CN111429977B - 一种新的基于图结构注意力的分子相似性搜索算法 - Google Patents
一种新的基于图结构注意力的分子相似性搜索算法 Download PDFInfo
- Publication number
- CN111429977B CN111429977B CN201910839118.6A CN201910839118A CN111429977B CN 111429977 B CN111429977 B CN 111429977B CN 201910839118 A CN201910839118 A CN 201910839118A CN 111429977 B CN111429977 B CN 111429977B
- Authority
- CN
- China
- Prior art keywords
- molecular
- similarity
- attention
- molecules
- graph
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010845 search algorithm Methods 0.000 title claims abstract description 12
- 238000004364 calculation method Methods 0.000 claims abstract description 44
- 239000013598 vector Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000012549 training Methods 0.000 claims abstract description 30
- 238000010586 diagram Methods 0.000 claims abstract description 14
- 238000013528 artificial neural network Methods 0.000 claims abstract description 13
- 230000007246 mechanism Effects 0.000 claims abstract description 12
- 230000006870 function Effects 0.000 claims description 11
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 4
- 238000012795 verification Methods 0.000 claims description 3
- 230000001537 neural effect Effects 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 150000003384 small molecules Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 4
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000003041 virtual screening Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000000547 structure data Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/20—Identification of molecular entities, parts thereof or of chemical compositions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/70—Machine learning, data mining or chemometrics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910839118.6A CN111429977B (zh) | 2019-09-05 | 2019-09-05 | 一种新的基于图结构注意力的分子相似性搜索算法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910839118.6A CN111429977B (zh) | 2019-09-05 | 2019-09-05 | 一种新的基于图结构注意力的分子相似性搜索算法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111429977A CN111429977A (zh) | 2020-07-17 |
CN111429977B true CN111429977B (zh) | 2024-02-13 |
Family
ID=71546803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910839118.6A Active CN111429977B (zh) | 2019-09-05 | 2019-09-05 | 一种新的基于图结构注意力的分子相似性搜索算法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111429977B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111916143B (zh) * | 2020-07-27 | 2023-07-28 | 西安电子科技大学 | 基于多样子结构特征融合的分子活性预测方法 |
CN111755078B (zh) * | 2020-07-30 | 2022-09-23 | 腾讯科技(深圳)有限公司 | 药物分子属性确定方法、装置及存储介质 |
CN111949792B (zh) * | 2020-08-13 | 2022-05-31 | 电子科技大学 | 一种基于深度学习的药物关系抽取方法 |
CN112132223B (zh) * | 2020-09-27 | 2024-02-27 | 腾讯科技(深圳)有限公司 | 图池化方法、装置、设备以及存储介质 |
CN114417986A (zh) * | 2022-01-11 | 2022-04-29 | 平安科技(深圳)有限公司 | 基于人工智能的药物特征信息确定方法及装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016142285A1 (en) * | 2015-03-06 | 2016-09-15 | Thomson Licensing | Method and apparatus for image search using sparsifying analysis operators |
CN106649423A (zh) * | 2016-06-23 | 2017-05-10 | 新乡学院 | 一种基于内容相关度的检索模型计算方法 |
CN106709277A (zh) * | 2016-11-21 | 2017-05-24 | 南京邮电大学 | 基于文本挖掘的g蛋白偶联受体药物靶标分子的向量生成方法 |
CN107709576A (zh) * | 2015-04-13 | 2018-02-16 | 优比欧迈公司 | 用于神经系统健康问题的微生物组来源的诊断和治疗的方法及系统 |
CN108205613A (zh) * | 2017-12-11 | 2018-06-26 | 华南理工大学 | 一种化合物分子间相似度的计算方法及系统与它们的应用 |
CN108875298A (zh) * | 2018-06-07 | 2018-11-23 | 北京计算科学研究中心 | 基于分子形状匹配的药物筛选方法 |
CN109389055A (zh) * | 2018-09-21 | 2019-02-26 | 西安电子科技大学 | 基于混合卷积和注意力机制的视频分类方法 |
CN109712678A (zh) * | 2018-12-12 | 2019-05-03 | 中国人民解放军军事科学院军事医学研究院 | 关系预测方法、装置及电子设备 |
CN109791797A (zh) * | 2016-12-05 | 2019-05-21 | 智慧芽信息科技(苏州)有限公司 | 在大数据库中根据化学结构相似性搜索和显示可用信息的系统、装置和方法 |
-
2019
- 2019-09-05 CN CN201910839118.6A patent/CN111429977B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016142285A1 (en) * | 2015-03-06 | 2016-09-15 | Thomson Licensing | Method and apparatus for image search using sparsifying analysis operators |
CN107709576A (zh) * | 2015-04-13 | 2018-02-16 | 优比欧迈公司 | 用于神经系统健康问题的微生物组来源的诊断和治疗的方法及系统 |
CN106649423A (zh) * | 2016-06-23 | 2017-05-10 | 新乡学院 | 一种基于内容相关度的检索模型计算方法 |
CN106709277A (zh) * | 2016-11-21 | 2017-05-24 | 南京邮电大学 | 基于文本挖掘的g蛋白偶联受体药物靶标分子的向量生成方法 |
CN109791797A (zh) * | 2016-12-05 | 2019-05-21 | 智慧芽信息科技(苏州)有限公司 | 在大数据库中根据化学结构相似性搜索和显示可用信息的系统、装置和方法 |
CN108205613A (zh) * | 2017-12-11 | 2018-06-26 | 华南理工大学 | 一种化合物分子间相似度的计算方法及系统与它们的应用 |
CN108875298A (zh) * | 2018-06-07 | 2018-11-23 | 北京计算科学研究中心 | 基于分子形状匹配的药物筛选方法 |
CN109389055A (zh) * | 2018-09-21 | 2019-02-26 | 西安电子科技大学 | 基于混合卷积和注意力机制的视频分类方法 |
CN109712678A (zh) * | 2018-12-12 | 2019-05-03 | 中国人民解放军军事科学院军事医学研究院 | 关系预测方法、装置及电子设备 |
Non-Patent Citations (1)
Title |
---|
一种改进的图像场景识别算法;申龙斌,李臻,魏志强,刘昊;中国海洋大学学报;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111429977A (zh) | 2020-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111429977B (zh) | 一种新的基于图结构注意力的分子相似性搜索算法 | |
CN110298037B (zh) | 基于增强注意力机制的卷积神经网络匹配的文本识别方法 | |
CN110070909B (zh) | 一种基于深度学习的融合多特征的蛋白质功能预测方法 | |
CN111931505A (zh) | 一种基于子图嵌入的跨语言实体对齐方法 | |
CN112733866A (zh) | 一种提高可控图像文本描述正确性的网络构建方法 | |
CN108765383A (zh) | 基于深度迁移学习的视频描述方法 | |
CN110941734A (zh) | 基于稀疏图结构的深度无监督图像检索方法 | |
CN113571125A (zh) | 基于多层网络与图编码的药物靶点相互作用预测方法 | |
CN114925238B (zh) | 一种基于联邦学习的视频片段检索方法及系统 | |
CN110993037A (zh) | 一种基于多视图分类模型的蛋白质活性预测装置 | |
CN115148302A (zh) | 一种基于图神经网络与多任务学习的化合物性质预测方法 | |
CN114999565A (zh) | 一种基于表示学习和图神经网络的药物靶标亲和力预测方法 | |
CN115995293A (zh) | 一种环状rna和疾病关联预测方法 | |
CN114022687B (zh) | 一种基于增强学习的图像描述对抗生成方法 | |
CN118155746A (zh) | 一种预测分子性质的双通道对比模型 | |
Termritthikun et al. | Evolutionary neural architecture search based on efficient CNN models population for image classification | |
CN109784404A (zh) | 一种融合标签信息的多标签分类原型系统及方法 | |
CN117828024A (zh) | 一种插件检索方法、装置、存储介质及设备 | |
CN109492770A (zh) | 一种基于个性化关系排序的属性网络嵌入方法 | |
CN116883746A (zh) | 一种基于分区池化超图神经网络的图节点分类方法 | |
CN116978464A (zh) | 数据处理方法、装置、设备以及介质 | |
CN116646001A (zh) | 基于联合式跨域注意力模型预测药物靶标结合性的方法 | |
WO2023148684A1 (en) | Local steps in latent space and descriptors-based molecules filtering for conditional molecular generation | |
CN115905493A (zh) | 一种基于共享编码和协同注意力的知识图谱问答方法 | |
CN115862767A (zh) | 基于图学习的抗lrrk2小分子药物预测和筛选方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: No. 238 Songling Road, Laoshan District, Qingdao City, Shandong Province Patentee after: OCEAN University OF CHINA Country or region after: China Patentee after: Qingdao Marine Science and Technology Center Address before: 266100 Shandong Province, Qingdao city Laoshan District Songling Road No. 238 Patentee before: OCEAN University OF CHINA Country or region before: China Patentee before: QINGDAO NATIONAL LABORATORY FOR MARINE SCIENCE AND TECHNOLOGY DEVELOPMENT CENTER |
|
CP03 | Change of name, title or address |