游标卡尺检定装置
技术领域
本发明涉及一种检定装置,具体涉及一种游标卡尺检定装置。
背景技术
中国专利CN201510026518.7公开了一种游标卡尺检定装置,包括基座,还包括:移动平台,滑动设置在基座上;第一夹具,设置在移动平台上,用于固定游标卡尺的尺身;第二夹具,固定设置在基座上,用于固定游标卡尺的游标;图像采集装置,固定设置在基座上,用于采集游标卡尺的刻度图像;光栅尺,包括滑动配合的指示光栅和标尺光栅,其中指示光栅固定在基座上,标尺光栅固定在移动平台上。本发明采用精密度高的光栅尺代替检定用标准量块作为检定标准,提高了游标卡尺检定装置的精密度,并且整个检定过程可自动操作,节省人力,提高了检定效率。该种游标卡尺自动检定装置从理论上提供一种利用光栅尺和机器视觉进行结合来进行游标卡尺部分待检项目的,该种测量装置利用光栅尺的读数作为基准,利用机器视觉拍摄的游标卡尺读数作为测量值,但是与游标卡尺检定的标准中采用组合块规对游标卡尺的相关项目进行检测存在本质不同,块规与游标卡尺的量爪的工作面接触,计算块规的组合值与游标卡尺的读数进行比较。块规与量爪的工作面接触时,两者之间相互挤压,从而模拟实际测量的环境。
除了上述技术问题,中国专利CN201510026518.7中图像采集装置固定在基座上,图像采集区域受限,不能适应游标卡尺量程内任意位置的测量。现有的自动检定设备中,光栅尺的指示光栅与游标卡尺的主尺不直接接触,这对光栅尺的安装精确以及游标卡尺中主尺的定位精确提出了较高的要求。另外更换不同类型的待检定的游标卡尺,需要对系统参数进行调剂,从而标定游标卡尺和光栅尺的零点重合。
发明内容
本发明针对上述技术问题,提供了一种游标卡尺检定装置,能够模拟实际测量环境即与游标卡尺的量爪产生相互作用力且作用力能够调节,精确检定游标卡尺的相关项目。
本发明采用的技术方案如下:一种游标卡尺检定装置,包括基座,基座上设置托架,托架上设置主尺夹持机构,游标卡尺放置在主尺夹持机构上,游尺夹持机构与托架滑动连接;
第一驱动机构固定在基座上,游尺夹持机构固定在第一传动机构的输出端,第一传动机构与第一驱动机构相连以驱动游尺相对主尺滑动;图像采集装置设置在托架的上方,图像采集装置至少具有能够沿游标卡尺运动方向滑动的自由度,图像采集装置用于采集游标卡尺的刻度图像;恒负载弹簧还包括内卡尺接触测量机构、外卡尺接触测量机构和横移机构,内卡尺接触机构和外卡尺接触测量机构相对设置托架的两侧,横移机构带动基座及其上部件在内卡尺接触机构和外卡尺接触测量机构之间运动。
进一步的,内卡尺接触机构包括光栅尺、测量卡爪机构和第一力控机构,光栅尺沿游尺滑动方向平行设置在其一侧,光栅尺包括滑动配合的指示光栅和标尺光栅,指示光栅固定在基座上,测量卡爪机构包括固定端测量头和移动端测量头,固定端测量头与指示光栅固连,移动端测量头与标尺光栅固连,第三驱动机构固定在基座上,第三驱动机构通过第三传动机构带动移动平板运动,移动端测量头与移动平板通过第一力控机构相连,第一力控机构控制移动端测量头与移动平板之间的相互作用力。
进一步的,第一力控机构包括对称设置的两组压力感应机构,压力感应机构包括压力传感器和圆筒弹簧,两组圆筒弹簧通过支架安装在移动平板的两端,压力传感器与移动端测量头固连且位于两组圆筒弹簧之间。
进一步的,还包括第二驱动机构,第二驱动机构固定在基座上,第二驱动机构与第二传动机构相连以驱动安装座运动,主尺夹持机构与安装座通过第二力控机构相连,第二力控机构控制用于控制安装座与主尺夹持机构之间的相互作用力。
进一步的,还包括恒压负载机构,恒压负载机构滑动设置在托架上,恒压负载机构设置在尺身远离主尺的一端。
进一步的,还包括深度光栅尺,深度光栅尺的标尺光栅与恒压负载机构固连。
进一步的,游尺夹持机构包括横移气缸和与横移气缸配合的两个拖动杆,横移气缸带动拖动杆沿垂直于尺身方向运动,游标卡尺放置在游尺支持机构上,横移气缸带动拖动杆靠近游标卡尺将,拖动杆与微动装置的两侧接触并相互挤压,第一驱动装置带动游尺夹持机构远离主尺。
进一步的,主尺夹持机构包括至少一个侧推气缸和与侧推气缸配合的挡块,侧推气缸和挡块设置在游标卡尺的两侧分别对游标卡尺的两侧面进行定位,竖推气缸与挡块分别与游标卡尺的上下两端面进行定位。
进一步的,还包括料仓和三轴直角坐标机械手料仓设置在基座上且位于托架的一侧,三轴直角坐标机械手带动末端抓手从料仓中抓取游标卡尺放置到主尺夹持机构上。
进一步的,图像采集装置安装在三轴直角坐标机械手的末端法兰上。
本发明具有的有益效果:(1)通过设置内卡尺接触测量机构、外卡尺接触测量机构从而模拟实际的人工检定过程,保证检定结果的科学性;(2)该装置能够对常用的游标卡尺种类进行检定,包括宽度、宽度差,圆弧内量爪的尺寸偏差和平行度,刀口内量爪的平行度,零值误差,示值误差及其变动性,数显游标卡尺的示数变动性,数显卡尺的细分误差等。
附图说明
图1 为本发明装置的结构示意图。
图2 为本发明装置中内卡尺接触测量机构的结构示意图。
图3 为本发明装置中内卡尺接触测量机构另一视角的结构示意图。
图4 为本发明装置中恒压负载机构和深度光栅尺的结结构示意图。
图5 为图1中局部结构示意图。
图6 为图5中局部结构放大示意图。
图中:1.基座;2.主尺夹持机构;3.游尺夹持机构;4.光栅尺;4-1.移动端测量头;4-2.固定端测量头;5.第三驱动机构;5-1.移动平板;6.第二驱动机构;7.第二力控机构;8.横移机构;9.恒压负载机构;9-1.滑轨;9-2.推板;9-3.恒负载弹簧;10.深度光栅尺;11.第一力控机构;11-1.圆筒弹簧;11-2.压力传感器;11-3.推送气缸;12.托架;13.第一驱动机构。
具体实施方式
如图1所示,一种游标卡尺检定装置,包括基座1,基座1上设置托架12,托架12上设置主尺夹持机构2,游标卡尺放置在主尺夹持机构2上,游尺夹持机构3滑动与托架12滑动连接;第一驱动机构13固定在基座1上,游尺夹持机构3固定在第一传动机构的输出端,第一传动机构与第一驱动机构13相连以驱动游尺夹持机构3沿托架12滑动,为了滑行的稳定性,可以在托盘的下方设置滑轨,从而游尺的滑行起到导向作用;图像采集装置设置在托架12的上方,图像采集装置至少具有沿游标卡尺运动方向滑动的自由度,图像采集装置用于采集游标卡尺的刻度图像,为了减少驱动机构的数量,可以将图像采集装置与游尺夹持机构3固连,为了通过保证图像采集装置所采集图像的精确性,可以在将图像采集装置固定直角坐标机械手的末端法兰上,直角坐标机械手可以为一维直角坐标机械手、两维竖直直角坐标机械手或者三轴直角坐标机械手,本实施例中,采用三轴直角坐标机械手,图像采集装置可以对游标卡尺进行粗读和精读相结合,为了方便图像采集装置取像和空间布置,将第一驱动机构13及第一传动机构设置在游尺支持机构的下方。
如图1、图2所示,还包括内卡尺接触测量机构和外卡尺接触测量机构,内卡尺接触机构和外卡尺接触测量机构相对设置托架12的两侧,横移机构8带动基座1及其上部件沿垂直于托架12的方向运动,即靠近或者远离光栅尺4,从而移动端测量头4-1能够伸入主尺刀口与游尺刀口之间。一般的游标卡尺均包括内测量爪和外测量爪,从而需要设置两组卡尺接触测量机构,对于只有一组测量爪的游标卡尺,可以选择其中一组卡尺接触测量机构(内卡尺接触测量机构和外卡尺接触测量机构)即可。优选的,内卡尺接触测量机构和外卡尺接触测量机构的结构设置相同, 从而增加通用性。
如图2、图3,内卡尺接触测量机构包括第一框架板、光栅尺4、测量爪卡机构和第一力控机构11,第一框架板固定在基座1上,光栅尺4设置在第一框架板远离托架12的一侧,第一光栅尺4沿游尺滑动方向平行设置在其一侧,光栅尺4包括指示光栅和标尺光栅,指示光栅固定在基座1上,测量卡爪机构包括固定端测量头4-2和移动端测量头4-1,固定端测量头4-2与指示光栅固连,优选的,固定端测量头4-2与指示光栅的端部平齐从而方便差值的标记,移动端测量头4-1与标尺光栅通过连接板固连,第三驱动机构5固定在第一框架板的另一侧面,第三驱动机构5通过第三传动机构带动移动平板5-1沿游尺运动方向移动,第一力控机构11设置在移动端测量头4-1与移动平板5-1之间用于检测两者之间的相互作用力。
第一力控机构11包括背对背对称设置的两组压力感应机构,压力感应机构包括压力传感器11-2和圆筒弹簧11-1,组圆筒弹簧11-1通过支架安装在移动平板5-1的两端,压力传感器11-2固定设置在连接板的上端面,连接板的的一侧与移动端测量头4-1固连,压力传感器11-2且位于两组圆筒弹簧11-1之间,弹簧压头的一端固连在两端圆筒弹簧11-1相邻的端部,压力传感器11-2与弹簧压头存在间隙,初始状态下,弹簧压头与压力传感器11-2不接触。如图所示,本实施例中,移动端测量头4-1竖直设置,方便对量爪的平行度进行测量。
第三驱动机构5带动移动平板5-1远离主尺时,圆筒弹簧11-1通过弹簧压头与压力传感器11-2接触进而推动移动端测量头4-1沿托架12滑行,从而得出作为标准值的光栅尺4读数,移动端测量头4-1与游尺刀口接触后,游尺刀口阻挡移动端测量头4-1随移动平板5-1继续运动,压力传感器11-2与其接触的圆筒弹簧11-1之间的相互作用力增大,达到压力传感器11-2的预设值后,第三驱动机构5停止运动,在整个测量过程中可以保持夹持力从而精确模拟人工检定。圆筒弹簧11-1受力容易变形,为了保证圆筒弹簧11-1推动移动端测量头4-1运动的方向性,设置导向部,导向部设置在移动端测量头4-1与移动平板5-1之间,导向部包括导向滑轨和嵌套在滑轨上的滑块,滑轨沿游尺滑行方向设置在移动平板5-1上,滑块与移动端测量头4-1固连,设置导向部一方面可以移动端测量头4-1的运动进行导向,还可以控制圆筒弹簧11-1沿自身轴线进行伸缩,以及减少光栅尺4的磨损。
如图5、图6所示,为了简化光栅尺4和主尺安装精度的要求,设置第二驱动机构6,第二驱动机构6固定在基座1上,为了方便图像采集装置读数,第二驱动机构6设置在游尺夹持机构3的下方,安装座固定在第二传动机构的输出端,第二驱动机构6与第二传动机构相连以驱动安装座沿游尺运动方向滑动;安装座与主尺夹持机构2通过第二力控机构7相连,第二力控机构7控制用于控制安装座与主尺夹持机构2之间的相互作用力。
第二力控机构7包括两组背对背设置的压力感应机构,压力感应机构包括压力传感器11-2和圆筒弹簧11-1,两组圆筒弹簧11-1对称设置在安装座的两端,压力传感器11-2与主尺机构机构2固连,压力传感器11-2位于在两组圆筒弹簧11-1之间,第二驱动机构6带动主尺夹持机构2运动的原理与第三驱动机构5带动移动端测量头4-1运动以及力控实现的原理相同;固定端测量头4-2与主尺刀口接触,从而第二力控机构用于控制固定端测量头4-2与主尺刀口之间的相互作用力,从而模拟人工测量时,量块与游标卡尺刀口两端的接触力。
第一力控机构11还包括两组推送气缸11-3,两组推送气缸11-3对称设置在两组压力传感机构的外侧,两组推送气缸11-3对称设置在移动平板5-1上的两端,推送气缸11-3的输出端分别与推杆相连,推送气缸11-3伸出,推杆推动压力传感器11-2与弹簧压头接触,从而将移动端测量头4-1与移动平板5-1紧密接触,使得力控机构停用;第二力控机构7也可以设置两组推送气缸11-3,安装与作用原理与第一力控机构11中推送气缸11-3相同。
第二驱动机构6带动主尺夹持机构2沿托架12滑动,横移机构8带动基座1运动,固定端测量头4-2与主尺刀口贴合,从而实现固定端测量头4-2与游标卡尺标记点(通常为零点)重合。更换多种待检定游标卡尺的规格时,通过第二力控机构7可以实现固定端测量头4-2和游尺卡尺预定标记点重合。
如图1、图4所示,还包括恒压负载机构9,恒压负载机构9滑动设置在托架12上,恒压负载机构9设置在尺身远离主尺的一端,恒压负载机构9包括滑轨9-1、推板9-2和恒负载弹簧9-3,滑轨9-1按游尺运动方向设置在托架12的上端面,推板9-2中开有朝向游尺的推动槽,恒负载弹簧9-3设置在推板9-1的一侧且与推板9-2固连,深度测量杆伸入推板9-2的推动槽中,推动槽与深度测量杆的接触面与深度光栅尺10的零点重合。
游尺沿托架12滑动时推动推板9-2沿滑轨9-1滑行,游尺夹持机构3在第一驱动机构13的带动下相对尺身滑动,深度测量杆相对尺身滑动,深度测量杆与恒负载弹簧接触,保持游尺夹持机构3运动过程的推力恒定,另一方面也相当于与深度测量杆相互接触的力控装置。
如图4所示,深度光栅尺104设置在恒压负载机构9的一侧,深度光栅尺104的指示光栅的一端与恒压负载机构9靠近尺身的一端平齐,深度光栅尺104的标尺光栅与恒压负载机构9固连,第二驱动机构6带动主尺尺身与恒压负载机构9接触,从而实现游标卡尺深度测量杆检定时的预定零点重合,恒压负载机构9与深度测量杆保持相互作用力,模拟人工检定情况,另一方面,恒压负载机构9可以推动深度测量杆回位。
如图5所示,主尺夹持机构2包括至少一个侧推气缸和与侧推气缸配合的挡块,侧推气缸和挡块设置在游标卡尺的两侧分别对游标卡尺的两侧面进行定位,本实施例中优选的,沿托架12设置三组侧推气缸和挡块,侧推气缸和挡块之间固连。优选的,还设置一个竖推气缸和与竖推气缸配合的挡块,侧推气缸和竖推气缸分别对游标卡尺的两侧面及上下两端面进行定位。
如图5所示,游尺夹持机构3包括横移气缸和与横移气缸配合的两个拖动杆,横移气缸带动拖动杆沿垂直于尺身方向运动,游标卡尺放置在游尺支持机构上,横移气缸带动拖动杆靠近游标卡尺将,拖动杆与微动机构的两侧接触并相互挤压,第一驱动机构13带动游尺夹持机构3远离主尺,恒压负载机构10推动游尺回位。
为了实现游标卡尺的自动检定的自动化程度,设置三轴直角坐标机械手,游标夹爪安装在三轴直角坐标机械手的末端法兰,游标卡尺料仓设置在基座1的一侧,三轴直角坐标机械带动游标夹爪从游标卡尺料仓抓取游标卡尺放置到主尺夹持机构2上。
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。