CN111413208A - 用于破碎煤岩体动静加载红外观测的试验装置和试验方法 - Google Patents

用于破碎煤岩体动静加载红外观测的试验装置和试验方法 Download PDF

Info

Publication number
CN111413208A
CN111413208A CN202010304979.7A CN202010304979A CN111413208A CN 111413208 A CN111413208 A CN 111413208A CN 202010304979 A CN202010304979 A CN 202010304979A CN 111413208 A CN111413208 A CN 111413208A
Authority
CN
China
Prior art keywords
rock mass
dynamic
coal rock
infrared
loading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010304979.7A
Other languages
English (en)
Other versions
CN111413208B (zh
Inventor
李振
方智龙
冯国瑞
张纯旺
申雄
崔家庆
宋诚
牛小红
王凯
崔博强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202010304979.7A priority Critical patent/CN111413208B/zh
Publication of CN111413208A publication Critical patent/CN111413208A/zh
Application granted granted Critical
Publication of CN111413208B publication Critical patent/CN111413208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/34Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by mechanical means, e.g. hammer blows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • G01N2203/0007Low frequencies up to 100 Hz
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • G01N2203/0039Hammer or pendulum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0252Monoaxial, i.e. the forces being applied along a single axis of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0284Bulk material, e.g. powders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0694Temperature

Abstract

本发明涉及一种用于破碎煤岩体动静加载红外观测的试验装置及方法,该装置包括长方体加载模块、压头、出气口、圆型密封圈、压盖、压板、红外相机观测口、进气口、底座、透气板、动态加载系统;通过本发明,克服了传统试验装置不能用于破碎煤岩体的研究,实现了对不同岩性、不同破碎程度破碎煤岩体动静加载过程中红外信息的观测测量,可用于揭示破碎煤岩体动静加载过程中内部非均匀变形和破坏,填补了该领域研究的空白;可研究破碎煤岩体在不同应力状态以及不同气体压力条件下承压破碎煤岩体动静加载过程中内部非均匀变形与破坏特性。

Description

用于破碎煤岩体动静加载红外观测的试验装置和试验方法
技术领域
本发明属于矿山岩体力学研究领域,具体涉及一种用于破碎煤岩体动静加载红外观测的试验装置和试验方法。
背景技术
破碎煤岩体作为一种广泛存在于垮落带,且已经破碎没有固结力的特殊多孔介质,其动静加载变形与多孔结构演化对采空区煤层气高效抽采具有重要意义。目前国内外对采空区煤岩体变形破坏与孔隙演化的研究主要集中在质地密实的标准岩心试件。当前对垮落带广泛存在的破碎煤岩体受动态及静态载荷时内部非均匀变形、破坏及多孔结构演化的研究并不充分。究其原因是缺少专门针对其动静载荷作用下内部非均匀变形及多孔结构演化进行探究的科研仪器及测试方法相对空白。
对于处于采空区中不同荷载、不同温度以及不同气体压差条件下破碎煤岩体的变形与孔隙演化的红外辐射观测研究。经检索发明专利 CN201810199495.3公布了一种多场红外辐射观测装置及方法。但其红外测试装置针对试验对象是普通岩心,该发明只能使用普通岩芯,并不能进行破碎岩体红外研究,同时不能进行动态冲击试验,研究破碎煤岩体动静态载荷下的红外装置空白。
发明内容
本发明提供了一种红外观测精确、孔隙变化可视的破碎煤岩体内部变形与孔隙演化的试验装置,同时该装置用于研究揭示动态或静态载荷条件下不同气体、气压条件下不同岩性、不同破碎程度破碎煤岩体的内部非均匀变形与孔隙变化规律。
本发明提供了一种用于破碎煤岩体动静加载红外观测的试验装置,包括长方体加载模块、压头、出气口、压盖、压板、红外相机观测口、进气口、底座、透气板、动态加载系统;长方体加载模块为立方体型,上方设置倒阶梯形结构的压盖,设置压头穿过压盖中心进入到长方体加载模块内,压头下方通过设置螺纹,与对应设置螺孔的压板通过螺纹配合连接,压盖用于封闭长方体加载模块顶部;压板和底座相对设置,且相对的表面上设置透气板;压头和压板内设有与长方体加载模块内部相通的出气口,底座内部设置与长方体加载模块内部相通的进气口;前后两面设有气压测量系统,两侧分别设有高速相机观测窗口和红外观测腔室,高速相机观测窗口用于高速摄像机进行数据采集,红外观测腔室用于红外相机进行数据采集;
通过在长方体加载模块前后两面上均匀设置六个压力传感器,同时在进气口和出气口设置两个压力传感器,组成气压测量系统,气压测量系统将气体引入到长方体加载模块内对破碎岩体进行充压,实现气体压力分段测试;
动态加载系统包括:空心圆柱体下落轨道、四角型支架、落锤;空心圆柱体下落轨道前面开有长方形的观测口,观测口上可有显示高度的刻度,四角型支架焊接在空心圆柱体下落轨道底部并通过螺栓与下方压盖链接,落锤在空心圆柱体下落轨道内进行自由落体给压头施加动态荷载。
其中,长方体加载模块与压盖之间通过螺栓连接,且连接处设有双层方型密封圈,所述压头与压盖之间设有双层圆型密封圈;所述透气板与压板、透气板与长方体加载模块底座之间分别设有滤纸。
其中,长方体加载模块前后侧面、底座、压头、压盖、压板均为低热导材料制成,长方体加载模块内外涂有隔热漆。
其中,长方体加载模块左右两个侧面分别通过透明高硼硅玻璃和红外玻璃制备,二者边缘均粘贴石棉垫圈,嵌在长方体加载模块内。
其中,红外观测腔室依次由红外玻璃、梯形密闭台、红外相机观测口组成;红外玻璃、梯形密闭台、红外相机观测口与红外摄像镜头一起组成红外观测腔室的密闭空间,红外观测腔室内部做了漫反射处理。
其中,长方形加载模块前后两侧面自上而下各均匀安装三个压力表,作为压力传感器,实现试验过程中试样气体压力参数的实时监测。
其中,动态加载系统是可拆卸的,通过控制落锤的下落次数、落锤的质量、落锤初始高度调整动态冲击程度,落锤用绳子吊在空心圆柱体下落轨道内部,剪断绳子,进行动态加载。
此外,本发明提供了一种用于破碎煤岩体动静加载红外观测的试验方法,包括以下步骤:
(1)、用不同粒径砂石筛将破碎煤岩体按颗粒大小分类;
(2)、打开压盖,将筛分好的破碎煤岩体倒入长方体加载模块中,使其均匀自然堆积,然后关闭压盖,拧紧螺丝实现长方体加载模块密封;
(3)、选择微机控制电液伺服压力机进行静态加载,或加装动态加载系统进行动态加载,调节高速相机的位置、焦距,对准长方体加载模块左侧高硼硅玻璃窗口,将红外相机头从右侧伸入红外观测腔室,并设置好红外相机焦距;
(4)、当选择静态加载时,将试验装置放置于微机控制电液伺服压力机上,同时启动微机控制电液伺服压力机、高速相机和红外相机,高速相机负责采集破碎煤岩体动静加载过程中颗粒骨架、孔隙率实时变化情况,压力机实时记录轴向位移、轴向载荷,红外相机实时记录破碎煤岩体温度演化规律,直至试验结束,取出试验试样;
(5)、当选择动态加载时,加装动态加载系统,将落锤放入空心圆柱体下落轨道内部,调整落锤高度,启动高速相机和红外相机的高频采集模式,高速相机负责采集破碎煤岩体动静加载过程中颗粒骨架、孔隙率实时变化情况,剪断绳子记录落锤的质量、下落高度,红外相机实时记录破碎煤岩体温度演化规律,直至试验结束,取出试验试样。
其中,在选择静态加载时,启动微机控制电液伺服压力机、高速相机和红外相机的步骤之后,包括步骤:
关闭进气口,打开出气口由出气孔对缸筒内煤岩体抽真空;
同时打开进气口、红外相机及高速相机,由进气口向长方体加载模块内持续注入确定压力下气体;由红外相机、高速相机实时记录一定压力气体持续流动过程中破碎煤岩体颗粒骨架、孔隙及温度实时变化规律;
打开微机控制电液伺服压力机对破碎煤岩体进行加载,高速相机负责采集持续通入一定气体压力条件下破碎煤岩体在动静加载过程中颗粒骨架、孔隙率实时变化情况,压力机实时记录轴向位移、轴向载荷,红外相机实时记录破碎煤岩体温度演化规律,直至试验结束,取出试验试样;
在选择动态加载时,加装动态加载系统、高速相机和红外相机的步骤之后,包括步骤:
关闭进气口,打开出气口由出气孔对缸筒内煤岩体抽真空;
同时打开进气口、红外相机及高速相机,由进气口向长方体加载模块内持续注入确定压力下气体;由红外相机、高速相机实时记录一定压力气体持续流动过程中破碎煤岩体颗粒骨架、孔隙及温度实时变化规律;落锤对破碎煤岩体进行动态加载,高速相机负责采集持续通入一定气体压力条件下破碎煤岩体在动静加载过程中颗粒骨架、孔隙率实时变化情况,记录落锤的质量、高度,红外相机实时记录破碎煤岩体温度演化规律,直至试验结束,取出试验试样。
其中,破碎体试样为不同岩性、不同颗粒粒径的破碎煤体或岩体的中的任一种或是不同岩性的组合体,通入气体为二氧化碳、甲烷、氮气等不同气体,通入气体设置不同气压压强下。
区别于现有技术,本发明的用于破碎煤岩体动静加载红外观测的试验装置包括长方体加载模块、压头、出气口、圆型密封圈、压盖、压板、红外相机观测口、进气口、底座、透气板、动态加载系统;通过本发明,克服了传统试验装置不能用于破碎煤岩体的研究,实现了对不同岩性、不同破碎程度破碎煤岩体动静加载过程中红外信息的观测测量,可用于揭示破碎煤岩体动静加载过程中内部非均匀变形和破坏,填补了该领域研究的空白;可研究破碎煤岩体在不同应力状态以及不同气体压力条件下承压破碎煤岩体动静加载过程中内部非均匀变形与破坏特性。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明提供的一种用于破碎煤岩体动静加载红外观测的试验装置的试验观测部分的结构示意图。
图2是本发明提供的一种用于破碎煤岩体动静加载红外观测的试验装置的动态加载系统的结构示意图。
图3是本发明提供的一种用于破碎煤岩体动静加载红外观测的试验装置的整体结构示意图。
图中:1、压头,2、方型密封圈,3、出气口,4、圆型密封圈,5、螺纹,6、螺栓,7、压盖,8压板,9、梯形密闭台,10、红外玻璃,11、红外相机观测口,12、进气口,13、底座,14、透气板,15、气压表口,16、透明高硼硅玻璃、20、观测口,21空心圆柱体下落轨道,22、螺母,23、垫片,24、四角型支架,25、落锤。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1-图3所示,图1本发明提供的一种用于破碎煤岩体动静加载红外观测的试验装置,包括长方体加载模块100、压头1、出气口3、压盖7、压板8、红外相机观测口11、进气口12、底座13、透气板14、动态加载系统101;长方体加载模块100为立方体型,上方设置倒阶梯形结构的压盖7,设置压头1穿过压盖7中心进入到长方体加载模块内,压头1下方通过设置螺纹5,与对应设置螺孔的压板8通过螺纹配合连接,压盖7用于封闭长方体加载模块顶部;压板8和底座13相对设置,且相对的表面上设置透气板14;压头1和压板8内设有与长方体加载模块内部相通的出气口3,底座13内部设置与长方体加载模块内部相通的进气口12;前后两面设有气压测量系统,两侧分别设有高速相机观测窗口和红外观测腔室,高速相机观测窗口用于高速摄像机进行数据采集,红外观测腔室用于红外相机进行数据采集;
通过在长方体加载模块前后两面上均匀设置六个压力传感器,同时在进气口和出气口设置两个压力传感器,组成气压测量系统,气压测量系统将气体引入到长方体加载模块内对破碎岩体进行充压,实现气体压力分段测试。
动态加载系统101的结构如图2所示,包括空心圆柱体下落轨道21、四角型支架24、落锤25;空心圆柱体下落轨道21前面开有长方形的观测口20,观测口20上可有显示高度的刻度,四角型支架24焊接在空心圆柱体下落轨道底部通过螺栓6与压盖链接,落锤25在空心圆柱体下落轨道21内进行自由落体给压头施加动态荷载。图1和图2组合后的结构如图3所示。
其中,长方体加载模块与压盖7之间通过螺栓6连接,且连接处设有双层方型密封圈2,所述压头1与压盖7之间设有双层圆型密封圈4;所述透气板14与压板8、透气板14与长方体加载模块底座13之间分别设有滤纸。螺栓6通过螺母22进行固定。
其中,长方体加载模块前后侧面、底座13、压头1、压盖7、压板8均为低热导材料制成,长方体加载模块内外涂有隔热漆。
其中,长方体加载模块左右两个侧面分别通过透明高硼硅玻璃16和红外玻璃10制备,二者边缘均粘贴石棉垫圈,嵌在长方体加载模块内。
其中,红外观测腔室依次由红外玻璃10、梯形密闭台9、红外相机观测口11组成;红外玻璃10、梯形密闭台9、红外相机观测口11与红外摄像镜头一起组成红外观测腔室的密闭空间,红外观测腔室内部做了漫反射处理。
其中,长方形加载模块前后两侧面自上而下各均匀安装三个压力表,作为压力传感器,实现试验过程中试样气体压力参数的实时监测。压力表通过压力表口15连接至长方形加载模块内部,进行实时监测。
其中,动态加载系统是可拆卸的,可以通过控制落锤25的质量调整施加的动态荷载,落锤用绳子吊在空心圆柱体下落轨道21内部,剪断绳子,进行动态加载。
此外,本发明提供了一种用于破碎煤岩体动静加载红外观测的试验方法,包括以下步骤:
(1)、用不同粒径砂石筛将破碎煤岩体按颗粒大小分类;
(2)、打开压盖,将筛分好的破碎煤岩体倒入长方体加载模块中,使其均匀自然堆积,然后关闭压盖,拧紧螺丝实现长方体加载模块密封;
(3)、可以选择微机控制电液伺服压力机进行静态加载或加装动态加载系统实行动态加载,调节高速相机的位置,焦距,对准长方体加载模块左侧高硼硅玻璃窗口,将红外相机头从右侧伸入红外观测腔室,并设置好红外相机焦距;
(4)、当选择静态加载时,将试验装置放置于微机控制电液伺服压力机上,同时启动微机控制电液伺服压力机、高速相机和红外相机,高速相机负责采集破碎煤岩体压实过程中颗粒骨架、孔隙率实时变化情况,压力机实时记录轴向位移、轴向载荷,红外相机实时记录破碎煤岩体温度演化规律,直至试验结束,取出试验试样;
(5)、当选择动态加载时,加装动态加载系统,将落锤放入空心圆柱体下落轨道内部,调整落锤高度,启动高速相机和红外相机的高频采集模式,高速相机负责采集破碎煤岩体动静加载过程中颗粒骨架、孔隙率实时变化情况,剪断绳子记录落锤的质量、下落高度,红外相机实时记录破碎煤岩体温度演化规律,直至试验结束,取出试验试样。
其中,在启动微机控制电液伺服压力机或加装动态加载系统、高速相机和红外相机的步骤之后,包括步骤:
关闭进气口,打开出气口由出气孔对缸筒内煤岩体抽真空;
同时打开进气口、红外相机及高速相机,由进气口向长方体加载模块内持续注入确定压力下气体;由红外相机、高速相机实时记录一定压力气体持续流动过程中破碎煤岩体颗粒骨架、孔隙及温度实时变化规律;
选择微机控制电液伺服压力机对破碎煤岩体进行静态加载,高速相机负责采集持续通入一定气体压力条件下破碎煤岩体在动静加载过程中颗粒骨架、孔隙率实时变化情况,压力机实时记录轴向位移、轴向载荷,红外相机实时记录破碎煤岩体温度演化规律,直至试验结束,取出试验试样。
选择加装动态加载系统对破碎煤岩体进行动态加载,高速相机负责采集持续通入一定气体压力条件下破碎煤岩体在动静加载过程中颗粒骨架、孔隙率实时变化情况,记录落锤的质量、高度、下落次数,红外相机实时记录破碎煤岩体温度演化规律,直至试验结束,取出试验试样。
其中,破碎体试样为不同岩性、不同颗粒粒径的破碎煤体或岩体的中的任一种或是不同岩性的组合体,通入气体为二氧化碳、甲烷、氮气等不同气体,通入气体设置不同气压压强下。
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:
研究真空条件下破碎煤岩体静态加载红外观测的试验方法。
(1)、把破碎煤体用不同粒径砂石筛筛分成8~10.5mm粒径的破碎煤体;
(2)、打开压盖(7),将8~10.5mm粒径的破碎煤体倒入长方体加载模块中,使其均匀自然堆积,然后关闭压盖(7),拧紧螺栓(6)上的螺母(22)实现长方体加载模块密封;
(3)、将长方体加载模块(100)放在微机控制电液伺服压力机上,由出气口(3)对长方体加载模块内破碎煤体抽真空;
(4)、开启高速相机和红外相机进行全程实时记录;
(5)、记录时间、压力机轴向应力和位移;
(6)、由微机控制电液伺服压力机控制对破碎煤岩体动静加载红外观测试验装置加压,当破碎煤体轴向压力达到60KN时,试验结束,取出试验试样。
上述试验通过高速相机和红外相机观察破碎煤岩体由于轴向压缩引起孔隙率的变化,一定的轴向压力对应一定孔隙率,相关研究克服了传统装置只能测量标准岩芯的局限性,可测试不同荷载、不同破碎程度破碎煤岩体的内部非均匀变形与孔隙变化规律及其红外辐射。
实施例2:
研究甲烷气体条件下破碎煤岩体静态加载红外观测的试验方法。
(1)、把破碎煤体用不同粒径砂石筛筛分成5~7.5mm粒径的破碎煤体;
(2)、打开压盖(7),将5~7.5mm粒径的破碎煤体倒入长方体加载模块中,使其均匀自然堆积,然后关闭压盖(7),拧紧螺栓(6)上的螺母(22)实现长方体加载模块密封;
(3)、将长方体加载模块(100)放在微机控制电液伺服压力机上,由出气口(3)对长方体加载模块内破碎煤体抽真空;
(4)由进气口向缸筒内持续注入甲烷,使长方体加载模块内部达到50kPa气压,将装置静止一段时间,使内外温度恒定;
(5)、开启高速相机和红外相机进行全程实时记录;
(6)、记录时间、压力表上的气压、流量以及压力机轴向应力和位移;
(7)、由微机控制电液伺服压力机控制对破碎煤岩体动静加载红外观测试验装置加压,当破碎煤体轴向压力达到60KN时,试验结束,取出试验试样。
实施例3:
研究甲烷气体条件下破碎煤岩体动态加载红外观测的试验方法。
(1)、把破碎煤体用不同粒径砂石筛筛分成2.5~5mm粒径的破碎煤体;
(2)、打开压盖(7),将2.5~5mm粒径的破碎煤体倒入长方体加载模块中,使其均匀自然堆积,然后关闭压盖(7),拧紧螺栓(6)上的螺母(22)实现长方体加载模块密封;
(3)、将螺母(22)上放上垫片(23)将动态加载系统通过螺栓(6)加装在压盖(7)上,再安上螺母(22),拧紧,实现动态加载系统的加装,由出气口(3)对长方体加载模块内破碎煤体抽真空;
(4)由进气口向缸筒内持续注入甲烷,使长方体加载模块内部达到20kPa气压,将装置静止一段时间,使内外温度恒定;
(5)、开启高速相机和红外相机进行全程实时记录;
(6)、记录时间、压力表上的气压、流量以及落锤的质量和高度;
(7)、由落锤对破碎煤岩体动静加载红外观测试验装置施加动态冲击,将同一落锤在相同高度重复落下10次,试验结束,取出试验试样。
上述试验通过高速相机和红外相机观察破碎煤岩体由于轴向压缩引起孔隙率的变化,一定的轴向压力对应一定孔隙率,同时通过改变气体的种类、压强,可测试不同气体、压强、不同荷载、不同破碎程度破碎煤岩体的内部非均匀变形与孔隙变化规律及其红外辐射。
本发明用于研究揭示不同荷载、不同气体压力条件下不同岩性不同破碎程度破碎煤岩体动静加载过程中内部颗粒非均匀变形、破碎及不同层位孔隙率空间演化规律。同时本发明提出了破碎煤岩体动静加载-红外观测和不同程度动静加载过程中破碎煤岩体空间孔隙率变化的试验方法,对探究破碎煤岩体内部非均匀变形及分层破碎与孔隙性演化机理的研究具有重要意义。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

1.一种用于破碎煤岩体动静加载红外观测的试验装置,其特征在于,包括长方体加载模块、压头、出气口、压盖、压板、红外相机观测口、进气口、底座、透气板、动态加载系统;长方体加载模块为立方体型,上方设置倒阶梯形结构的压盖,设置压头穿过压盖中心进入到长方体加载模块内,压头下方通过设置螺纹,与对应设置螺孔的压板通过螺纹配合连接,压盖用于封闭长方体加载模块顶部;压板和底座相对设置,且相对的表面上设置透气板;压头和压板内设有与长方体加载模块内部相通的出气口,底座内部设置与长方体加载模块内部相通的进气口;前后两面设有气压测量系统,两侧分别设有高速相机观测窗口和红外观测腔室,高速相机观测窗口用于高速摄像机进行数据采集,红外观测腔室用于红外相机进行数据采集;
通过在长方体加载模块前后两面上均匀设置六个压力传感器,同时在进气口和出气口设置两个压力传感器,组成气压测量系统,气压测量系统将气体引入到长方体加载模块内对破碎岩体进行充压,实现气体压力分段测试;
动态加载系统包括:空心圆柱体下落轨道、四角型支架、落锤;空心圆柱体下落轨道前面开有长方形的观测口,观测口上可有显示高度的刻度,四角型支架焊接在空心圆柱体下落轨道底部并通过螺栓与下方压盖链接,落锤在空心圆柱体下落轨道内进行自由落体给压头施加动态荷载。
2.根据权利要求1所述的可用于破碎煤岩体动静加载红外观测的试验装置,其特征在于,所述长方体加载模块与压盖之间通过螺栓连接,且连接处设有双层方型密封圈,所述压头与压盖之间设有双层圆型密封圈;所述透气板与压板、透气板与长方体加载模块底座之间分别设有滤纸。
3.根据权利要求1所述的可用于破碎煤岩体动静加载红外观测的试验装置,其特征在于,所述长方体加载模块前后侧面、底座、压头、压盖、压板均为低热导材料制成,长方体加载模块内外涂有隔热漆。
4.根据权利要求1所述的可用于破碎煤岩体动静加载红外观测的试验装置,其特征在于,所述的长方体加载模块左右两个侧面分别通过透明高硼硅玻璃和红外玻璃制备,二者边缘均粘贴石棉垫圈,嵌在长方体加载模块内。
5.根据权利要求4所述的可用于破碎煤岩体动静加载红外观测的试验装置,其特征在于,红外观测腔室依次由红外玻璃、梯形密闭台、红外相机观测口组成;红外玻璃、梯形密闭台、红外相机观测口与红外摄像镜头一起组成红外观测腔室的密闭空间,红外观测腔室内部做了漫反射处理。
6.根据权利要求1所述的可用于破碎煤岩体动静加载红外观测的试验装置,其特征在于,长方形加载模块前后两侧面自上而下各均匀安装三个压力表,作为压力传感器,实现试验过程中试样气体压力参数的实时监测。
7.根据权利要求1所述的可用于破碎煤岩体动静加载红外观测的试验装置,其特征在于,动态加载系统是可拆卸的,通过控制落锤的下落次数、落锤的质量、落锤初始高度调整动态冲击程度,落锤用绳子吊在空心圆柱体下落轨道内部,剪断绳子,进行动态加载。
8.一种用于破碎煤岩体动静加载红外观测的试验方法,采用所述权利要求1~7任一项所述的装置,其特征在于,包括以下步骤:
(1)、用不同粒径砂石筛将破碎煤岩体按颗粒大小分类;
(2)、打开压盖,将筛分好的破碎煤岩体倒入长方体加载模块中,使其均匀自然堆积,然后关闭压盖,拧紧螺丝实现长方体加载模块密封;
(3)、选择微机控制电液伺服压力机进行静态加载,或加装动态加载系统进行动态加载,调节高速相机的位置、焦距,对准长方体加载模块左侧高硼硅玻璃窗口,将红外相机头从右侧伸入红外观测腔室,并设置好红外相机焦距;
(4)、当选择静态加载时,将试验装置放置于微机控制电液伺服压力机上,同时启动微机控制电液伺服压力机、高速相机和红外相机,高速相机负责采集破碎煤岩体动静加载过程中颗粒骨架、孔隙率实时变化情况,压力机实时记录轴向位移、轴向载荷,红外相机实时记录破碎煤岩体温度演化规律,直至试验结束,取出试验试样;
(5)、当选择动态加载时,加装动态加载系统,将落锤放入空心圆柱体下落轨道内部,调整落锤高度,启动高速相机和红外相机的高频采集模式,高速相机负责采集破碎煤岩体动静加载过程中颗粒骨架、孔隙率实时变化情况,剪断绳子记录落锤的质量、下落高度,红外相机实时记录破碎煤岩体温度演化规律,直至试验结束,取出试验试样。
9.根据权利要求8所述的用于破碎煤岩体动静加载红外观测的试验方法,其特征在于,在选择静态加载时,启动微机控制电液伺服压力机、高速相机和红外相机的步骤之后,包括步骤:
关闭进气口,打开出气口由出气孔对缸筒内煤岩体抽真空;
同时打开进气口、红外相机及高速相机,由进气口向长方体加载模块内持续注入确定压力下气体;由红外相机、高速相机实时记录一定压力气体持续流动过程中破碎煤岩体颗粒骨架、孔隙及温度实时变化规律;
打开微机控制电液伺服压力机对破碎煤岩体进行加载,高速相机负责采集持续通入一定气体压力条件下破碎煤岩体在动静加载过程中颗粒骨架、孔隙率实时变化情况,压力机实时记录轴向位移、轴向载荷,红外相机实时记录破碎煤岩体温度演化规律,直至试验结束,取出试验试样;
在选择动态加载时,加装动态加载系统、高速相机和红外相机的步骤之后,包括步骤:
关闭进气口,打开出气口由出气孔对缸筒内煤岩体抽真空;
同时打开进气口、红外相机及高速相机,由进气口向长方体加载模块内持续注入确定压力下气体;由红外相机、高速相机实时记录一定压力气体持续流动过程中破碎煤岩体颗粒骨架、孔隙及温度实时变化规律;落锤对破碎煤岩体进行动态加载,高速相机负责采集持续通入一定气体压力条件下破碎煤岩体在动静加载过程中颗粒骨架、孔隙率实时变化情况,记录落锤的质量、高度,红外相机实时记录破碎煤岩体温度演化规律,直至试验结束,取出试验试样。
10.根据权利要求8所述的用于破碎煤岩体动静加载红外观测的试验方法,其特征在于,所述破碎体试样为不同岩性、不同颗粒粒径的破碎煤体或岩体的中的任一种或是不同岩性的组合体,通入气体为二氧化碳、甲烷、氮气等不同气体,通入气体设置不同气压压强下。
CN202010304979.7A 2020-04-17 2020-04-17 用于破碎煤岩体动静加载红外观测的试验装置和试验方法 Active CN111413208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010304979.7A CN111413208B (zh) 2020-04-17 2020-04-17 用于破碎煤岩体动静加载红外观测的试验装置和试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010304979.7A CN111413208B (zh) 2020-04-17 2020-04-17 用于破碎煤岩体动静加载红外观测的试验装置和试验方法

Publications (2)

Publication Number Publication Date
CN111413208A true CN111413208A (zh) 2020-07-14
CN111413208B CN111413208B (zh) 2022-10-28

Family

ID=71491947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010304979.7A Active CN111413208B (zh) 2020-04-17 2020-04-17 用于破碎煤岩体动静加载红外观测的试验装置和试验方法

Country Status (1)

Country Link
CN (1) CN111413208B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697572A (zh) * 2020-12-18 2021-04-23 浙江华东工程咨询有限公司 适用于泥质粉砂岩破碎的室内试验方法
CN112858015A (zh) * 2020-12-28 2021-05-28 太原理工大学 用于煤岩气固耦合动静加卸载红外观测的试验装置及方法
CN115165621A (zh) * 2022-06-22 2022-10-11 中煤科工开采研究院有限公司 锚杆轴向力学性能测试装置与方法
CN115979811A (zh) * 2022-12-30 2023-04-18 吴志勇 岩体动-静变形参数同体、同向、同步测试方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142278A (zh) * 2014-08-25 2014-11-12 中国矿业大学 落锤式动静组合加载冲击实验装置
CN104792685A (zh) * 2015-04-23 2015-07-22 太原理工大学 一种破碎煤岩体气体渗透试验装置及方法
CN105784510A (zh) * 2016-04-21 2016-07-20 安徽农业大学 一种落锤式坚果力学特性参数测试实验台
CN105973728A (zh) * 2016-05-30 2016-09-28 中国矿业大学(北京) 动载荷下液压支架刚度与岩石强度破坏关系实验台
US20170059462A1 (en) * 2014-05-22 2017-03-02 China University Of Mining And Technology Device and method using infrared radiation to observe coal rock fracture development process
CN106918531A (zh) * 2016-12-28 2017-07-04 山东大学 可用于多相耦合的动静联合加载岩石试验机及试验方法
CN106990031A (zh) * 2017-05-27 2017-07-28 辽宁工程技术大学 一种振动卸荷条件下含瓦斯煤岩渗透规律试验研究方法
CN107782622A (zh) * 2017-10-24 2018-03-09 中国矿业大学 应力‑瓦斯耦合作用煤体损伤红外辐射测试装置及方法
CN107976391A (zh) * 2017-10-24 2018-05-01 江苏师范大学 一种破碎岩石扰动渗流特性测试用渗流仪及测试系统
CN108444888A (zh) * 2018-04-17 2018-08-24 中国矿业大学 一种破碎煤岩体渗透注浆可视化试验装置及其试验方法
CN108844871A (zh) * 2018-03-12 2018-11-20 中国矿业大学 多场红外辐射观测装置及方法
CN109187926A (zh) * 2018-09-18 2019-01-11 太原理工大学 破碎煤岩体三轴渗流试验装置及解吸-扩散-渗流试验系统
CN109612907A (zh) * 2018-12-27 2019-04-12 太原理工大学 破碎煤岩体渗透性测试试验装置及方法
CN109655392A (zh) * 2018-12-03 2019-04-19 中国矿业大学(北京) 一种破碎煤岩样可视化伺服加载渗流实验测试方法
CN110186776A (zh) * 2019-05-24 2019-08-30 太原理工大学 一种破碎岩体多相耦合蠕变加载试验装置及试验方法
CN110411915A (zh) * 2019-07-31 2019-11-05 中国矿业大学 一种煤岩截割产尘实验系统与方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170059462A1 (en) * 2014-05-22 2017-03-02 China University Of Mining And Technology Device and method using infrared radiation to observe coal rock fracture development process
CN104142278A (zh) * 2014-08-25 2014-11-12 中国矿业大学 落锤式动静组合加载冲击实验装置
CN104792685A (zh) * 2015-04-23 2015-07-22 太原理工大学 一种破碎煤岩体气体渗透试验装置及方法
CN105784510A (zh) * 2016-04-21 2016-07-20 安徽农业大学 一种落锤式坚果力学特性参数测试实验台
CN105973728A (zh) * 2016-05-30 2016-09-28 中国矿业大学(北京) 动载荷下液压支架刚度与岩石强度破坏关系实验台
CN106918531A (zh) * 2016-12-28 2017-07-04 山东大学 可用于多相耦合的动静联合加载岩石试验机及试验方法
CN106990031A (zh) * 2017-05-27 2017-07-28 辽宁工程技术大学 一种振动卸荷条件下含瓦斯煤岩渗透规律试验研究方法
CN107976391A (zh) * 2017-10-24 2018-05-01 江苏师范大学 一种破碎岩石扰动渗流特性测试用渗流仪及测试系统
CN107782622A (zh) * 2017-10-24 2018-03-09 中国矿业大学 应力‑瓦斯耦合作用煤体损伤红外辐射测试装置及方法
CN108844871A (zh) * 2018-03-12 2018-11-20 中国矿业大学 多场红外辐射观测装置及方法
CN108444888A (zh) * 2018-04-17 2018-08-24 中国矿业大学 一种破碎煤岩体渗透注浆可视化试验装置及其试验方法
CN109187926A (zh) * 2018-09-18 2019-01-11 太原理工大学 破碎煤岩体三轴渗流试验装置及解吸-扩散-渗流试验系统
CN109655392A (zh) * 2018-12-03 2019-04-19 中国矿业大学(北京) 一种破碎煤岩样可视化伺服加载渗流实验测试方法
CN109612907A (zh) * 2018-12-27 2019-04-12 太原理工大学 破碎煤岩体渗透性测试试验装置及方法
CN110186776A (zh) * 2019-05-24 2019-08-30 太原理工大学 一种破碎岩体多相耦合蠕变加载试验装置及试验方法
CN110411915A (zh) * 2019-07-31 2019-11-05 中国矿业大学 一种煤岩截割产尘实验系统与方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BO LI 等: ""Experimental investigation on compaction characteristics and permeability evolution of broken coal"", 《INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCE》 *
CUN ZHANG 等: ""Permeability characteristics of broken coal and rock under cyclic loading and unloading"", 《NATURAL RESOURCES RESEARCH》 *
中国地球物理学会编: "《中国地球物理 2004》", 1 September 2004, 西安地图出版社 *
张东升 等: ""采动覆岩固液耦合三维无损监测系统与应用"", 《采矿与安全工程学报》 *
李振: ""老空区破碎煤岩体变形与渗流特性研究及在煤层气抽采中的应用"", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
汪东生: "《采掘工作面瓦斯防治工程实践及研究》", 1 June 2012, 煤炭工业出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697572A (zh) * 2020-12-18 2021-04-23 浙江华东工程咨询有限公司 适用于泥质粉砂岩破碎的室内试验方法
CN112697572B (zh) * 2020-12-18 2023-08-29 浙江华东工程咨询有限公司 适用于泥质粉砂岩破碎的室内试验方法
CN112858015A (zh) * 2020-12-28 2021-05-28 太原理工大学 用于煤岩气固耦合动静加卸载红外观测的试验装置及方法
CN115165621A (zh) * 2022-06-22 2022-10-11 中煤科工开采研究院有限公司 锚杆轴向力学性能测试装置与方法
CN115979811A (zh) * 2022-12-30 2023-04-18 吴志勇 岩体动-静变形参数同体、同向、同步测试方法
CN115979811B (zh) * 2022-12-30 2024-02-23 吴志勇 岩体动-静变形参数同体、同向、同步测试方法

Also Published As

Publication number Publication date
CN111413208B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
CN111413208B (zh) 用于破碎煤岩体动静加载红外观测的试验装置和试验方法
CN106918531B (zh) 可用于多相耦合的动静联合加载岩石试验机及试验方法
CN107748110B (zh) 微机控制电液伺服岩石三轴动态剪切渗流耦合试验方法
CN107782634B (zh) 微机控制电液伺服岩石三轴动态剪切渗流耦合试验装置
CN108226441B (zh) 可实现石门巷道掘进诱导煤与瓦斯突出的定量模拟试验系统及方法
CN102735547B (zh) 真三轴状态下煤岩水压致裂试验方法
CN103743633B (zh) 流固耦合煤岩剪切-渗流试验装置
CN110726822B (zh) 一种氧化镁固化土碳化过程膨胀性及碳化土抗剪强度测试方法
CN108801799A (zh) 岩石压裂物理模拟系统及试验方法
CN110542639A (zh) 一种带ct实时扫描的真三轴瓦斯渗流试验装置及方法
CN109612907A (zh) 破碎煤岩体渗透性测试试验装置及方法
CN104614298B (zh) 一种恒容含瓦斯煤气固耦合物理力学参数试验装置及方法
CN103674739B (zh) 一种泥页岩脆裂性质的实验装置及其实验分析方法
CN107255700B (zh) 煤层气井排采过程煤粉产出模拟测试装置及其测试方法
CN110221036A (zh) 带渗流装置的保水开采“声发射-红外辐射”实验系统
CN116907995B (zh) 一种检测混杂岩多场耦合力学性质的测试系统及测试方法
CN105445106A (zh) 适应不同土样尺寸的气压固结仪
CN113790969A (zh) 一种模拟煤岩体在三轴应力下的爆破可视化装置及测试方法
CN109855967B (zh) 一种破碎煤岩体压实-声发射-电阻率实验装置及方法
CN211206165U (zh) 一种带ct实时扫描的真三轴瓦斯渗流试验装置
CN112858015A (zh) 用于煤岩气固耦合动静加卸载红外观测的试验装置及方法
CN102944660A (zh) 一种大尺度煤体瓦斯吸附解吸模拟试验系统
CN102706528B (zh) 一种散碎煤岩体瓦斯流动特性试验装置
CN111965006B (zh) 一种泥页岩颗粒强度测试仪及其测试方法
CN211206064U (zh) 深部煤岩三轴应力和饱气条件下在线光谱测试装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant