CN111420053B - 一种可胞内聚集的多功能磁性纳米粒复合物及其制备方法 - Google Patents

一种可胞内聚集的多功能磁性纳米粒复合物及其制备方法 Download PDF

Info

Publication number
CN111420053B
CN111420053B CN202010253851.2A CN202010253851A CN111420053B CN 111420053 B CN111420053 B CN 111420053B CN 202010253851 A CN202010253851 A CN 202010253851A CN 111420053 B CN111420053 B CN 111420053B
Authority
CN
China
Prior art keywords
mnps
asa
icg
cbt
peg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010253851.2A
Other languages
English (en)
Other versions
CN111420053A (zh
Inventor
谢民强
钟颖
纳文·库马尔·贝扬基
黎权明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Peoples Hospital
Original Assignee
Zhuhai Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Peoples Hospital filed Critical Zhuhai Peoples Hospital
Priority to CN202010253851.2A priority Critical patent/CN111420053B/zh
Publication of CN111420053A publication Critical patent/CN111420053A/zh
Application granted granted Critical
Publication of CN111420053B publication Critical patent/CN111420053B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • A61K49/0034Indocyanine green, i.e. ICG, cardiogreen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0052Small organic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06026Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atom, i.e. Gly or Ala
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明涉及一种可胞内聚集的多功能磁性纳米粒复合物及其制备方法,主要包括:醛基化海藻酸钠改性的磁性纳米粒复合物的制备;吲哚菁绿与叶酸和纳米系统的连接;细胞内聚集多肽的合成;组装成叶酸靶向荧光标记可聚集磁性纳米粒复合物。体内外试验结果表明,本发明制备的纳米粒复合物可在谷胱甘肽还原作用下聚集,以提高细胞内纳米药物浓度,由于其具有良好的叶酸受体靶向性和荧光可视化,可用于叶酸受体表达阳性肿瘤的靶向诊断,由于其具有光热和磁热转换功能,可用于荧光图像引导下的定向磁热和光热治疗。

Description

一种可胞内聚集的多功能磁性纳米粒复合物及其制备方法
技术领域
本发明涉及医药技术领域,涉及一种可胞内聚集的多功能磁性纳米粒复合物及其制备方法,具体涉及一种叶酸靶向荧光标记胞内聚集的多功能磁性纳米粒复合物及其制备方法,用于肿瘤靶向诊断和治疗。
背景技术
磁性和超顺磁性纳米粒子(MNPs)被认为是有效的造影剂,它被用作化疗药物特定输送的纳米载体。由于其独特的特性,它们可以很容易地与不同功能的分子(如靶向、成像和治疗药物)结合使用。多功能磁性纳米系统(NS),可在分子水平上与靶细胞相互作用,并提供同时靶向治疗和成像的可能性。此外,在光学成像中,近红外(NIR)荧光应用广泛,它支持无创的体内成像以及具有敏感检测的体外组织学分析。特别是,经美国食品和药物管理局批准的近红外荧光染料——吲哚菁绿(ICG)已用于临床,属于一种良好的光敏剂,在NIR照射下可以产生单线态氧发挥肿瘤杀伤作用。然而,由于ICG没有靶向功能和摄取能力较差,包括浓度依赖聚集,光热不稳定性,高血浆蛋白结合率(98%),体内半衰期短(3-4分钟),其应用仍然有限。为了克服这些缺点,ICG与各种纳米系统(如无机纳米粒子、胶束、脂质体和聚合物纳米粒子)结合使用。MNPs的靶向能力和避免被网状内皮系统(RES)摄入的能力取决于其表面特性和颗粒直径,这是体内抗癌作用的关键因素。醛基化海藻酸钠(ASA)是亲水化合物,具有高含量的羧基和醛基基团以及负电荷Zeta电位,它能减少被肝脏中枯否细胞的摄入,因此,ASA修饰的MNPs纳米粒子将延长循环时间。恶性肿瘤与正常细胞相比,叶酸受体过度表达,且叶酸受体过表达的关键意义在于可作为肿瘤特定的分子靶点。在此基础上,用叶酸修饰则能明显改善肿瘤细胞内摄取。
在目前众多的纳米粒载体中,大部分为单个状态存在于靶向肿瘤细胞内,易进入细胞的同时也容易吐出,或者还未进入细胞直接在细胞外形成聚集体,无法进入细胞,进而无法保持细胞内的药物浓度,严重影响了肿瘤靶标诊断治疗。
发明内容
本发明针对现有技术的不足,提出了一种叶酸靶向荧光标记胞内聚集的多功能磁性纳米粒复合物及其关键制备方法。本发明用ICG标记MNPs,并用耦联叶酸的PEG对其进行功能化,组装成叶酸靶向荧光标记可聚集磁性纳米粒复合物FA-PEG-ASA-MNPs-ICG-CBT,该复合物可在肿瘤细胞内的谷胱甘肽(GSH)还原作用下聚集,以提高细胞内靶标侧的细胞内药物浓度,避免纳米颗粒的胞吐作用,延长了血液循环时间和提高了肿瘤靶向的准确性,即具有良好的靶向稳定性,同时由于其具有良好的叶酸受体靶向性和荧光可视化,可用于叶酸受体表达阳性肿瘤的靶向诊断,由于其具有光热和磁热转换功能,可用于荧光图像引导下的定向磁热(MHT)和光热治疗(PTT),同时基本无毒副作用,安全性能高。
为至少解决上述技术问题之一,本发明采取的技术方案为:
在本发明的一方面,提供了一种可胞内聚集的多功能磁性纳米粒复合物,其特征在于,所述纳米粒复合物的通式为FA-PEG-ASA-MNPs-ICG-CBT,其中,FA-PEG-ASA-MNPs为叶酸分子靶向磁性纳米药物载体,ICG为吲哚菁绿且与FA-PEG-ASA-MNPs枝接,CBT代表聚集多肽Cys(StBu)-Lys-CBT且与FA-PEG-ASA-MNPs-ICG枝接,聚集多肽Cys(StBu)-Lys-CBT的二硫键能与肿瘤细胞内的谷胱甘肽GSH反应,使靶向进入肿瘤细胞内的所述纳米粒复合物聚合。
进一步的,所述聚集多肽Cys(StBu)-Lys-CBT的分子式为C19H26N6O2S3,分子量为466.13,其对应的结构式为:
Figure BDA0002436487830000021
进一步的,所述聚集多肽Cys(StBu)-Lys-CBT在GSH作用下呈环状聚合或非环状聚合。
进一步的,所述叶酸分子靶向磁性纳米药物载体以醛基化海藻酸钠改性磁性纳米粒子ASA-MNPs的Fe3O4为核心,所述ASA-MNPs通过酰胺化反应偶联叶酸-氨基聚乙二醇FA-PEG-NH2,并且通过Schiff's base反应与核表面的醛基结合,生成稳定的FA-PEG-ASA-MNPs。
进一步的,所述FA-PEG-ASA-MNPs通过酰胺化反应枝接ICG,生成FA-PEG-ASA-MNPs-ICG,所述聚集多肽Cys(StBu)-Lys-CBT的氨基与FA-PEG-ASA-MNPs-ICG中的羧基发生酰胺化反应,得到FA-PEG-ASA-MNPs-ICG-CBT。
进一步的,根据所述的可胞内聚集的多功能磁性纳米粒复合物在叶酸受体表达阳性肿瘤的靶向诊断药物中的应用。
进一步的,根据所述的可胞内聚集的多功能磁性纳米粒复合物在鼻咽癌诊断药物中的应用。
进一步的,根据所述的可胞内聚集的多功能磁性纳米粒复合物用作定向荧光成像和磁共振成像的造影剂。
进一步的,根据所述的可胞内聚集的多功能磁性纳米粒复合物在定向磁热或光热治疗药物中的应用。
在本发明的另一方面,提供了一种可胞内聚集的多功能磁性纳米粒复合物的制备方法,其特征在于,包括以下步骤:
S1、制备叶酸分子靶向磁性纳米药物载体FA-PEG-ASA-MNPs;
S2、制备聚集多肽Cys(StBu)-Lys-CBT:
S201、中间产物CBT1的合成:称取0.4-1.2g 6-芴甲氧羰基氨基-2-叔丁氧羰基氨基己酸,溶于10-30ml四氢呋喃,磁力搅拌的同时,取200-320ul N-甲基吗啡啉和180-300ul氯甲酸异丁酯加入以上溶液,在低温状态下反应一段时间后加入0.1-1g 6-氨基-2-苯并噻唑甲腈,继续在低温状态中反应1-3h,再在室温中搅拌过夜;次日,用旋蒸仪纯化产物,20-40℃下反应10-30min以去除杂质,再依次将产物进行萃取和过滤,得到黄色油状产物,通过柱层层析结合薄层色谱法,获得纯净的中间产物CBT1;
S202、中间产物CBT2的合成:二氯甲烷和三氟乙酸各取2-4ml,依次加入装有400-800mg CBT1的圆底烧瓶中,磁力搅拌1-3h,再通过真空泵转移二氯甲烷和三氟乙酸杂质,一段时间后得到中间产物CBT2;
S203、中间产物CBT3的合成:取3-7ml N,N-二甲基甲酰胺加入装有400-600mgCBT2的圆底烧瓶中,搅拌的同时加入200-400ul N,N-二甲基甲酰胺;分别称取400-500mgO-苯并三氮唑-四甲基脲六氟磷酸酯和500-600mg N-α-T-BOC-乙基巯基-L-半胱氨酸二环己基铵盐,加入以上反应体系,搅拌过夜;再将得到的产物进行萃取,使用旋蒸仪纯化产物,生成黄色油状产物,再通过柱层层析结合薄层色谱法,获得纯净的中间产物CBT3;
S204、中间产物CBT4的合成:将以上产物CBT3溶于4-5ml N,N-二甲基甲酰胺,低温状态下搅拌,再加入1-2ml哌啶,搅拌混匀;一段时间后用毛细玻璃吸管取适量产物进行薄层色谱分析,当硅胶板上结果提示产物较纯时,将玻璃器皿连接冷阱和真空泵,真空下转移N,N-二甲基甲酰胺和哌啶杂质;20-40min后,取1-3ml乙醚洗涤产物,以去除产物中的Fmoc基团;移除乙醚,再加1-3ml氯仿溶解产物,使其变为溶质均一的液态,再次抽真空,得到纯化后的粉末状中间产物CBT4;
S205、CBT5的合成:取80-120mg CBT4至圆底烧瓶,加入0.2-1.8ml二氯甲烷和0.2-1.8ml三氟乙酸,搅拌1-3小时后,用真空泵转移二氯甲烷和三氟乙酸杂质;再取0.2-1.8ml乙醚洗涤产物,去除残留的三氟乙酸,再次抽真空去除乙醚,得到产物CBT5,即聚集多肽Cys(StBu)-Lys-CBT;
S3、制备FA-PEG-ASA-MNPs-ICG:将所述步骤S1的FA-PEG-ASA-MNPs置于圆底烧瓶中,取200-300μg 1-(3-二甲基氨丙基)-3-乙基碳二亚胺盐酸盐与100-200μg N-羟基丁二酰亚胺依次加入并搅拌,反应3-5h后,加入400-600μg ICG,搅拌过夜;超滤多次去除未参与反应的游离ICG,超滤管内管中的产物为FA-PEG-ASA-MNPs-ICG,将其收集起来备用;
S4、制备纳米粒复合物FA-PEG-ASA-MNPs-ICG-CBT:将所述步骤S3的FA-PEG-ASA-MNPs-ICG于圆底烧瓶中,称取100-200μg 1-(3-二甲基氨丙基)-3-乙基碳二亚胺盐酸盐和50-100μg N-羟基丁二酰亚胺依次加入并搅拌,反应4-8h后,加入200-300μg聚集多肽Cys(StBu)-Lys-CBT,搅拌过夜,产物用纯水透析1d,得到终产物FA-PEG-ASA-MNPs-ICG-CBT。
进一步的,所述低温状态为冰浴条件。
进一步的,所述步骤S202中,10-30min后得到固体中间产物CBT2。
进一步的,所述步骤S3的FA-PEG-ASA-MNPs中的Fe含量为2-3mg。
进一步的,所述步骤S3还包括:超滤管外管中的产物为游离ICG,将多次超滤后外管中的溶液收集在一起并混匀,从中取出适量,用分光光度法测吸光度,根据制定的ICG标准浓度曲线计算出溶液浓度,从而进一步得到产物FA-PEG-ASA-MNPs-ICG中ICG的含量。
进一步的,超滤2-4次,转速为4000rpm,时间为10min。
进一步的,所述步骤S4中的FA-PEG-ASA-MNPs-ICG的Fe含量为2-3mg。
本发明的有益效果至少包括:
1)本发明叶酸靶向荧光标记可聚集磁性纳米粒复合物FA-PEG-ASA-MNPs-ICG-CBT,该复合物可在肿瘤细胞内的谷胱甘肽(GSH)还原作用下聚集,以提高细胞内靶标侧的细胞内药物浓度,避免纳米颗粒的胞吐作用,延长了血液循环时间和提高了肿瘤靶向的准确性,即具有良好的靶向稳定性,同时由于其具有良好的叶酸受体靶向性和荧光可视化,可用于叶酸受体表达阳性肿瘤的靶向诊断,由于其具有光热和磁热转换功能,可用于荧光图像引导下的定向磁热(MHT)和光热治疗(PTT),同时基本无毒副作用,安全性能高;
2)通过近红外激发ICG发射荧光在体内成像,可用于诊断黏膜下深层的鼻咽癌,生成的强荧光信号,对肿瘤大小、形状和位置提供准确的信息;
3)与游离ICG相比,纳米系统具有显著延长血液循环时间和更准确的肿瘤靶向,为荷叶酸受体表达阳性HNE-1肿瘤活体动物提供了有效的成像效果;
4)由于本发明纳米粒复合物具备多种功能,它可以在激光激发或交变磁场作用下产生热量,通过体外和体内HNE-1肿瘤模型研究发现,即使在低铁和低ICG浓度下,PTT模式仍然获得了肿瘤的完全消退,此外,由于MHT(磁热疗)的抗肿瘤免疫反应能力,仅MHT就显著抑制了肿瘤的生长。
附图说明
图1为本发明聚集多肽Cys(StBu)-Lys-CBT的结构示意图,其中方框所示为CBT与GSH反应的关键官能团二硫键。
图2为本发明聚集多肽Cys(StBu)-Lys-CBT在GSH作用下发生的环状聚合结构示意图。
图3为本发明聚集多肽Cys(StBu)-Lys-CBT在GSH作用下发生的非环状聚合结构示意图。
图4为本发明纳米粒复合物合成过程图。
图5为本发明聚集多肽Cys(StBu)-Lys-CBT合成过程图。
图6为本发明游离ICG和FPAMIC紫外吸收光谱图。
图7为本发明聚集多肽Cys(StBu)-Lys-CBT的高分辨率矩阵辅助激光解吸/电离质谱(HR-MALDI/MS)分析图,具体的:图A为GSH还原前的聚集多肽Cys(StBu)-Lys-CBT的质谱分析图,图B为GSH还原后的聚集多肽Cys(StBu)-Lys-CBT的质谱分析图。
图8:(A)GSH还原前的FA-PEG-ASA-MNPs-ICG-CBT的TEM图像,(B)还原后的TEM图像,标尺50nm。
图9:GSH还原后FA-PEG-ASA-MNPs-ICG-CBT的DLS尺寸变化图。
图10:FPAMI组为细胞样本的透射电镜观察图a,a1为a图中方框处局部放大图;FPAMIC组为细胞样本的透射电镜观察图b,b1为b图中方框处局部放大图。
图11:(A)HNE-1细胞普鲁士蓝染色显示图;(B)5-8F细胞普鲁士蓝染色显示图,铁染色,40X。
图12为游离ICG和纳米粒复合物的细胞摄取行为荧光染色的CLSM图。
图13为含ICG:50ug/ml,Fe:500ug/ml材料的MHT和PTT温度曲线图。
图14为使用CCK8试剂盒检测体外细胞毒性的细胞活力结果图。
图15为活细胞和死细胞测定对纳米粒子的体外治疗效果染色图,其中,活细胞被钙素-AM染成绿色,而死细胞、晚期凋亡细胞被PI(碘化钠)染成红色。
图16为细胞内ROS的荧光染色图。
图17为体内肿瘤荧光图像。
图18为不同处理组尾静脉注射药物8h后的热成像图,808nm激光(0.98W/cm2)辐射或MHT(193kHZ;350.4A)作用5min,FPAMIC激光辐射组肿瘤表面温度最高。
图19为PTT和MHT处理5min,48h后荷瘤裸鼠图。
图20为不同处理组裸鼠肿瘤生长曲线图。
图21为不同处理后切除肿瘤的平均肿瘤重量图。
图22为不同处理组小鼠相应器官组织切片图像,H&E染色,x100。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明作进一步的详细说明。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
实施例1:本发明所述一种可胞内聚集的多功能磁性纳米粒复合物的通式为FA-PEG-ASA-MNPs-ICG-CBT,其中,FA-PEG-ASA-MNPs为叶酸分子靶向磁性纳米药物载体,ICG为吲哚菁绿且与FA-PEG-ASA-MNPs枝接,CBT代表聚集多肽Cys(StBu)-Lys-CBT且与FA-PEG-ASA-MNPs-ICG枝接,肿瘤细胞内的谷胱甘肽GSH可以裂解聚集多肽Cys(StBu)-Lys-CBT的二硫键,形成噻唑,进而使靶向进入肿瘤细胞内的所述纳米粒复合物聚合。
图1为本发明聚集多肽Cys(StBu)-Lys-CBT的结构示意图,其中方框所示为CBT与GSH反应的关键官能团二硫键,如图1所示,所述聚集多肽Cys(StBu)-Lys-CBT的分子式为C19H26N6O2S3,分子量为466.13,其对应的结构式为:
Figure BDA0002436487830000051
所述聚集多肽Cys(StBu)-Lys-CBT在GSH作用下呈环状聚合或非环状聚合,更具体的:图2和图3分别为本发明聚集多肽Cys(StBu)-Lys-CBT在GSH作用下发生的环状聚合和非环状聚合结构示意图,参照图2和3所示,本发明聚集多肽CBT5在GSH作用下可发生不同的聚合方式:图2呈环状聚合,在该实施例中,聚合后分子式为C34H38N10O4S4,分子量为778.20,其对应的结构式为:
Figure BDA0002436487830000061
图3为非环状聚合,具体呈链状,在该实施例中,聚合后分子式为C51H60N16O6S6,分子量为1184.32,其对应的结构式为:
Figure BDA0002436487830000062
所述叶酸分子靶向磁性纳米药物载体以醛基化海藻酸钠改性磁性纳米粒子ASA-MNPs的Fe3O4为核心,所述ASA-MNPs通过酰胺化反应偶联叶酸-氨基聚乙二醇FA-PEG-NH2,并且通过Schiff's base反应与核表面的醛基结合,生成稳定的FA-PEG-ASA-MNPs。
其中,水溶性Fe3O4磁性纳米粒子采用化学共沉淀法制备,并经ASA改性。FA-PEG-ASA-MNPs的详细合成方法见中国专利(申请号为2011100924684、申请日为20110413、发明名称为叶酸分子靶向磁性纳米药物载体及靶向基因药物的制备方法),其主要概述为:采用端氨基聚乙烯乙二醇成功地将叶酸与ASA连接,ASA侧链中有大量的羧基,Fe3O4 MNPs表面有许多羟基组,ASA-MNPs是由于Fe3O4MNPs中羟基与ASA中的羧基相互作用产生了稳定的铁碳化物而形成的。利用DCC和NHS将FAα位羧基活化与端氨基PEG(NH2-PEG-NH2)中的氨基缀合,形成FA-PEG-NH2,FA-PEG-NH2中的游离胺基通过Schiff碱反应(C=N)与MNPs表面的醛基偶联。随后,用NaBH4还原使C=N稳定下来,然后进一步转化为C-N。由于MNPs被叶酸改性,平均水动力学直径为40nm,它们可以通过血管内皮细胞,逃逸肝脾网状内皮系统的吞噬和肾脏的滤过,在理论上很容易被FR阳性肿瘤细胞选择性地摄取。
所述FA-PEG-ASA-MNPs通过酰胺化反应枝接ICG,生成FA-PEG-ASA-MNPs-ICG,所述聚集多肽Cys(StBu)-Lys-CBT的氨基与FA-PEG-ASA-MNPs-ICG中的羧基发生酰胺化反应,得到FA-PEG-ASA-MNPs-ICG-CBT。
本发明所述的可胞内聚集的多功能磁性纳米粒复合物在叶酸受体表达阳性肿瘤的靶向诊断药物中的应用,例如:造影剂。
本发明所述的可胞内聚集的多功能磁性纳米粒复合物在鼻咽癌诊断药物中的应用,例如:造影剂。
本发明所述的可胞内聚集的多功能磁性纳米粒复合物用作定向荧光成像和磁共振成像的造影剂。
并且所述的可胞内聚集的多功能磁性纳米粒复合物在定向磁热或光热治疗药物中的应用。
实施例2:图4为本发明纳米粒复合物合成过程图,参照图4所示,本发明所述一种可胞内聚集的多功能磁性纳米粒复合物的制备方法,主要包括步骤:叶酸分子靶向磁性纳米药物载体FA-PEG-ASA-MNPs的制备、聚集多肽Cys(StBu)-Lys-CBT的制备、FA-PEG-ASA-MNPs-ICG的制备以及最终产物纳米粒复合物FA-PEG-ASA-MNPs-ICG-CBT的制备。下面将具体对所述步骤进行描述。
S1、叶酸分子靶向磁性纳米药物载体FA-PEG-ASA-MNPs的制备:其详细合成方法见中国专利(申请号为2011100924684、申请日为20110413、发明名称为叶酸分子靶向磁性纳米药物载体及靶向基因药物的制备方法),此处不再赘述。
S2、聚集多肽Cys(StBu)-Lys-CBT的制备,图5为本发明聚集多肽Cys(StBu)-Lys-CBT合成过程图,参照图5所示,主要包括制备CBT1-CBT5,CBT5即为聚集多肽Cys(StBu)-Lys-CBT。
S201、中间产物CBT1的合成:称取0.4-1.2g 6-芴甲氧羰基氨基-2-叔丁氧羰基氨基己酸(Boc-Lys(Fmoc)-OH),溶于10-30ml四氢呋喃(THF),磁力搅拌的同时,取200-320ulN-甲基吗啡啉(NMM)和180-300ul氯甲酸异丁酯(IBCF)加入以上溶液,在冰浴下反应20-40min后加入0.1-1g 6-氨基-2-苯并噻唑甲腈(CBT),继续在冰浴状态中反应1-3h,再在室温中搅拌过夜;次日,用旋蒸仪纯化产物,20-40℃下反应10-30min以去除四氢呋喃(THF)等杂质,再依次将产物进行萃取和过滤,得到黄色油状产物,通过柱层层析结合薄层色谱法,获得较纯的中间产物CBT1,产量约为400-800mg;可以理解的是,本发明所述CBT1具体为连接了一种氨基酸的CBT-Lys;
S202、中间产物CBT2的合成:二氯甲烷(DCM)和三氟乙酸(TFA)各取2-4ml,依次加入装有400-800mg CBT1的圆底烧瓶中,磁力搅拌1-3h,再通过真空泵转移二氯甲烷(DCM)和三氟乙酸(TFA)杂质,10-30min后得到固体中间产物CBT2,产量约为400-600mg;可以理解的是,本发明所述CBT2为CBT-Lys without Boc,即去除Boc基团的CBT1;
S203、中间产物CBT3的合成:取3-7ml N,N-二甲基甲酰胺(DMF)加入装有400-600mg CBT2的圆底烧瓶中,搅拌的同时加入200-400ul N,N-二异丙基乙胺(DIPEA);分别称取400-500mg O-苯并三氮唑-四甲基脲六氟磷酸酯(HBTU)和500-600mg N-α-T-BOC-乙基巯基-L-半胱氨酸二环己基铵盐(Boc-Cys(SEt)-OH·DCHA),加入以上反应体系,搅拌过夜;再将得到的产物进行萃取,使用旋蒸仪纯化产物,生成黄色油状产物,再通过柱层层析结合薄层色谱法,获得较纯净的中间产物CBT3,产量约为600-700mg;可以理解的是,本发明所述CBT3具体为Cys(StBu)-Lys-CBT,即连接了两种氨基酸的CBT2;
S204、中间产物CBT4的合成:将以上产物CBT3溶于4-5ml N,N-二甲基甲酰胺(DMF),冰浴状态下搅拌,再加入1-2ml哌啶,搅拌混匀;半小时后用毛细玻璃吸管取适量产物进行薄层色谱分析,当硅胶板上结果提示产物较纯时,将玻璃器皿连接冷阱和真空泵,真空下转移N,N-二甲基甲酰胺(DMF)和哌啶等杂质;20-40min后,取1-3ml乙醚洗涤产物,以去除产物中的Fmoc基团;移除乙醚,再加1-3ml氯仿溶解产物,使其变为溶质均一的液态,再次抽真空,得到纯化后的粉末状中间产物CBT4,约400-500mg;可以理解的是,本发明所述CBT4为Cys(StBu)-Lys-CBT without Fmoc,即去除Fmoc基团的CBT3;
S205、CBT5的合成:取80-120mg CBT4至圆底烧瓶,加入0.2-1.8ml二氯甲烷(DCM)和等量的三氟乙酸(TFA),搅拌1-3小时后,用真空泵转移DCM和TFA等杂质;再取0.2-1.8ml乙醚洗涤产物,去除残留的TFA,再次抽真空去除乙醚,得到产物CBT5,即聚集多肽Cys(StBu)-Lys-CBT。可以理解的是,本发明所述聚集多肽Cys(StBu)-Lys-CBT为连接了Lys-cys(两种不同氨基酸)的CBT5,可以理解的是,本发明所述CBT5为Cys(StBu)-Lys-CBTwithout Fmoc and Boc,即去除Boc基团的CBT4;
S3、制备FA-PEG-ASA-MNPs-ICG:将所述步骤S1的FA-PEG-ASA-MNPs(Fe含量为2-3mg)置于圆底烧瓶中,取200-300μg 1-(3-二甲基氨丙基)-3-乙基碳二亚胺盐酸盐(EDC)与100-200μg N-羟基丁二酰亚胺(NHS)依次加入并搅拌,反应3-5h后,加入400-600μg ICG,搅拌过夜;超滤多次去除未参与反应的游离ICG,超滤管内管中的产物为FA-PEG-ASA-MNPs-ICG,将其收集起来备用;超滤管外管中的产物为游离ICG,将多次超滤后外管中的溶液收集在一起并混匀,从中取出适量,用分光光度法测吸光度,根据制定的ICG标准浓度曲线计算出溶液浓度,从而进一步得到产物FA-PEG-ASA-MNPs-ICG中ICG的含量。在该实施例中,超滤2-4次,转速为4000rpm,时间为10min。
可以理解的是,在该S3步骤中,采用了EDC/NHS方法制备FA-PEG-ASA-MNPs-ICG,为描述方便,将FA-PEG-ASA-MNPs-ICG缩写为FPAMI。
S4、制备纳米粒复合物FA-PEG-ASA-MNPs-ICG-CBT:将所述步骤S3的FA-PEG-ASA-MNPs-ICG(Fe含量为2-3mg)于圆底烧瓶中,称取100-200μg EDC和50-100μg NHS依次加入并搅拌,反应4-8h后,加入200-300μg聚集多肽Cys(StBu)-Lys-CBT,搅拌过夜,产物用纯水透析1d,得到终产物FA-PEG-ASA-MNPs-ICG-CBT。
同样,在该S4步骤中,采用了EDC/NHS方法制备FA-PEG-ASA-MNPs-ICG-CBT,为描述方便,将FA-PEG-ASA-MNPs-ICG-CBT缩写为FPAMIC。该步骤将纳米颗粒与细胞内聚集多肽Cys(StBu)-Lys-CBT有序结合,得到FA-PEG-ASA-MNPs-ICG-CBT。Cys(StBu)-Lys-CBT中赖氨酸的伯胺对与羧酸形成胺键具有高反应性。因此,进一步将EDC/NHS与FA-PEG-ASA-MNPs-ICG反应,接着加入Cys(StBu)-Lys-CBT,然后分别通过离心和用缓冲液洗涤三次来获得所述纳米粒复合物FPAMIC。
图6为游离ICG和FPAMIC紫外吸收光谱图,从图6可见,紫外可见光谱图显示游离ICG在600-900处有吸收峰,FPAMIC在相同位置也有吸收,表明游离ICG已与ASA相连接,即游离ICG已与FA-PEG-ASA-MNPs相连,处于非游离状态,游离ICG与纳米粒子的联结有几个好处:它既可以改善PTT效应,也能促进肿瘤靶向近红外(NIR)荧光成像,此外,它可以通过光动力学治疗改善细胞内ROS。
图7为本发明聚集多肽CBT的高分辨率矩阵辅助激光解吸/电离质谱(HR-MALDI/MS)分析图,如图7所示,为了对GSH指示的缩合反应诱导聚集多肽Cys(StBu)-Lys-CBT的聚集性进行化学验证,进行高分辨率矩阵辅助激光解吸/电离质谱(HR-MALDI/MS)分析。在GSH还原之前,Cys(StBu)-Lys-CBT的M/z=467(图7A方框所示),GSH还原后,在光谱上发现了环状二聚体(M/z=819.57)及其片段的非环状三聚体(1184.75)的分子离子峰(图7B两个箭头所示),这证明了本发明聚集多肽Cys(StBu)-Lys-CBT具有易聚合性。
图8:(A)GSH还原前的FA-PEG-ASA-MNPs-ICG-CBT的TEM图像,(B)还原后的TEM图像,标尺50nm,图9:GSH还原后FA-PEG-ASA-MNPs-ICG-CBT的DLS尺寸变化图。结合图8和9所示,TEM观察显示FPAMIC粒径为55nm。为了进一步验证GSH还原法诱导FPAMIC的缩合和聚集,将所述纳米粒复合物FPAMIC分散在100μL PBS缓冲液中至终浓度100μg/mL,将其平均分为两部分,一个部分用于GSH控制的还原,另一部分用于不使用GSH(图8A),形成对照组。加入1mM GSH,于37℃孵育5小时后,GSH还原FPAMIC中CBT的二硫键。所述纳米粒复合物FPAMIC的透射电子显微镜(TEM)图像显示,活性中间体会立即与另一种中间体聚合,从而使FPAMIC交联形成纳米颗粒聚集体(图8B)。实验表明:在中性pH中,FPAMIC的直径约为100nm(粒径比FA-PEG-ASA-MNPs小,可能与ASA表面羧基与ICG和CBT结合后,伸展的线性分子被圈绕有关),分布范围较窄。加入GSH后,大小随不同时间点逐渐增大,并在5小时后变为150-250nm(图9),这进一步证明了本发明FPAMIC的缩合和聚集性。
图10:FPAMI组为细胞样本的透射电镜观察图a,a1为a图中方框处局部放大图;FPAMIC组为细胞样本的透射电镜观察图b,b1为b图中方框处局部放大图。参照图10所示,通过对细胞样本进行了TEM观察,结果显示:与FPAMIC共孵育的HNE-1细胞中有大量的聚合体(图10b和b1)。而在与FPAMI共孵育组中则没有发现(图10a和a1)。这清楚地表明,FPAMIC中的CBT有助于聚合,而且也避免了纳米粒子从细胞中溢出,而没有CBT组的FPAMI纳米粒子则易被排泄到细胞外。
由于仅在FR阳性细胞中发生FPAMIC纳米粒子靶向内化。因此,将纳米粒复合物FPAMIC加入FR阳性HNE-1细胞和5-8F细胞中孵育6h,通过普鲁士蓝染色研究连接叶酸的纳米粒子的靶向性。如图11所示,HNE-1细胞(叶酸受体阳性)胞浆中观察到蓝染颗粒(FPAMIC),如图11A箭头所示;而5-8F细胞(叶酸受体阴性)胞浆中没有观察到蓝染颗粒(FPAMIC),如图11B所示。这表明HNE-1细胞内含有的蓝染颗粒比5-8F细胞更多,表明FPAMIC具有良好的靶向稳定性。因此,FA连接的纳米粒子可以被FR+HNE-1细胞特异性内吞,而FR-5-8F细胞则无此功能,由于其没有叶酸受体,无法摄取。
图12为游离ICG和纳米粒复合物的细胞摄取行为荧光染色的CLSM图,参照图12所示,通过CLSM进一步研究了游离ICG和纳米粒复合物的细胞摄取行为。6h后,与连接了ICG的纳米粒复合物FPAMIC相比,癌细胞中游离的ICG含量非常低,即FPAMIC中的叶酸有助于纳米粒子的摄取。因此,由图中荧光点分布含量可知,FPAMIC具有更强的细胞内荧光强度。另一方面,细胞内更高浓度的ICG与GSH触发介导的聚集有关,这有助于细胞内高荧光。
图13为含ICG:50ug/ml,Fe:500ug/ml材料的MHT和PTT温度曲线图,如图13所示,分析MHT对FPAMI和FPAMIC(铁+500μg/ml)的影响,置于交变磁场(AMF)中,并记录温度曲线。在MHT模式中,纳米粒子FPAMI和FPAMIC暴露于磁场的频率为193kHz,强度为350.4A,接近磁场应用的安全范围,并且,MHT只实现了几度的加热,FPAMI和FPAMIC的加热温度也只能达到+40℃。接下来,分析FA-PEG-ASA-MNPs的光热效应,在Fe浓度为500ug/ml时用808nm激光(Laser)照射(功率密度1W/cm2),记录温度曲线,温度在五分钟后升高非常低(Δ5℃)。而FA-PEG-ASA-MNPs连接ICG(50ug/ml)后,温度逐渐升高,并显现出比FA-PEG-ASA-MNPs更高的PTT效应,五分钟后,FPAMIC温度升高到60℃,而游离ICG只达到56℃。
因此,游离ICG低活性的原因在于游离ICG比与纳米粒子连接的ICG更易光降解。而纳米粒子复合物FPAMIC的光热活性高,是由于Fe3O4和ICG的联合光热活性。
实施例3:
体外细胞毒性:对于任何用于生物医学应用的纳米粒子来说,无毒是最重要的问题。使用细胞计数试剂盒(CCK-8)对HNE-1细胞进行了纳米粒子体外细胞毒性测试。细胞用不同浓度的纳米粒子孵育24小时,细胞活力结果如图14所示。然而,在没有激光(Laser)照射或MHT的情况下,纳米粒子(FPAM、FPAMI和FPAMIC)对细胞的细胞毒性效应非常低;细胞即使在高剂量的Fe(50μg/mL)孵育48小时后,存活仍然超过90%。可以理解的是,纳米粒子FPAM即为所述叶酸分子靶向磁性纳米药物载体FA-PEG-ASA-MNPs的缩写。
此外,通过CCK8测定法对FPAMIC的光热细胞毒性进行评估。HNE-1与不同浓度的纳米粒子孵育6h后,然后在近红外激光照射下,观察细胞增殖降低。FPAMI和FPAMIC组在ICG梯度浓度达到5μg/mL(铁+50μg/mL)时,大多数细胞在激光照射下被有效杀死。
接下来,测试MHT的效果,在FPAMI和FPAMIC组中,即使Fe的剂量高达+50μg/mL,细胞活力分别才略下降25%和30%。另一方面,MHT和PTT治疗效率的差异在于激光靶向穿透深部肿瘤,PTT具有优异的性能。此外,ICG偶联纳米粒子使温度升高,导致细胞高死亡。
其次,通过活细胞或死细胞测定对纳米粒子的体外治疗效果进行视觉评估,分别用钙素-AM(绿色)和碘化钠(PI,红色)染色,以识别死亡细胞和活细胞/晚期凋亡细胞,具体的:活细胞被钙素-AM染成绿色,而死细胞、晚期凋亡细胞被PI(碘化钠)染成红色。从图15可见,PBS组激光照射只显示绿色荧光,这表明仅单纯激光照射无法杀死细胞。然而,游离ICG组即使激光照射细胞仍然存活率高,由于ICG摄取率低,光热转换能力较弱。而在FPAMI和FPAMIC组中,即使ICG和Fe(5和50μg/mL)的浓度低,PTT仍非常有效地诱导细胞死亡,在PTT作用5分钟内,分别有68%和86%的细胞死亡;在MHT模式下的FPAMI和FPAMIC组中,也发现少数细胞死亡,但明显少于PTT模式下的FPAMI和FPAMIC组。因此,细胞内聚合肽结合纳米粒FPAMIC在细胞中表现出更高的PTT效应,并显示出更多的红色荧光,这可能是由于它在细胞中纳米粒子浓度高。
MHT诱导细胞死亡:此外,进行活细胞和死细胞测定,以检测磁热疗的效果。结果发现,FPAMI和FPAMIC在AFM处理后分别有13.6%和16.6%的细胞死亡。具体为利用荧光ROS探针(二氯氟素-二乙酸二乙酸,DCFH-DA)研究了纳米粒子在提升细胞内ROS水平方面的能力。在ROS存在的情况下,DCFH被氧化为DCF,以发出明亮的绿色荧光。如图16所示,设置七组对照组,分别为a-PBS组、b-FPAMI组、c-FPAMIC组、d-PBS+Laser组、e-ICG+Laser组、f-FPAMI+Laser组、g-FPAMIC+Laser组,即用PBS或PBS激光、FPAMI+激光、FPAMIC+激光等操作处理细胞。其中,a-d对照组中,所有细胞几乎都没有荧光。显然,在808nm激光照射下用f-FPAMI组处理的细胞表现出明显的绿色荧光,表明纳米粒子可以有效地内化到细胞中,然后产生ROS。而激光照射下的g-FPAMIC组荧光强度要高得多,这可能是由于高摄取和细胞内聚集导致局部浓度较高。然而,ICG激光-e组表现出非常弱的荧光,由于其摄取能力低。
体内肿瘤荧光:以ICG 2mg/kg的剂量静脉注射到荷HNE-1肿瘤小鼠中,捕获不同时间点的体内荧光图像,以研究FPAMI、FPAMIC和游离ICG组体内肿瘤成像。结果注射后8h,在FPAMI(图17B)和FPAMIC(图17C)组中观察到肿瘤与正常组织(T/N)高信号比。对于游离的ICG(图17A),在整个实验中只检测到肿瘤中的弱信号。结果表明,与FPAMI相比,FPAMIC组肿瘤中信号更强,可能由于纳米粒子细胞内聚集有助于充分增加局部浓度。定量结果表明,ICG与纳米粒子结合组的荧光信号明显高于游离ICG组。这些结果提示,FPAMIC具有延长血液循环时间,可以进一步获得更好的肿瘤靶向,从而导致比游离ICG更多的肿瘤内聚集。
结合图18和19所示,为了评价本发明纳米粒复合物FPAMIC在PTT和MHT的体内效率,选择荷HNE-1肿瘤小鼠模型,携带的初始肿瘤体积为80-90mm3,随机分为6组,按说明接受不同治疗,其中before组为相应操作处理前,相应的after为处理后。接下来,注射后12小时,在肿瘤部位应用激光辐射或AMF,使用红外热成像仪监测肿瘤表面温度,红外热图像如图18所示:PTT处理后,FPAMI组和FPAMIC组的肿瘤内均表现出显著的温度增高,高达45~46.2℃。结果,在激光照射两天后两组肿瘤部位形成大面积的疤痕(图19第三组和第四组)。将AMF应用于FPAMIC组小鼠时,温度也升高至43~44.4℃(图18)。同样作用五分钟,但两天后没有疤痕形成(图19第二组)。推测致使肿瘤完全死亡的温度可能需要达到大于45℃,过高则会损伤动物。
体内治疗效应:通过监测18天裸鼠的平均肿瘤体积,以3天为时间间隔,进一步评估每种治疗的抗肿瘤疗效,如图20所示,共设置7组对照组,分别为PBS组、FPAMIC组、FPAMI+MHT组、FPAMIC+MHT组、ICG+Laser组、FPAMI+Laser组、FPAMIC+Laser组。值得注意的是,FPAMIC组PTT治疗表现出最强的抗肿瘤效果,具有100%肿瘤抑制率,验证了联合PTT和808nm激光照射触发增强ROS生成的协同抗肿瘤效果,见图20FPAMIC+Laser组。同样,FPAMI组PTT治疗显示90%的肿瘤抑制,见图20FPAMI+Laser组。非常有趣的是,与没有治疗比较,MHT处理提供了可比较的治疗效果。AMF下5分钟后,FPAMI+MHT组和FPAMIC+MHT组,肿瘤生长被抑制,MHT治疗的肿瘤明显小于未治疗小鼠,但不能完全治愈肿瘤。
到处死动物时,由于细胞内纳米粒子复合物FPAMIC的聚集和局部浓度的改善,FPAMIC组在PTT和MHT中均表现出优于FPAMI的效果。治疗结束时,收集不同组的所有肿瘤并称重,FPAMI组和FPAMIC组,PTT治疗后,由于肿瘤几乎消失,无法计算重量,如图21所示。
在整个治疗过程中,没有一只小鼠的体重有显著变化。此外,H&E染色结果显示,主要器官,包括接受治疗的小鼠的心、肝、脾、肺、肾脏都没有明显的病理异常,如图22所示,表明药物本身没有明显的毒性。
综上所述,本发明叶酸靶向荧光标记可聚集磁性纳米粒复合物FA-PEG-ASA-MNPs-ICG-CBT可在肿瘤细胞内的谷胱甘肽(GSH)还原作用下聚集,以提高细胞内靶标侧的细胞内药物浓度,避免纳米颗粒的胞吐作用,延长了血液循环时间和提高了肿瘤靶向的准确性,即具有良好的靶向稳定性,同时由于其具有良好的叶酸受体靶向性和荧光可视化,可用于叶酸受体表达阳性肿瘤的靶向诊断,由于其具有光热和磁热转换功能,可用于荧光图像引导下的定向磁热(MHT)和光热治疗(PTT),同时基本无毒副作用,安全性能高;通过近红外激发ICG发射荧光在体内成像,可用于诊断黏膜下深层的鼻咽癌,生成的强荧光信号,对肿瘤大小、形状和位置提供准确的信息;与游离ICG相比,纳米系统具有显著延长血液循环时间和更准确的肿瘤靶向,为荷叶酸受体表达阳性HNE-1肿瘤活体动物提供了有效的成像效果;由于本发明纳米粒复合物具备多种功能,它可以在激光激发或交变磁场作用下产生热量,通过体外和体内HNE-1肿瘤模型研究发现,即使在低铁和低ICG浓度下,PTT模式仍然获得了肿瘤的完全消退,此外,由于MHT(磁热疗)的抗肿瘤免疫反应能力,仅MHT就显著抑制了肿瘤的生长,此外无毒安全性能高。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (11)

1.一种可胞内聚集的多功能磁性纳米粒复合物,其特征在于,所述纳米粒复合物的通式为FA-PEG-ASA-MNPs-ICG-CBT,其中,FA-PEG-ASA-MNPs为叶酸分子靶向磁性纳米药物载体,ICG为吲哚菁绿且与FA-PEG-ASA-MNPs枝接,CBT对应的分子式为C19H26N6O2S3,分子量为466.13,其对应的结构式为:
Figure DEST_PATH_IMAGE002AAAA
且所述CBT与FA-PEG-ASA-MNPs-ICG枝接,所述CBT的二硫键能与肿瘤细胞内的谷胱甘肽GSH反应,使靶向进入肿瘤细胞内的所述纳米粒复合物聚合。
2.根据权利要求1所述的一种可胞内聚集的多功能磁性纳米粒复合物,其特征在于,所述CBT在GSH作用下呈环状聚合或非环状聚合。
3.根据权利要求2所述的一种可胞内聚集的多功能磁性纳米粒复合物,其特征在于,所述叶酸分子靶向磁性纳米药物载体以醛基化海藻酸钠改性磁性纳米粒子ASA-MNPs的Fe3O4为核心,所述ASA-MNPs通过酰胺化反应偶联叶酸-氨基聚乙二醇FA-PEG-NH2,并且通过Schiff's base反应与核表面的醛基结合,生成稳定的FA-PEG-ASA-MNPs。
4.根据权利要求3所述的一种可胞内聚集的多功能磁性纳米粒复合物,其特征在于,所述FA-PEG-ASA-MNPs通过酰胺化反应枝接ICG,生成FA-PEG-ASA-MNPs-ICG,所述CBT的氨基与FA-PEG-ASA-MNPs-ICG中的羧基发生酰胺化反应,得到FA-PEG-ASA-MNPs-ICG-CBT。
5.一种可胞内聚集的多功能磁性纳米粒复合物的制备方法,其特征在于,包括以下步骤:
S1、制备叶酸分子靶向磁性纳米药物载体FA-PEG-ASA-MNPs;
S2、制备CBT:
S201、中间产物CBT1的合成:称取0.4-1.2g 6-芴甲氧羰基氨基-2-叔丁氧羰基氨基己酸,溶于10-30ml四氢呋喃,磁力搅拌的同时,取200-320ul N-甲基吗啡啉和180-300ul氯甲酸异丁酯,加入以上溶液中,在低温状态下反应一段时间后加入0.1-1g 6-氨基-2-苯并噻唑甲腈,继续在低温状态中反应1-3h,再在室温中搅拌过夜;次日,用旋蒸仪纯化产物,20-40℃下反应10-30min以去除杂质,再依次将产物进行萃取和过滤,得到黄色油状产物,通过柱层层析结合薄层色谱法,获得纯净的中间产物CBT1;
S202、中间产物CBT2的合成:二氯甲烷和三氟乙酸各取2-4ml,依次加入装有400-800mgCBT1的圆底烧瓶中,磁力搅拌1-3h,再通过真空泵转移二氯甲烷和三氟乙酸杂质,一段时间后得到中间产物CBT2;
S203、中间产物CBT3的合成:取3-7ml N,N-二甲基甲酰胺加入装有400-600mg CBT2的圆底烧瓶中,搅拌的同时加入200-400ul N,N-二甲基甲酰胺;分别称取400-500mg O-苯并三氮唑-四甲基脲六氟磷酸酯和500-600mg N-α-T-BOC-乙基巯基-L-半胱氨酸二环己基铵盐,加入以上反应体系,搅拌过夜;再将得到的产物进行萃取,使用旋蒸仪纯化产物,生成黄色油状产物,再通过柱层层析结合薄层色谱法,获得纯净的中间产物CBT3;
S204、中间产物CBT4的合成:将以上产物CBT3溶于4-5ml N,N-二甲基甲酰胺,低温状态下搅拌,再加入1-2ml哌啶,搅拌混匀;一段时间后用毛细玻璃吸管取适量产物进行薄层色谱分析,当硅胶板上结果提示产物较纯时,将玻璃器皿连接冷阱和真空泵,真空下转移N,N-二甲基甲酰胺和哌啶杂质;20-40min后,取1-3ml乙醚洗涤产物,以去除产物中的Fmoc基团;移除乙醚,再加1-3ml氯仿溶解产物,使其变为溶质均一的液态,再次抽真空,得到纯化后的粉末状中间产物CBT4;
S205、CBT5的合成:取80-120mg CBT4至圆底烧瓶,加入0.2-1.8ml二氯甲烷和0.2-1.8ml三氟乙酸,搅拌1-3小时后,用真空泵转移二氯甲烷和三氟乙酸杂质;再取0.2-1.8ml乙醚洗涤产物,去除残留的三氟乙酸,再次抽真空去除乙醚,得到产物CBT5,即CBT;
S3、制备FA-PEG-ASA-MNPs-ICG:将所述步骤S1的FA-PEG-ASA-MNPs置于圆底烧瓶中,取200-300μg 1-(3-二甲基氨丙基)-3-乙基碳二亚胺盐酸盐与100-200μg N-羟基丁二酰亚胺依次加入并搅拌,反应3-5h后,加入400-600μg ICG,搅拌过夜;超滤多次去除未参与反应的游离ICG,超滤管内管中的产物为FA-PEG-ASA-MNPs-ICG,将其收集起来备用;
S4、制备纳米粒复合物FA-PEG-ASA-MNPs-ICG-CBT:将所述步骤S3的FA-PEG-ASA-MNPs-ICG于圆底烧瓶中,称取100-200μg 1-(3-二甲基氨丙基)-3-乙基碳二亚胺盐酸盐和50-100μg N-羟基丁二酰亚胺依次加入并搅拌,反应4-8h后,加入200-300μgCBT,搅拌过夜,产物用纯水透析1d,得到终产物FA-PEG-ASA-MNPs-ICG-CBT。
6.根据权利要求5所述的制备方法,其特征在于,所述低温状态为冰浴条件。
7.根据权利要求5所述的制备方法,其特征在于,所述步骤S202中,10-30min后得到固体中间产物CBT2。
8.根据权利要求5所述的制备方法,其特征在于,所述步骤S3的FA-PEG-ASA-MNPs中的Fe含量为2-3mg。
9.根据权利要求5所述的制备方法,其特征在于,所述步骤S3还包括:超滤管外管中的产物为游离ICG,将多次超滤后外管中的溶液收集在一起并混匀,从中取出适量,用分光光度法测吸光度,根据制定的ICG标准浓度曲线计算出溶液浓度,从而进一步得到产物FA-PEG-ASA-MNPs-ICG中ICG的含量。
10.根据权利要求9所述的制备方法,其特征在于,超滤2-4次,转速为4000rpm,时间为10min。
11.根据权利要求5所述的制备方法,其特征在于,所述步骤S4中的FA-PEG-ASA-MNPs-ICG的Fe含量为2-3mg。
CN202010253851.2A 2020-04-02 2020-04-02 一种可胞内聚集的多功能磁性纳米粒复合物及其制备方法 Expired - Fee Related CN111420053B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010253851.2A CN111420053B (zh) 2020-04-02 2020-04-02 一种可胞内聚集的多功能磁性纳米粒复合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010253851.2A CN111420053B (zh) 2020-04-02 2020-04-02 一种可胞内聚集的多功能磁性纳米粒复合物及其制备方法

Publications (2)

Publication Number Publication Date
CN111420053A CN111420053A (zh) 2020-07-17
CN111420053B true CN111420053B (zh) 2022-09-09

Family

ID=71551070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010253851.2A Expired - Fee Related CN111420053B (zh) 2020-04-02 2020-04-02 一种可胞内聚集的多功能磁性纳米粒复合物及其制备方法

Country Status (1)

Country Link
CN (1) CN111420053B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115583989B (zh) * 2022-12-09 2023-02-28 烟台蓝纳成生物技术有限公司 一种靶向sstr2的化合物及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145177A (zh) * 2011-04-13 2011-08-10 南方医科大学 叶酸分子靶向磁性纳米药物载体及靶向基因药物的制备方法
CN108219782A (zh) * 2018-04-11 2018-06-29 江苏省人民医院(南京医科大学第附属医院) 一种近红外荧光探针及基于该探针的多模态纳米造影剂及其制备和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9642922B2 (en) * 2013-08-23 2017-05-09 The Board Of Trustees Of The Leland Stanford Junior University Caspase-triggered nano-aggregation probes and methods of use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145177A (zh) * 2011-04-13 2011-08-10 南方医科大学 叶酸分子靶向磁性纳米药物载体及靶向基因药物的制备方法
CN108219782A (zh) * 2018-04-11 2018-06-29 江苏省人民医院(南京医科大学第附属医院) 一种近红外荧光探针及基于该探针的多模态纳米造影剂及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Casp3/7-Instructed Intracellular Aggregation of Fe3O4 Nanoparticles Enhances T2 MR Imaging of Tumor Apoptosis;Yuan, Yue等;《Nano Letters》;20160331;第16卷(第4期);第2686-2691页 *
Enzyme-instructed self-aggregation of Fe3O4 nanoparticles for enhanced MRI T2 imaging and photothermal therapy of tumors;Yaguang Wang等;《Nanoscale》;20191216;第12卷(第3期);第1886-1893页 *

Also Published As

Publication number Publication date
CN111420053A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
Tian et al. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy
Zhang et al. Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy
Ghosal et al. Carbon dots: The next generation platform for biomedical applications
Shi et al. A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@ Ag nanoparticles for chemo-photothermal therapy and X-ray imaging
Dong et al. Surface-engineered graphene-based nanomaterials for drug delivery
Cui et al. Theranostic gold cluster nanoassembly for simultaneous enhanced cancer imaging and photodynamic therapy
EP2958946B1 (en) Near-infrared dye-conjugated hyaluronic acid derivative and contrast agent for optical imaging including them
US20040068207A1 (en) Active oxygen generator containing photosensitizer for ultrasonic therapy
Huang et al. Nanoscale metal–organic frameworks for tumor phototherapy
Zhu et al. Cascade-responsive nano-assembly for efficient photothermal-chemo synergistic inhibition of tumor metastasis by targeting cancer stem cells
Wen et al. Magnetofluorescent nanohybrid comprising polyglycerol grafted carbon dots and iron oxides: Colloidal synthesis and applications in cellular imaging and magnetically enhanced drug delivery
Liu et al. Croconaine-based nanoparticles enable efficient optoacoustic imaging of murine brain tumors
Zhao et al. Nanoscale metal− organic frameworks and their nanomedicine applications
Zhang et al. Phycocyanin-functionalized black phosphorus quantum dots enhance PDT/PTT therapy by inducing ROS and irreparable DNA damage
Fu et al. Dual activatable self-assembled nanotheranostics for bioimaging and photodynamic therapy
Wang et al. Fabrication of hypoxia-responsive and uperconversion nanoparticles-modified RBC micro-vehicles for oxygen delivery and chemotherapy enhancement
Zhang et al. A multifunctional ternary Cu (II)-carboxylate coordination polymeric nanocomplex for cancer thermochemotherapy
Ge et al. Self‐assembled nanoparticles as cancer therapeutic agents
Ding et al. Applications of ROS-InducedZr-MOFs platform in multimodal synergistic therapy
Chen et al. Platinum (IV) Complex-Loaded nanoparticles with photosensitive activity for cancer therapy
Zhang et al. Sequential assembled chimeric peptide for precise synergistic phototherapy and photoacoustic imaging of tumor apoptosis
Zhang et al. Versatile gadolinium (III)-phthalocyaninate photoagent for MR/PA imaging-guided parallel photocavitation and photodynamic oxidation at single-laser irradiation
CN111420053B (zh) 一种可胞内聚集的多功能磁性纳米粒复合物及其制备方法
Alifu et al. Retracted Article: A novel TMTP1-modified theranostic nanoplatform for targeted in vivo NIR-II fluorescence imaging-guided chemotherapy for cervical cancer
Hu et al. Nanoscale metal organic frameworks and their applications in disease diagnosis and therapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220909