CN111412938A - 一种三参数测量的混合结构干涉仪传感器 - Google Patents
一种三参数测量的混合结构干涉仪传感器 Download PDFInfo
- Publication number
- CN111412938A CN111412938A CN202010357837.7A CN202010357837A CN111412938A CN 111412938 A CN111412938 A CN 111412938A CN 202010357837 A CN202010357837 A CN 202010357837A CN 111412938 A CN111412938 A CN 111412938A
- Authority
- CN
- China
- Prior art keywords
- fiber
- coreless
- photonic crystal
- parameter measurement
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 18
- 239000000835 fiber Substances 0.000 claims abstract description 114
- 239000004038 photonic crystal Substances 0.000 claims abstract description 29
- 239000004005 microsphere Substances 0.000 claims abstract description 26
- 239000013307 optical fiber Substances 0.000 claims description 23
- 230000004927 fusion Effects 0.000 claims description 6
- 238000003466 welding Methods 0.000 claims description 5
- 238000010891 electric arc Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 238000005253 cladding Methods 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35309—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
- G01D5/35312—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35329—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Transform (AREA)
Abstract
本发明涉及一种三参数测量的混合结构干涉仪传感器,包括自左至右依次熔接的第一单模光纤、无芯光纤微球腔、光子晶体光纤和第二单模光纤;本发明通过一个无芯光纤微球腔和小段光子晶体光纤锥做到了在一个传感器上既有Fabry‑Perot干涉仪的功能又有Mach‑Zehnder干涉仪的功能。并且本发明的干涉仪传感器具有结构制作简单、灵敏度高和稳定性好等优点。同时该传感器还可以对横向压力、温度和折射率三参数进行测量。
Description
技术领域
本发明涉及一种三参数测量的混合结构干涉仪传感器,尤其涉及一种三参数测量的Fabry-Perot/Mach-Zehnder混合型结构干涉仪传感器,属于光纤传感器领域。
背景技术
光纤传感器由于传输损耗低、耐腐蚀、测量动态范围大、体积小、抗电磁干扰等优势而备受关注,已广泛应用于物理、化学以及工业和生物传感领域,特别在易燃、易爆以及强电磁干扰等恶劣环境中光纤传感器较传统电传感器有非常大的优势。由于其独特的优势,使得它们可以对各种各样的物理量进行测量,例如:温度、折射率、横向压力、应变、湿度等等。这其中横向压力和折射率的测量变的越来越重要因为他们在日常生活中有着非常重要的应用(如食品制造、桥梁检测等等)。此外,在传感领域温度一直是一个不能忽视的问题。
传统的Mach-Zehnder干涉仪通过光束分束器将一根光纤的光束分到两根光纤中传播,一根为参考光纤另一根是传感光纤,然后通过光纤耦合器将两束光又合并到一根光纤中传播,由于两根光纤的光程不同在合并的光纤中会发生干涉。但是由于传统的Mach-Zehnder干涉仪不稳定很快被全光纤型Mach-Zehnder干涉仪所取代,全光纤型Mach-Zehnder干涉仪是利用纤芯与包层有效折射率不同而形成的一种小型化的透射式干涉仪。光子晶体光纤由于其高双折射、高非线性、无截止单模传输等特点在光纤领域已经越来越受到关注。光纤Fabry-Perot干涉仪是一种多光束反射式传感器,主要有腔内的两个高反射率的平行反射面组成它是一种反射式的光纤干涉仪。一般来说反射式的干涉仪在实际应用中要比透射式干涉仪方便一些。最近,各种各样的混合结构干涉仪已经被报道包括基于PDMS/硅混合结构的温度传感器、混合LPG和FBG的曲率传感器以及基于双芯光纤和微毛细管的MI/FPI混合型传感器。但是以上的传感器都遭遇一些缺点例如制造过程复杂、价格较昂贵。
发明内容
本发明为了解决现有技术中存在的问题,提供一种将Fabry-Perot和Mach-Zehnder干涉仪整合在一个传感器上的混合结构干涉仪传感器;可利用相位解调的方法实现了横向压力、折射率和温度三参数测量。
为了达到上述目的,本发明提出的技术方案为:一种三参数测量的混合结构干涉仪传感器,包括自左至右依次熔接的第一单模光纤、无芯光纤微球腔、光子晶体光纤和第二单模光纤;所述光子晶体光纤和第二单模光纤熔接处呈锥形。
对上述技术方案的进一步设计为:所述无芯光纤微球腔通过无芯光纤制成。
所述无芯光纤一端与第一单模光纤熔接,另一端通过光纤熔接机进行电弧放电,形成无芯光纤微球腔。
所述无芯光纤长度为200微米。
所述无芯光纤微球腔的直径大于第一、第二单模光纤和光子晶体光纤的直径。
所述光子晶体光纤与第二单模光纤的连接处利用光纤熔接机进行了拉锥处理,形成光子晶体-单模光纤锥。
所述光子晶体光纤与第二单模光纤连接处的直径自左至中部逐渐减小,自中部向右逐渐变大。
本发明具有的有益效果为:
本发明通过在单模光纤一端依次熔接一个无芯光纤微球腔、一段光子晶体光纤和一个光子晶体-单模光纤锥灵活的实现了在一个传感器上同时具有Fabry-Perot和Mach-Zehnder干涉仪的功能,无芯光纤微球腔由于其尺寸高于单模光纤和光子晶体光纤的直径所以它的横向压力是很灵敏的。而光子晶体-单模光纤锥由于独特的锥型结构其折射率灵敏度会被极大的提高并且相位解调法被应用到此传感器中可以实现横向压力、折射率和温度的三参数测量。
附图说明
图1为无芯光纤微球腔的结构示意图;
图2为本发明实施例的干涉仪传感器结构示意图;
图3为和温度传感实验装置图;
图4为力传感实验装置。
图中:1-第一单模光纤,2-无芯光纤微球腔,3-光子晶体光纤、4-第二单模光纤。
具体实施方式
下面结合附图以及具体实施例对本发明进行详细说明。
实施例
如图1所示,本实施例的一种三参数测量的混合结构干涉仪传感器,包括自左至右依次熔接的第一单模光纤1、无芯光纤微球腔2、光子晶体光纤3和第二单模光纤4。
本实施例制作时,首先将第一单模光纤1切平整待用,然后利用光纤熔接机将第一单模光纤1与无芯光纤相熔接。熔接之后将无芯光纤留存长度为200微米,在熔接机上对无芯光纤末端进行两次电弧放电,使得无芯光纤该端的二氧化硅层熔融在一起,从而形成一个无芯光纤微球腔2,无芯光纤微球腔2内填充有空气。第一单模光纤1的纤芯与无芯光纤微球腔2内的空气的接触面形成反射面a,无芯光纤微球腔2内的空气与无芯光纤的二氧化硅层的接触面为反射面b。
本实施例中无芯光纤微球腔2的直径大于第一、第二单模光纤和光子晶体光纤3的直径。
结合图2所示,本实施例在图1的基础上又在无芯光纤微球腔2上依次熔接了一段光子晶体光纤3和第二单模光纤4,并且在光子晶体光纤3与第二单模光纤4的连接点处利用光纤熔接机进行了拉锥处理,使光子晶体光纤3和第二单模光纤4熔接处呈锥形,从而制作出了光子晶体-单模光纤锥。所述光子晶体光纤3与第二单模光纤4连接处的直径自左至中部逐渐减小,自中部向右逐渐变大。
如图1所示,当入射光沿着第一单模光纤1(SMF)的纤芯传播遇到反射面a时由于纤芯与空气的折射率不同会发生菲尼尔反射一部分光被反射回来剩下的光继续向前传播当其遇到反射面b时同样的也会有一部分光被反射回来剩下的光会继续向前传输。由于两束反射的光传输路径的折射率不同,当两束反射光在第一单模光纤1纤芯中再次相遇时存在一定的相位差从而产生干涉。从上述光路传播原理来看此结构是一个Fabry-Perot干涉仪。
如图2所示,当入射光沿着第一单模光纤1的纤芯传播时,遇到无芯光纤微球腔2时由于模场的不匹配一部分光会耦合进光子晶体光纤3的包层,剩下的光会继续在光子晶体光纤3的纤芯中传播。在光子晶体包层与纤芯中传播的光遇到光子晶体-单模光纤锥型区域时在光子晶体光纤3包层中的光会重新耦合回纤芯,从而在右端导出的第二单模光纤4的光纤中发生干涉。从上述的光路传播原理来看此结构是一个Mach-Zehnder干涉仪。
在本实施例中,我们把Mach-Zehnder干涉仪和Fabry-Perot干涉仪结合到一个传感器中。
它们各自的干涉谱线强度可以表示为:
其中I1和I2分别是反射面1和2的光强;I3和I4分别是光子晶体光纤纤芯和包层中的光强;λ是真空中的波长;L1是无芯光纤微球腔的长度,L2是光子晶体光纤的长度;Δneff是光子晶体光纤纤芯和包层模式之间的有效折射率差;n是无芯光纤微球腔中空气的折射率。混合之后的输出光强可以表示为:
I=IFP+IMZ (3)
利用本实施例的干涉仪传感器,进行折射率和温度的传感特性试验装置如图3所示。当测量折射率的时候我们就把传感器结构放在折射率液中,如图3左下角所示;而在进行温度传感实验的时候我们把传感器结构放在一个温度箱中,如图3右下角所示。在折射率传感实验中,为了消除水张力对传感器的影响我们自制了一个光纤支架把传感器结构固定在上面然后放入一个水-甘油的折射率匹配液中,折射率匹配液是由水和甘油的混合液组成其值可以从阿贝折射仪中测得。折射率变化范围从1.330-1.382,记录数据前要确保传感结构完全侵入折射率匹配液中。每次测量之后都需要把传感探头拿出来用蒸馏水冲洗干净并用压缩空气吹干待谱线恢复最初时再进行后续的折射率实验。而在温度的传感实验中我们唯一要变的就是把传感结构放入一个温控箱中而不是在折射率匹配液中。温度变化范围从30°-90°每隔10°测一次数据一共七组数据。温度的变化是由温度箱自己控制的。每次用光谱仪记录数据前等待大概5分钟左右以增加测得数据的稳定性。
使用本实施例的干涉仪传感器进行横向压力传感实验装置图如图4所示。在横向压力传感实验中,我们把传感器结构水平放入两个平行的玻璃片中间。用砝码当作压力来源施加到玻璃片上,压力从0N到2.45N每隔0.49N所对应的砝码重量是从0g到250g每隔50g。每施加一次重量用光谱仪扫描一次谱线并进行记录一共6组数据被记录。
本发明的技术方案不局限于上述各实施例,凡采用等同替换方式得到的技术方案均落在本发明要求保护的范围内。
Claims (7)
1.一种三参数测量的混合结构干涉仪传感器,其特征在于:包括自左至右依次熔接的第一单模光纤、无芯光纤微球腔、光子晶体光纤和第二单模光纤;所述光子晶体光纤和第二单模光纤熔接处呈锥形。
2.根据权利要求1所述三参数测量的混合结构干涉仪传感器,其特征在于:所述无芯光纤微球腔通过无芯光纤制成。
3.根据权利要求2所述三参数测量的混合结构干涉仪传感器,其特征在于:所述无芯光纤一端与第一单模光纤熔接,另一端通过光纤熔接机进行电弧放电,形成无芯光纤微球腔。
4.根据权利要求3所述三参数测量的混合结构干涉仪传感器,其特征在于:所述无芯光纤长度为200微米。
5.根据权利要求4所述三参数测量的混合结构干涉仪传感器,其特征在于:所述无芯光纤微球腔的直径大于第一、第二单模光纤和光子晶体光纤的直径。
6.根据权利要求1所述三参数测量的混合结构干涉仪传感器,其特征在于:所述光子晶体光纤与第二单模光纤的连接处利用光纤熔接机进行了拉锥处理,形成光子晶体-单模光纤锥。
7.根据权利要求5所述三参数测量的混合结构干涉仪传感器,其特征在于:所述光子晶体光纤与第二单模光纤连接处的直径自左至中部逐渐减小,自中部向右逐渐变大。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010357837.7A CN111412938B (zh) | 2020-04-29 | 2020-04-29 | 一种三参数测量的混合结构干涉仪传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010357837.7A CN111412938B (zh) | 2020-04-29 | 2020-04-29 | 一种三参数测量的混合结构干涉仪传感器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111412938A true CN111412938A (zh) | 2020-07-14 |
CN111412938B CN111412938B (zh) | 2022-03-11 |
Family
ID=71490141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010357837.7A Active CN111412938B (zh) | 2020-04-29 | 2020-04-29 | 一种三参数测量的混合结构干涉仪传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111412938B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112729377A (zh) * | 2020-12-02 | 2021-04-30 | 北京信息科技大学 | 粗锥干涉结构、制备方法及温度浓度双参数测量方法 |
CN112730327A (zh) * | 2020-12-02 | 2021-04-30 | 北京信息科技大学 | 一种折射率ph值双参数传感器及制备方法 |
CN112729633A (zh) * | 2020-12-02 | 2021-04-30 | 北京信息科技大学 | 一种基于三光束f-p干涉结构的心脏监测微压传感器 |
CN113959606A (zh) * | 2021-10-20 | 2022-01-21 | 南京信息工程大学 | 一种基于级联增强游标效应的混合型横向压力传感器 |
CN114001812A (zh) * | 2021-10-29 | 2022-02-01 | 中广核工程有限公司 | 基于法布里-珀罗干涉仪的光纤传感探头、超声波传感器 |
CN115752796A (zh) * | 2022-11-02 | 2023-03-07 | 燕山大学 | 一种基于偏双芯特种光纤的温度传感器及其制备方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5682237A (en) * | 1995-05-26 | 1997-10-28 | McDonnell Douglas | Fiber strain sensor and system including one intrinsic and one extrinsic fabry-perot interferometer |
US7336862B1 (en) * | 2007-03-22 | 2008-02-26 | General Electric Company | Fiber optic sensor for detecting multiple parameters in a harsh environment |
CN102778306A (zh) * | 2012-07-13 | 2012-11-14 | 南京信息工程大学 | 光子晶体光纤折射率温度传感器、制作方法及测量系统 |
US20130083314A1 (en) * | 2010-06-09 | 2013-04-04 | Rolls-Royce Plc | Combined measurement of neutron fluence with temperature and/or pressure |
CN104297208A (zh) * | 2014-10-21 | 2015-01-21 | 天津理工大学 | 基于光子晶体光纤的干涉型光纤传感器 |
US20160273912A1 (en) * | 2013-11-14 | 2016-09-22 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Evanescent Field Opto-Mechanical Displacement Sensor and Phase Shifter |
CN205861002U (zh) * | 2016-07-05 | 2017-01-04 | 中国计量大学 | 一种基于球形结构和光子晶体光纤的光纤应变传感器 |
CN206208755U (zh) * | 2016-11-02 | 2017-05-31 | 沈阳工学院 | 基于光子晶体光纤的探头式折射率传感装置 |
CN108195410A (zh) * | 2017-12-25 | 2018-06-22 | 北京信息科技大学 | 基于mzi和fpi级联的多参数光纤干涉传感器及其制备方法 |
CN108387173A (zh) * | 2018-04-04 | 2018-08-10 | 南京信息工程大学 | 一种超紧凑全光纤马赫-泽德干涉仪及其制作方法 |
CN109631965A (zh) * | 2019-01-25 | 2019-04-16 | 东北大学 | 一种基于微光纤锥球面反射型的干涉仪 |
-
2020
- 2020-04-29 CN CN202010357837.7A patent/CN111412938B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5682237A (en) * | 1995-05-26 | 1997-10-28 | McDonnell Douglas | Fiber strain sensor and system including one intrinsic and one extrinsic fabry-perot interferometer |
US7336862B1 (en) * | 2007-03-22 | 2008-02-26 | General Electric Company | Fiber optic sensor for detecting multiple parameters in a harsh environment |
US20130083314A1 (en) * | 2010-06-09 | 2013-04-04 | Rolls-Royce Plc | Combined measurement of neutron fluence with temperature and/or pressure |
CN102778306A (zh) * | 2012-07-13 | 2012-11-14 | 南京信息工程大学 | 光子晶体光纤折射率温度传感器、制作方法及测量系统 |
US20160273912A1 (en) * | 2013-11-14 | 2016-09-22 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Evanescent Field Opto-Mechanical Displacement Sensor and Phase Shifter |
CN104297208A (zh) * | 2014-10-21 | 2015-01-21 | 天津理工大学 | 基于光子晶体光纤的干涉型光纤传感器 |
CN205861002U (zh) * | 2016-07-05 | 2017-01-04 | 中国计量大学 | 一种基于球形结构和光子晶体光纤的光纤应变传感器 |
CN206208755U (zh) * | 2016-11-02 | 2017-05-31 | 沈阳工学院 | 基于光子晶体光纤的探头式折射率传感装置 |
CN108195410A (zh) * | 2017-12-25 | 2018-06-22 | 北京信息科技大学 | 基于mzi和fpi级联的多参数光纤干涉传感器及其制备方法 |
CN108387173A (zh) * | 2018-04-04 | 2018-08-10 | 南京信息工程大学 | 一种超紧凑全光纤马赫-泽德干涉仪及其制作方法 |
CN109631965A (zh) * | 2019-01-25 | 2019-04-16 | 东北大学 | 一种基于微光纤锥球面反射型的干涉仪 |
Non-Patent Citations (7)
Title |
---|
BINGSEN HUANG ET.AL: "In-Fiber Mach-Zehnder Interferometer Exploiting a Micro-Cavity For Strain and Temperature Simultaneous Measurement", 《IEEE SENSORS JOURNAL》 * |
JIN WANG ET.AL: "Temperature insensitive fiber Fabry-Perot/Mach-Zehnder hybrid interferometer based on photonic crystal fiber for transverse load and refractive index measurement", 《OPTICAL FIBER TECHNOLOGY》 * |
K. HAMMARLING ET.AL: "Dual parameter fiber optic sensor combining a Fabry-Perot and a Mach-Zehnder interferometer", 《2017 IEEE SENSORS》 * |
YONGFENG WU ET.AL: "Fiber-Optic Hybrid-Structured Fabry-Perot Interferometer Based On Large Lateral Offset Splicing for Simultaneous Measurement of Strain and Temperature", 《JOURNAL OF LIGHTWAVE TECHNOLOGY》 * |
李德贵等: "锥-单模光纤-细芯光纤-球结构的复合干涉型传感器温度特性研究", 《光电子.激光》 * |
王建丰等: "基于复合干涉仪的双参量传感器", 《光通信研究》 * |
纪玉申等: "熔融拉锥型光子晶体光纤马赫-曾德尔干涉仪传感特性", 《光学学报》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112729377A (zh) * | 2020-12-02 | 2021-04-30 | 北京信息科技大学 | 粗锥干涉结构、制备方法及温度浓度双参数测量方法 |
CN112730327A (zh) * | 2020-12-02 | 2021-04-30 | 北京信息科技大学 | 一种折射率ph值双参数传感器及制备方法 |
CN112729633A (zh) * | 2020-12-02 | 2021-04-30 | 北京信息科技大学 | 一种基于三光束f-p干涉结构的心脏监测微压传感器 |
CN112730327B (zh) * | 2020-12-02 | 2022-12-02 | 北京信息科技大学 | 一种折射率ph值双参数传感器及制备方法 |
CN113959606A (zh) * | 2021-10-20 | 2022-01-21 | 南京信息工程大学 | 一种基于级联增强游标效应的混合型横向压力传感器 |
CN113959606B (zh) * | 2021-10-20 | 2023-09-26 | 南京信息工程大学 | 一种基于级联增强游标效应的混合型横向压力传感器 |
CN114001812A (zh) * | 2021-10-29 | 2022-02-01 | 中广核工程有限公司 | 基于法布里-珀罗干涉仪的光纤传感探头、超声波传感器 |
CN115752796A (zh) * | 2022-11-02 | 2023-03-07 | 燕山大学 | 一种基于偏双芯特种光纤的温度传感器及其制备方法 |
CN115752796B (zh) * | 2022-11-02 | 2023-08-15 | 燕山大学 | 一种基于偏双芯特种光纤的温度传感器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111412938B (zh) | 2022-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111412938B (zh) | 一种三参数测量的混合结构干涉仪传感器 | |
US10866081B2 (en) | Waveguide interferometer | |
CN101957227B (zh) | 光子晶体光纤液位传感器及其形成的传感系统 | |
Chen et al. | Review of femtosecond laser machining technologies for optical fiber microstructures fabrication | |
CN102749304B (zh) | 高灵敏度光子晶体光纤折射率传感器及制法 | |
CN111337060A (zh) | 一种基于并联结构游标效应的混合型传感器及其制作方法 | |
CN102183490B (zh) | 光纤全息干涉测量装置 | |
Zhu et al. | High sensitivity curvature sensor based on a double-sphere tapered no-core fiber Mach–Zehnder interferometer | |
Zeng et al. | High sensitivity magnetic field sensor based on a Mach-Zehnder interferometer and magnetic fluid | |
CN116448270A (zh) | 一种基于七芯光纤的温度和曲率传感器及其制备方法 | |
Shao et al. | Large measurement-range and low temperature cross-sensitivity optical fiber curvature sensor based on Michelson interferometer | |
CN114111857A (zh) | 一种基于游标效应的光纤fpi级联mi传感装置 | |
Feng et al. | Intensity-modulated liquid-level and temperature sensor based on cascaded air bubble and fiber Bragg grating interferometer | |
CN216348692U (zh) | 一种非对称花生形光纤mzi温度和折射率传感系统 | |
Yang et al. | All-pass and add-drop microsphere resonator in a suspended dual-core hollow fiber | |
Yang et al. | TFBG Side Modes and Fresnel Reflection-Based Sensing System for Solution Concentration Measurement | |
CN216348697U (zh) | 一种基于端面微球结构的光纤迈克尔逊干涉仪 | |
Jin et al. | Optical fiber in-line Mach-Zehnder interferometer based on down-up tapers for refractive index measurement | |
Liu et al. | HCPCF-based in-line fiber Fabry-Perot refractometer and high sensitivity signal processing method | |
CN209247579U (zh) | 一种测量液体表面张力的光纤传感器 | |
CN115307567A (zh) | 一种基于多芯光纤拉锥的曲率传感器及其制备方法 | |
Sulaiman et al. | An experimental analysis on the performance of single mode-multimode-single mode and multimode-single mode-multimode fiber optic sensor | |
Yin et al. | A Compact Refractive Index and Temperature Simultaneous Measurement Sensor Based on Coaxial Dual-Waveguide Fiber Embedded No-Core Fiber Structure | |
CN109253950A (zh) | 一种测量液体表面张力的光纤传感器 | |
Zhang et al. | Asymmetrical twin-core fiber based Michelson interferometer for environmental refractive index sensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |