电路被配置为组合所述第二数量的计算节点的输出与所述第一数量的计算节点的所述速率匹配输出。
8.根据权利要求1或所述的预失真电路,还包括:
配置处理电路,所述配置处理电路被配置为根据所述无线发射器的操作特性来选择所述第一预失真器配置或所述第二预失真器配置。
9.根据权利要求8所述的预失真电路,其中所述操作特性包括平均功率跟踪模式、包络跟踪模式、输出功率范围、所述基带信号的峰均功率比、用于生成所述基带信号的调制方案和天线的匹配条件中的至少一者。
10.根据权利要求8所述的预失真电路,其中所述操作特性包括传输带宽、传输频带、所述传输频带内的传输频率范围、频域中的传输集群的数量、所述传输集群之间的频率间隔和每个传输集群的带宽中的至少一者。
11.根据权利要求8所述的预失真电路,其中所述操作特性包括能够接受的频谱掩模。
12.根据权利要求8所述的预失真电路,其中所述配置处理电路还包括:
输入接口,所述输入接口被配置为根据所述发射器的功率放大器的输出来接收反馈信号,其中
所述配置处理电路被进一步配置为根据所述反馈信号来选择所述第一预失真器配置或所述第二预失真器配置。
13.一种用于无线发射器的预失真电路,包括:
信号输入端,所述信号输入端被配置为接收基带信号;
预失真器,所述预失真器被配置为使用以下各项来生成预失真基带信号:
使用第一子电路以第一速率计算预失真基带信号的第一部分;以及
使用第二子电路以第二速率计算预失真基带信号的第一部分。
14.根据权利要求13所述的预失真电路,还包括:
速率匹配电路,所述速率匹配电路被配置为将所述第一速率和所述第二速率调节至所述预失真基带信号的采样率。
15.根据权利要求13或14所述的预失真电路,还包括:
组合电路,所述组合电路被配置为组合所述预失真基带信号的所述第一部分和所述预失真基带信号的所述第二部分以生成所述预失真基带信号。
16.一种用于为无线发射器生成预失真基带信号的方法,包括:
选择第一预失真器配置或第二预失真器配置;
使用基带信号和所选择的预失真器配置来生成所述预失真基带信号。
17.根据权利要求16所述的方法,还包括:
在所述第一预失真器配置中执行第一预失真函数;以及
在所述第二预失真器配置中执行第二预失真函数。
18.根据权利要求16或17所述的方法,还包括:
在所述第一预失真器配置中使用第一数量的计算;以及
在所述第二预失真器配置中使用第二数量的计算。
19.根据权利要求18所述的方法,其中所述第二数量高于所述第一数量。
20.根据权利要求18所述的方法,还包括:
以第一速率执行所述第一数量的计算;
以第二速率执行所述第二数量的计算;
所述第一速率高于所述第二速率。
21.根据权利要求18所述的方法,还包括:
将所述第一数量的计算的输出与所述第二速率匹配,以生成所述第一数量的计算节点的速率匹配输出。
22.根据权利要求21所述的方法,还包括:
组合所述第二数量的计算的输出与所述第一数量的计算的所述速率匹配输出。
23.根据权利要求16或17所述的方法,还包括:
根据所述无线发射器的操作特性来选择所述第一预失真器配置或所述第二预失真器配置。
24.根据权利要求23所述的方法,其中所述操作特性包括平均功率跟踪模式、包络跟踪模式、输出功率范围、所述基带信号的峰均功率比、用于生成所述基带信号的调制方案和天线的匹配条件中的至少一者。
25.根据权利要求23所述的方法,其中所述操作特性包括传输带宽、传输频带、所述传输频带内的传输频率范围、频域中的传输集群的数量、所述传输集群之间的频率间隔和每个传输集群的带宽中的至少一者。
CN201780097294.6A 2017-12-29 2017-12-29 无线发射器的预失真电路以及生成预失真基带信号的方法 Active CN111436225B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310675977.2A CN116708099A (zh) 2017-12-29 2017-12-29 无线发射器的预失真电路以及生成预失真基带信号的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2017/068859 WO2019132949A1 (en) 2017-12-29 2017-12-29 Predistortion circuit, method for generating a predistorted baseband signal, control circuit for a predistortion circuit, method to determine parameters for a predistortion circuit, and apparatus and method for predistorting a baseband signal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310675977.2A Division CN116708099A (zh) 2017-12-29 2017-12-29 无线发射器的预失真电路以及生成预失真基带信号的方法

Publications (2)

Publication Number Publication Date
CN111436225A true CN111436225A (zh) 2020-07-21
CN111436225B CN111436225B (zh) 2023-06-16

Family

ID=67068052

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310675977.2A Pending CN116708099A (zh) 2017-12-29 2017-12-29 无线发射器的预失真电路以及生成预失真基带信号的方法
CN201780097294.6A Active CN111436225B (zh) 2017-12-29 2017-12-29 无线发射器的预失真电路以及生成预失真基带信号的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310675977.2A Pending CN116708099A (zh) 2017-12-29 2017-12-29 无线发射器的预失真电路以及生成预失真基带信号的方法

Country Status (4)

Country Link
US (2) US11394412B2 (zh)
EP (1) EP3701691A4 (zh)
CN (2) CN116708099A (zh)
WO (1) WO2019132949A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985951B2 (en) 2019-03-15 2021-04-20 The Research Foundation for the State University Integrating Volterra series model and deep neural networks to equalize nonlinear power amplifiers
US11018633B2 (en) 2019-04-18 2021-05-25 Samsung Electronics Co., Ltd Method and apparatus for calibrating digital pre-distortion of cellular transmitter
US10693509B1 (en) 2019-10-02 2020-06-23 Analog Devices International Unlimited Company Digital predistortion with power-specific capture selection
WO2021092633A2 (en) * 2020-03-18 2021-05-14 Zeku, Inc. Apparatus and method of harmonic interference cancellation
US11431300B2 (en) * 2020-06-12 2022-08-30 Nokia Technologies Oy Machine learning based digital pre-distortion for power amplifiers
US11356136B2 (en) * 2020-09-08 2022-06-07 Shenzhen GOODIX Technology Co., Ltd. Harmonic rejection in multiphase signals
US11777542B2 (en) 2020-11-18 2023-10-03 Mediatek Inc. Method for tuning envelope tracking system and associated processing module
US11456760B1 (en) * 2021-03-05 2022-09-27 Motorola Solutions, Inc. Linearizing narrowband carriers with low resolution predistorters
US12003261B2 (en) 2021-05-12 2024-06-04 Analog Devices, Inc. Model architecture search and optimization for hardware
US20220376659A1 (en) * 2021-05-12 2022-11-24 Analog Devices, Inc. Model architecture search and optimization for hardware
US11489599B1 (en) * 2021-07-01 2022-11-01 Rohde & Schwarz Gmbh & Co. Kg Wideband frequency response characterization with a narrowband source or receiver
CN115826733A (zh) * 2021-09-16 2023-03-21 北京小米移动软件有限公司 工作状态调整方法及装置、终端和存储介质
US11711120B1 (en) * 2022-04-29 2023-07-25 Qualcomm Incorporated Power adjustment to align transmit chain power ratios
CN117134783B (zh) * 2023-10-27 2024-01-30 高拓讯达(北京)微电子股份有限公司 发射机信号的预补偿方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080130787A1 (en) * 2006-12-01 2008-06-05 Gregory Clark Copeland System and method for digitally correcting a non-linear element using a multiply partitioned architecture for predistortion
US20120286863A1 (en) * 2011-05-10 2012-11-15 Texas Instruments Incorporated Apparatus and method of digital predistortion for power amplifiers with dynamic nonlinearities
CN104283829A (zh) * 2013-07-12 2015-01-14 亚德诺半导体技术公司 发射机中的改进的数字预失真系统
CN104604126A (zh) * 2012-07-05 2015-05-06 瑞典爱立信有限公司 用于双频带线性化的低采样率适应方案
EP2938034A1 (en) * 2013-01-25 2015-10-28 Datang Mobile Communications Equipment Co., Ltd. Method and system for updating predistortion coefficient
CN107404293A (zh) * 2016-05-19 2017-11-28 亚德诺半导体集团 混合模式数字预失真
US20170353163A1 (en) * 2016-06-01 2017-12-07 Intel IP Corporation Methods and devices for predistortion of signals

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498529B1 (en) * 2001-06-08 2002-12-24 Lucent Technologies Inc. Method and apparatus for calculating the predistortion function from a power amplifier
SE520728C2 (sv) * 2001-11-12 2003-08-19 Ericsson Telefon Ab L M Förfarande för icke-linjär modellering
AU2003269350A1 (en) * 2002-10-22 2004-05-13 Koninklijke Philips Electronics N.V. Predistortion linearizing
US7348843B1 (en) * 2005-04-21 2008-03-25 The United States Of America As Represented By The Secretary Of The Navy Predistortion linearizer using cascaded lower-order linearizers
CN100563225C (zh) * 2005-05-27 2009-11-25 华为技术有限公司 对基带数字信号进行预失真处理的通用装置
KR100837243B1 (ko) 2006-02-27 2008-06-11 인천대학교 산학협력단 주파수 체배기의 사전 왜곡 선형화 장치 및 이를 이용한이중 모드 송신기
US7873331B2 (en) * 2006-06-04 2011-01-18 Samsung Electro-Mechanics Company, Ltd. Systems, methods, and apparatuses for multi-path orthogonal recursive predistortion
US20080285640A1 (en) * 2007-05-15 2008-11-20 Crestcom, Inc. RF Transmitter With Nonlinear Predistortion and Method Therefor
US8064851B2 (en) * 2008-03-06 2011-11-22 Crestcom, Inc. RF transmitter with bias-signal-induced distortion compensation and method therefor
US8412132B2 (en) 2008-08-21 2013-04-02 Freescale Semiconductor, Inc. Techniques for adaptive predistortion direct current offset correction in a transmitter
US8331879B2 (en) 2008-10-15 2012-12-11 Research In Motion Limited Multi-dimensional Volterra series transmitter linearization
US9184710B2 (en) * 2011-02-09 2015-11-10 Intel Corporation Digital predistortion of a power amplifier for signals comprising widely spaced carriers
US8428525B2 (en) 2011-06-08 2013-04-23 Telefonaktiebolaget L M Ericsson (Publ) Predistorter for a multi-antenna transmitter
US9749871B2 (en) * 2015-08-03 2017-08-29 Apple Inc. Radio frequency systems and methods for overriding network signaling values
US11005430B2 (en) * 2017-03-02 2021-05-11 Sumitomo Electric Industries, Ltd. Distortion compensation device and distortion compensation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080130787A1 (en) * 2006-12-01 2008-06-05 Gregory Clark Copeland System and method for digitally correcting a non-linear element using a multiply partitioned architecture for predistortion
US20120286863A1 (en) * 2011-05-10 2012-11-15 Texas Instruments Incorporated Apparatus and method of digital predistortion for power amplifiers with dynamic nonlinearities
CN104604126A (zh) * 2012-07-05 2015-05-06 瑞典爱立信有限公司 用于双频带线性化的低采样率适应方案
EP2938034A1 (en) * 2013-01-25 2015-10-28 Datang Mobile Communications Equipment Co., Ltd. Method and system for updating predistortion coefficient
CN104283829A (zh) * 2013-07-12 2015-01-14 亚德诺半导体技术公司 发射机中的改进的数字预失真系统
CN107404293A (zh) * 2016-05-19 2017-11-28 亚德诺半导体集团 混合模式数字预失真
US20170353163A1 (en) * 2016-06-01 2017-12-07 Intel IP Corporation Methods and devices for predistortion of signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUGURU HABU; CAOYU LI; YASUSHI YAMAO: ""Spectrum-folding scalar-feedback architecture for wideband DPD with simple feedback circuit"", 《2017 12TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC)》 *
周传高: ""射频功放基带数字预失真技术设计与实现"", 《中国优秀硕士学位论文全文数据库(电子期刊)信息科技辑》 *

Also Published As

Publication number Publication date
WO2019132949A1 (en) 2019-07-04
CN116708099A (zh) 2023-09-05
EP3701691A1 (en) 2020-09-02
US20200382147A1 (en) 2020-12-03
US11394412B2 (en) 2022-07-19
US20220368360A1 (en) 2022-11-17
EP3701691A4 (en) 2021-08-25
CN111436225B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
CN111436225B (zh) 无线发射器的预失真电路以及生成预失真基带信号的方法
US11245429B2 (en) System and method for increasing bandwidth for digital predistortion in multi-channel wideband communication systems
KR101821294B1 (ko) 감소된 대역폭 이티 및 디피디 처리장치 및 그 처리방법
US8446979B1 (en) Predistortion with integral crest-factor reduction and reduced observation bandwidth
US9306506B1 (en) Apparatus and methods for dual loop power amplifier digital pre-distortion systems
US20140139286A1 (en) Systems and methods for band-limited adaptation for pa linearization
JP6542120B2 (ja) ワイヤレス通信システムにおける広帯域デジタルプリディストーションのために周波数が広く離間している信号を整合させるための方法及びシステム
US9054652B2 (en) Using fractional delay computations to improve intermodulation performance
US10554183B2 (en) Distortion compensation apparatus and distortion compensation method
Liu et al. On the robustness of look-up table digital predistortion in the presence of loop delay error
Chuang et al. Radio challenges, architectures, and design considerations for wireless infrastructure: Creating the core technologies that connect people around the world
US8525592B2 (en) Power amplification device, transmitter, and power amplification control method
US11271600B2 (en) Transmitters and methods for operating the same
Hammi et al. Digital subband filtering predistorter architecture for wireless transmitters
Pham Contribution to dimensionality reduction of digital predistorter behavioral models for RF power amplifier linearization
KR101470817B1 (ko) 복수의 비선형 증폭기에 대하여 단일 피드백 회로를 사용하는 전치보상 장치 및 방법
US9843346B1 (en) Digital predistortion for a power amplifier and method therefor
US9584168B2 (en) Distortion compensator and distortion compensation method
Lozhkin et al. New low power digital sub-band predistorter for OFDM signals
US20220311462A1 (en) Distortion compensation apparatus and distortion compensation method
Wang Compact Digital Predistortion for Multi-band and Wide-band RF Transmitters
WO2024046581A1 (en) Reduced complexity frequency selective linearization
KR20240016415A (ko) 전력 증폭기의 전하 트래핑 효과들을 위해 전송 신호를 보상하는 시스템들 및 방법들
CN116982256A (zh) 用于支持在具有数字预失真和前馈线性化的发射机系统中的互调分量抑制的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant