CN111430482B - 一种四结砷化镓太阳电池的标准子电池制备方法 - Google Patents

一种四结砷化镓太阳电池的标准子电池制备方法 Download PDF

Info

Publication number
CN111430482B
CN111430482B CN202010356110.7A CN202010356110A CN111430482B CN 111430482 B CN111430482 B CN 111430482B CN 202010356110 A CN202010356110 A CN 202010356110A CN 111430482 B CN111430482 B CN 111430482B
Authority
CN
China
Prior art keywords
cell
preparing
junction
technology
epitaxial wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010356110.7A
Other languages
English (en)
Other versions
CN111430482A (zh
Inventor
薛超
孙强
刘如斌
张启明
张恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 18 Research Institute
Original Assignee
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 18 Research Institute filed Critical CETC 18 Research Institute
Priority to CN202010356110.7A priority Critical patent/CN111430482B/zh
Publication of CN111430482A publication Critical patent/CN111430482A/zh
Application granted granted Critical
Publication of CN111430482B publication Critical patent/CN111430482B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种四结砷化镓太阳电池的标准子电池制备方法,属于太阳电池技术领域,其特征在于:包括:S1、采用金属有机化学气相沉积技术正向生长四结砷化镓太阳电池,在锗衬底上依次生长0.67eV的Ge电池、1.1eV的InGaAs电池、1.5eV的AlGaAs电池、1.95eVAlGaInP电池;S2、以四结砷化镓太阳电池整体为基础,制备0.67eV的Ge标准子电池;S3、以四结砷化镓太阳电池整体为基础,制备1.1eVInGaAs标准子电池;S4、以四结砷化镓太阳电池整体为基础,制备1.5eV的AlGaAs标准子电池;S5、以四结砷化镓太阳电池整体为基础,制备1.95eVAlGaInP标准子电池。

Description

一种四结砷化镓太阳电池的标准子电池制备方法
技术领域
本发明属于太阳电池技术领域,具体涉及一种四结砷化镓太阳电池的标准子电池制备方法。
背景技术
在航天飞行器太阳电池阵的设计阶段,设计参数主要是依据太阳电池单体的测试数据,太阳电池阵通常由大量太阳电池单体组成,太阳电池单体电性能测试结果的微小误差将会对太阳电池阵的设计和研制造成严重影响。如果测试结果偏高,太阳电池阵的实际输出功率就达不到设计要求,造成供电不足;如果测试结果偏低,则会导致太阳电池阵面积、重量以及成本的增加,造成资源的浪费。准确测试太阳电池的电性能参数,尤其是光电转换效率对空间太阳电池阵的设计、研制和生产都至关重要。
对于空间用太阳电池来说,标准测试条件是AM0光谱,这样的标准阳光在地面无法获取,通常采用人造光源来模拟太阳光,即太阳模拟器,来进行太阳电池电性能测试。由于受到技术限制,目前在地面尚无法100%复现AM0光谱。所以,每次测试都需要用AM0光谱标定过的标准子电池对太阳模拟器进行校准。从原理上来说,四个标准子电池应该与四结太阳电池中对应的子电池具有相同的结构,使得四个标准子电池的光谱响应与对应四结太阳电池的子电池光谱响应一致。现有的方法是单独外延生长四个子电池结构,再进行器件工艺制备成标准子电池。这种方法一方面需要进行四次外延工艺,工艺复杂成本较高,另一方面单独生长的子电池结构与四结电池整体生长的子电池结构始终存在差异,导致两者光谱响应存在差异。
本发明旨在开发一种四结砷化镓太阳电池标准子电池制备方法,其产品制备工艺简单,与现有的标准子电池制备方法相比,制备出的标准子电池的光谱响应与对应四结太阳电池的子电池光谱响应一致性更好。
发明内容
本发明为解决公知技术中存在的技术问题,提供一种四结砷化镓太阳电池的标准子电池制备方法,以整体四结砷化镓太阳电池为基础,通过光刻、化学腐蚀、蒸镀电极的技术方法,短路另外三个子电池,得到所需的子电池。
本发明的目的是提供一种四结砷化镓太阳电池的标准子电池制备方法,包括如下步骤:
S1、采用金属有机化学气相沉积技术正向生长四结砷化镓太阳电池,在锗衬底上依次生长0.67eV的Ge电池、1.1eV的InGaAs电池、1.5eV的AlGaAs电池、1.95eV的AlGaInP电池;
S2、以四结砷化镓太阳电池整体为基础,制备0.67eV的Ge标准子电池,具体为:在四结电池外延片正面通过光刻技术制备出上电极栅线图形,通过化学腐蚀技术在栅线图形处腐蚀掉1.95eV的AlGaInP电池、1.5eV的AlGaAs电池、1.1eV的InGaAs电池;采用电子束蒸发技术在外延片正面蒸镀上电极,背面蒸镀下电极;
S3、以四结砷化镓太阳电池整体为基础,制备1.1eV的InGaAs标准子电池;具体为:在四结电池外延片正面通过光刻技术制备出上电极栅线图形,通过化学腐蚀技术在上电极栅线图形处腐蚀掉1.95eV的AlGaInP电池、1.5eV的AlGaAs电池;在四结电池外延片背面通过光刻技术制备出一个微孔图形,通过化学腐蚀技术在微孔区域腐蚀掉Ge衬底、0.67eV的Ge电池;采用电子束蒸发技术在外延片正面蒸镀上电极,背面蒸镀下电极;
S4、 以四结砷化镓太阳电池整体为基础,制备1.5eV的AlGaAs标准子电池;具体为:在四结电池外延片正面通过光刻技术制备出上电极栅线图形,通过化学腐蚀技术在上电极栅线图形处腐蚀掉1.95eV的AlGaInP电池;在四结电池外延片背面通过光刻技术制备出一个微孔图形,通过化学腐蚀技术在微孔区域腐蚀掉Ge衬底、0.67eV的Ge电池、1.1eV的InGaAs电池;采用电子束蒸发技术在外延片正面蒸镀上电极,背面蒸镀下电极;
S5、以四结砷化镓太阳电池整体为基础,制备1.95eV的AlGaInP标准子电池;具体为:在四结电池外延片正面通过光刻技术制备出上电极栅线图形;在四结电池外延片背面通过光刻技术制备出一个微孔图形,通过化学腐蚀技术在微孔区域腐蚀掉Ge衬底、0.67eV的Ge电池、1.1eV的InGaAs电池、1.5eV的AlGaAs电池;采用电子束蒸发技术在外延片正面蒸镀上电极,背面蒸镀下电极。
进一步,所述光刻技术为光刻剥离技术。
更进一步,所述上电极栅线图形包括主栅和细栅。
更进一步,所述化学腐蚀技术,锗衬底与0.67eV的Ge电池采用HF:H2O2:H2O=1:1:10腐蚀溶液腐蚀,1.1eV的InGaAs电池、1.5eV的AlGaAs电池采用H2SO4:H2O2:H2O=5:1:10腐蚀溶液腐蚀,1.95eV的AlGaInP电池采用HCl: H2O=1:1腐蚀溶液腐蚀,腐蚀温度为25℃~40℃,腐蚀时间为1min~60min。
进一步,所述微孔图形为直接20μm~100μm的圆孔。
进一步,所述上电极和下电极至少包括一层金属,所述金属为Ti、Pd、Pt、In、Ge、Au、Ag、Cu中的一种或多种。
进一步,所述上电极栅线的总厚度为1μm~10μm;栅线的宽度为10μm~100μm;栅线间距为100μm~2000μm。
进一步,所述蒸镀下电极为采用电子束蒸发技术整面蒸镀金属电极。
本发明具有的优点和积极效果是:
(1)本发明设计了一种四结砷化镓太阳电池标准子电池的制备方法。现有四结电池标准子电池制备方法需要依据每个子电池的结构进行四次外延生长。本发明与之相比,只需要开展一次外延生长,简化工艺步骤,节约成本。
(2)与现有标准子电池制备技术相比,本发明制备出的标准子电池其光谱响应与对应四结太阳电池的子电池光谱响应一致性更好,更适合用于太阳电池的标定和测试。
附图说明
图1为四结电池外延层结构设计示意图;
图中:101、锗衬底;102、Ge(0.67eV)电池;103、InGaAs(1.1eV)电池;104、AlGaAs(1.5eV)电池;105、AlGaInP(1.95eV)电池;
图2为Ge(0.67eV)标准子电池设计示意图;
图中:201、上电极;202、下电极;
图3为InGaAs(1.1eV)标准子电池结构示意图;
图中:201、上电极;202、下电极;
图4为AlGaAs(1.5eV)标准子电池结构示意图;
图中:201、上电极;202、下电极;
图5为AlGaInP(1.95eV)标准子电池结构示意图;
图中:201、上电极;202、下电极。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
如图1至图5所示,本发明的技术方案为:
一种四结砷化镓太阳电池的标准子电池制备方法,包括:
请查阅图1、 采用金属有机化学气相沉积技术(MOCVD)正向生长四结砷化镓太阳电池,在锗衬底101上依次生长Ge(0.67eV)电池102、InGaAs(1.1eV)电池103、AlGaAs(1.5eV)电池104、AlGaInP(1.95eV)电池105。
请查阅图2、 以四结砷化镓太阳电池整体为基础制备Ge(0.67eV)标准子电池。在四结电池外延片正面通过光刻技术制备出上电极栅线图形,通过化学腐蚀技术在栅线图形处腐蚀掉AlGaInP(1.95eV)电池、AlGaAs(1.5eV)电池、InGaAs(1.1eV)电池。采用电子束蒸发技术在外延片正面蒸镀上电极201,背面蒸镀下电极202。
请查阅图3、 以四结砷化镓太阳电池整体为基础制备InGaAs(1.1eV)标准子电池。在四结电池外延片正面通过光刻技术制备出上电极栅线图形,通过化学腐蚀技术在上电极栅线图形处腐蚀掉AlGaInP(1.95eV)电池、AlGaAs(1.5eV)电池。在四结电池外延片背面通过光刻技术制备出一个微孔图形,通过化学腐蚀技术在微孔区域腐蚀掉Ge衬底、Ge(0.67eV)电池。采用电子束蒸发技术在外延片正面蒸镀上电极,背面蒸镀下电极。
请查阅图4、 以四结砷化镓太阳电池整体为基础制备AlGaAs(1.5eV)标准子电池。在四结电池外延片正面通过光刻技术制备出上电极栅线图形,通过化学腐蚀技术在上电极栅线图形处腐蚀掉AlGaInP(1.95eV)电池。在四结电池外延片背面通过光刻技术制备出一个微孔图形,通过化学腐蚀技术在微孔区域腐蚀掉Ge衬底、Ge(0.67eV)电池、InGaAs(1.1eV)电池。采用电子束蒸发技术在外延片正面蒸镀上电极,背面蒸镀下电极。
请查阅图5、 以四结砷化镓太阳电池整体为基础制备AlGaInP(1.95eV)标准子电池。在四结电池外延片正面通过光刻技术制备出上电极栅线图形。在四结电池外延片背面通过光刻技术制备出一个微孔图形,通过化学腐蚀技术在微孔区域腐蚀掉Ge衬底、Ge(0.67eV)电池、InGaAs(1.1eV)电池、AlGaAs(1.5eV)电池。采用电子束蒸发技术在外延片正面蒸镀上电极,背面蒸镀下电极。
所述四结砷化镓太阳能电池的制备工艺为传统正向外延生长技术;
所述光刻技术为现有光刻剥离技术(Liftoff);
所述上电极栅线图形包括主栅和细栅;
所述化学腐蚀技术,锗衬底与Ge(0.67eV)电池采用HF:H2O2:H2O=1:1:10腐蚀溶液腐蚀,InGaAs(1.1eV)电池、AlGaAs(1.5eV)电池采用H2SO4:H2O2:H2O=5:1:10腐蚀溶液腐蚀,AlGaInP(1.95eV)电池采用HCl: H2O=1:1腐蚀溶液腐蚀,腐蚀温度25℃~40℃,腐蚀时间1min~60min;
所述微孔图形为直接20μm~100μm的圆孔;
所述上下电极至少包括一层金属,金属选自Ti、Pd、Pt、In、Ge、Au、Ag、Cu及其组合;
所述上电极栅线的总厚度为1μm~10μm;栅线的宽度为10μm~100μm;栅线间距为100μm~2000μm;
所述蒸镀下电极为采用电子束蒸发技术整面蒸镀金属电极。
以上所述仅是对本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

Claims (8)

1.一种四结砷化镓太阳电池的标准子电池制备方法,其特征在于:包括如下步骤:
S1、采用金属有机化学气相沉积技术正向生长四结砷化镓太阳电池,在锗衬底上依次生长0.67eV的Ge电池、1.1eV的InGaAs电池、1.5eV的AlGaAs电池、1.95eV的AlGaInP电池;
S2、以四结砷化镓太阳电池整体为基础,制备0.67eV的Ge标准子电池,具体为:在四结电池外延片正面通过光刻技术制备出上电极栅线图形,通过化学腐蚀技术在栅线图形处腐蚀掉1.95eV的AlGaInP电池、1.5eV的AlGaAs电池、1.1eV的InGaAs电池;采用电子束蒸发技术在外延片正面蒸镀上电极,背面蒸镀下电极;
S3、以四结砷化镓太阳电池整体为基础,制备1.1eV的InGaAs标准子电池;具体为:在四结电池外延片正面通过光刻技术制备出上电极栅线图形,通过化学腐蚀技术在上电极栅线图形处腐蚀掉1.95eV的AlGaInP电池、1.5eV的AlGaAs电池;在四结电池外延片背面通过光刻技术制备出一个微孔图形,通过化学腐蚀技术在微孔区域腐蚀掉Ge衬底、0.67eV的Ge电池;采用电子束蒸发技术在外延片正面蒸镀上电极,背面蒸镀下电极;
S4、 以四结砷化镓太阳电池整体为基础,制备1.5eV的AlGaAs标准子电池;具体为:在四结电池外延片正面通过光刻技术制备出上电极栅线图形,通过化学腐蚀技术在上电极栅线图形处腐蚀掉1.95eV的AlGaInP电池;在四结电池外延片背面通过光刻技术制备出一个微孔图形,通过化学腐蚀技术在微孔区域腐蚀掉Ge衬底、0.67eV的Ge电池、1.1eV的InGaAs电池;采用电子束蒸发技术在外延片正面蒸镀上电极,背面蒸镀下电极;
S5、以四结砷化镓太阳电池整体为基础,制备1.95eV的AlGaInP标准子电池;具体为:在四结电池外延片正面通过光刻技术制备出上电极栅线图形;在四结电池外延片背面通过光刻技术制备出一个微孔图形,通过化学腐蚀技术在微孔区域腐蚀掉Ge衬底、0.67eV的Ge电池、1.1eV的InGaAs电池、1.5eV的AlGaAs电池;采用电子束蒸发技术在外延片正面蒸镀上电极,背面蒸镀下电极。
2.根据权利要求1所述的四结砷化镓太阳电池的标准子电池制备方法,其特征在于,所述光刻技术为光刻剥离技术。
3.根据权利要求1或2所述的四结砷化镓太阳电池的标准子电池制备方法,其特征在于,所述上电极栅线图形包括主栅和细栅。
4.根据权利要求3所述的四结砷化镓太阳电池的标准子电池制备方法,其特征在于,所述化学腐蚀技术,锗衬底与0.67eV的Ge电池采用HF:H2O2:H2O=1:1:10腐蚀溶液腐蚀,1.1eV的InGaAs电池、1.5eV的AlGaAs电池采用H2SO4:H2O2:H2O=5:1:10腐蚀溶液腐蚀,1.95eV的AlGaInP电池采用HCl: H2O=1:1腐蚀溶液腐蚀,腐蚀温度为25℃~40℃,腐蚀时间为1min~60min。
5.根据权利要求3所述的四结砷化镓太阳电池的标准子电池制备方法,其特征在于,所述微孔图形为直接20μm~100μm的圆孔。
6.根据权利要求3所述的四结砷化镓太阳电池的标准子电池制备方法,其特征在于,所述上电极和下电极至少包括一层金属,所述金属为Ti、Pd、Pt、In、Au、Ag、Cu中的一种或多种。
7.根据权利要求3所述的四结砷化镓太阳电池的标准子电池制备方法,其特征在于,所述上电极栅线的总厚度为1μm~10μm;栅线的宽度为10μm~100μm;栅线间距为100μm~2000μm。
8.根据权利要求3所述的四结砷化镓太阳电池的标准子电池制备方法,其特征在于,所述蒸镀下电极为采用电子束蒸发技术整面蒸镀金属电极。
CN202010356110.7A 2020-04-29 2020-04-29 一种四结砷化镓太阳电池的标准子电池制备方法 Active CN111430482B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010356110.7A CN111430482B (zh) 2020-04-29 2020-04-29 一种四结砷化镓太阳电池的标准子电池制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010356110.7A CN111430482B (zh) 2020-04-29 2020-04-29 一种四结砷化镓太阳电池的标准子电池制备方法

Publications (2)

Publication Number Publication Date
CN111430482A CN111430482A (zh) 2020-07-17
CN111430482B true CN111430482B (zh) 2022-08-02

Family

ID=71558513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010356110.7A Active CN111430482B (zh) 2020-04-29 2020-04-29 一种四结砷化镓太阳电池的标准子电池制备方法

Country Status (1)

Country Link
CN (1) CN111430482B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090359A1 (ja) * 2010-12-28 2012-07-05 コニカミノルタセンシング株式会社 擬似参照セルおよび擬似参照セルシステム
CN102790118A (zh) * 2012-07-19 2012-11-21 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAs/Ge四结太阳能电池及其制备方法
WO2014097512A1 (ja) * 2012-12-17 2014-06-26 コニカミノルタ株式会社 太陽電池用標準セル
CN206003783U (zh) * 2016-08-26 2017-03-08 扬州乾照光电有限公司 一种锗基砷化镓多结柔性薄膜太阳电池
CN110034196A (zh) * 2019-04-29 2019-07-19 中国计量科学研究院 标定am0太阳模拟器辐射照度的标准太阳电池阵及制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090359A1 (ja) * 2010-12-28 2012-07-05 コニカミノルタセンシング株式会社 擬似参照セルおよび擬似参照セルシステム
CN102790118A (zh) * 2012-07-19 2012-11-21 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAs/Ge四结太阳能电池及其制备方法
WO2014097512A1 (ja) * 2012-12-17 2014-06-26 コニカミノルタ株式会社 太陽電池用標準セル
CN206003783U (zh) * 2016-08-26 2017-03-08 扬州乾照光电有限公司 一种锗基砷化镓多结柔性薄膜太阳电池
CN110034196A (zh) * 2019-04-29 2019-07-19 中国计量科学研究院 标定am0太阳模拟器辐射照度的标准太阳电池阵及制造方法

Also Published As

Publication number Publication date
CN111430482A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
Geisz et al. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration
Borgström et al. Towards nanowire tandem junction solar cells on silicon
US5944913A (en) High-efficiency solar cell and method for fabrication
Schnabel et al. Three-terminal III–V/Si tandem solar cells enabled by a transparent conductive adhesive
Karam et al. Development and characterization of high-efficiency Ga/sub 0.5/In/sub 0.5/P/GaAs/Ge dual-and triple-junction solar cells
US10700232B1 (en) Inverted metamorphic multijunction solar cells with doped alpha layer
TW200941741A (en) Heterojunction subcells in inverted metamorphic multijunction solar cells
WO2012174952A1 (zh) 一种高倍聚光多结太阳能电池及其制备方法
Baba et al. Feasibility study of two‐terminal tandem solar cells integrated with smart stack, areal current matching, and low concentration
CN111430482B (zh) 一种四结砷化镓太阳电池的标准子电池制备方法
Gai et al. Printed assemblies of microscale triple‐junction inverted metamorphic GaInP/GaAs/InGaAs solar cells
Wang et al. Current matched GaAsP/SiGe tandem device on Si over 20% efficiency under indoor measurement
Laucher et al. Self‐powered light‐induced plating for III‐V/Ge triple‐junction solar cell metallization
Jian et al. Performance improvement of III–V compound solar cells using nanomesh electrode and nanostructured antireflection structures
CN102723404B (zh) 倒置生长宽谱吸收iii-v多结电池的制备方法
Wang et al. GaAsP top solar cell of three-terminal GaAsP/SiGe on Si tandem solar cells
CN110098273B (zh) 多结砷化镓太阳电池单体集成内联组件的制备方法
Tang et al. Improving the Performance of Solar Cells Under Non-Perpendicular Incidence by Photonic Crystal
Stanbery et al. Lightweight tandem GaAs/CuInSe/sub 2/solar cells
Tseng et al. Performance improvement mechanisms of pyramid-like via hole recessed GaAs-based solar cells grown on Si wafer
US11563134B2 (en) Systems and methods for three-terminal tandem solar cells
CN219476692U (zh) 一种具有碳化硅接触层的砷化镓太阳能电池
Wickham et al. Recent advancements in monolithic AlGaAs/GaAs solar cells for space applications
CN111599881B (zh) 一种单晶氧化亚铜复合半导体纳米发电机及其制造方法
MacMillan et al. Recent advances in multi-junction III–V solar cell development

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant