CN111399395A - The Realization Method of F-M II State Space Model Based on Radar Target Prediction System - Google Patents
The Realization Method of F-M II State Space Model Based on Radar Target Prediction System Download PDFInfo
- Publication number
- CN111399395A CN111399395A CN202010206817.XA CN202010206817A CN111399395A CN 111399395 A CN111399395 A CN 111399395A CN 202010206817 A CN202010206817 A CN 202010206817A CN 111399395 A CN111399395 A CN 111399395A
- Authority
- CN
- China
- Prior art keywords
- array
- elements
- dimensional array
- transfer function
- state space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000011159 matrix material Substances 0.000 claims abstract description 40
- 238000012546 transfer Methods 0.000 claims abstract description 36
- 238000012217 deletion Methods 0.000 claims abstract description 4
- QVRVXSZKCXFBTE-UHFFFAOYSA-N n-[4-(6,7-dimethoxy-3,4-dihydro-1h-isoquinolin-2-yl)butyl]-2-(2-fluoroethoxy)-5-methylbenzamide Chemical compound C1C=2C=C(OC)C(OC)=CC=2CCN1CCCCNC(=O)C1=CC(C)=CC=C1OCCF QVRVXSZKCXFBTE-UHFFFAOYSA-N 0.000 claims 4
- JXASPPWQHFOWPL-UHFFFAOYSA-N Tamarixin Natural products C1=C(O)C(OC)=CC=C1C1=C(OC2C(C(O)C(O)C(CO)O2)O)C(=O)C2=C(O)C=C(O)C=C2O1 JXASPPWQHFOWPL-UHFFFAOYSA-N 0.000 claims 1
- 238000003491 array Methods 0.000 claims 1
- 238000012795 verification Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 238000004364 calculation method Methods 0.000 abstract description 3
- 238000005457 optimization Methods 0.000 description 7
- 238000011160 research Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及空间模型技术领域,具体为一种基于雷达目标预测系统的F-M II状态空间模型的实现方法。The invention relates to the technical field of space models, in particular to a method for realizing an F-M II state space model based on a radar target prediction system.
背景技术Background technique
随着计算机技术的发展与进步,计算机对数据的处理速度也越来越快,这些性能使得系统设计者想要考虑设计更加复杂的系统处理过程,得到更准确的系统实现,并且提高分析系统的效率,这些需求使得MIMO雷达成为目前研究的热点。MIMO雷达是在传统的相控阵雷达的基础上,将多输入多输出技术应用于雷达系统而发展起来的一种新型雷达。车载雷达是MIMO雷达的一个重要应用。从系统本身看,车载雷达系统要考虑多方面的信息,因此它是一个多输入多输出的控制系统。由于真实的路况复杂多变,要求车载雷达要有较高的性能,以提高道路安全性,减少交通事故的发生。With the development and progress of computer technology, the speed of computer processing of data is getting faster and faster. These performances make system designers want to consider designing more complex system processing procedures, obtain more accurate system implementation, and improve the analysis system. Efficiency, these requirements make MIMO radar a hot research topic. MIMO radar is a new type of radar developed by applying multiple input multiple output technology to radar system on the basis of traditional phased array radar. Vehicle radar is an important application of MIMO radar. From the point of view of the system itself, the vehicle radar system needs to consider many aspects of information, so it is a multi-input and multi-output control system. Because the real road conditions are complex and changeable, the on-board radar is required to have high performance to improve road safety and reduce the occurrence of traffic accidents.
在车载雷达相关技术中,目标预测技术能够通过对周围的行人、车辆等物体进行感知和识别,获取周围运动目标大小和速度等相关信息,从而预测出目标下一时刻的状态估计,让车辆能提前做出规避行为,达到减少事故发生率的目的。In vehicle-mounted radar-related technologies, target prediction technology can obtain relevant information such as the size and speed of surrounding moving targets by perceiving and identifying surrounding objects such as pedestrians and vehicles, so as to predict the state estimation of the target at the next moment, so that the vehicle can Make avoidance behaviors in advance to achieve the purpose of reducing the accident rate.
同样,随着控制对象的日趋复杂化,系统需要实现的控制功能日益多样化,这些都对多维系统的研究提出了新的要求。多维系统是多个信号共同作用从而实现控制的系统。因此,多维系统能全面、精确地描述多个系统参数,实时反映出各种影响因素的变化,从而能有效地提高系统的控制性能。虽然多维系统比一维系统的复杂度更高,但是也更能高效地描述控制系统的性能,因为多个变量在多个方向上描述多个系统参数能更加真实地还原系统。以多维系统理论作为基础,建立的典型模型中,Fornasini-Marchesini II模型(F-MII模型)利用与之关联的前一个状态和输入来控制当前状态,这种局部计算的性质不仅极大地简化了多维系统的数学表达式,而且便于系统的分析研究,对系统的设计有较大的贡献。F-M II模型当前的主要研究方向为改进已有的算法从而得到更低阶的实现矩阵。Similarly, with the increasingly complex control objects, the control functions that the system needs to achieve are increasingly diversified, which all put forward new requirements for the study of multi-dimensional systems. A multi-dimensional system is a system in which multiple signals work together to achieve control. Therefore, the multi-dimensional system can describe multiple system parameters comprehensively and accurately, and reflect the changes of various influencing factors in real time, thereby effectively improving the control performance of the system. Although a multi-dimensional system is more complex than a one-dimensional system, it can also describe the performance of the control system more efficiently, because multiple variables describing multiple system parameters in multiple directions can more realistically restore the system. Based on the theory of multi-dimensional systems, among the typical models established, the Fornasini-Marchesini II model (F-MII model) uses the previous state and input associated with it to control the current state. The nature of this local calculation not only greatly simplifies The mathematical expression of the multi-dimensional system is convenient for the analysis and research of the system, and it has a great contribution to the design of the system. The current main research direction of the F-M II model is to improve the existing algorithm to obtain a lower-order realization matrix.
利用F-M II模型能更真实地还原车载雷达周围环境系统与化简车载雷达目标预测实现矩阵的特点,使得雷达目标预测网络具备信息的分布式处理能力,在满足实时性需求和安全性需求的情况下令车载雷达在复杂的环境中对移动的待测目标进行预测。本专利的研究旨在为F-M II状态空间模型的实际运用和车载雷达目标预测提供了一种新的研究思路,不仅扩展了车载雷达目标预测对动态目标的检测算法,也能扩展F-M II模型在实际中的应用。The use of the F-M II model can more truly restore the vehicle radar surrounding environment system and simplify the characteristics of the vehicle radar target prediction implementation matrix, so that the radar target prediction network has the ability to process information in a distributed manner. The on-board radar is ordered to predict the moving target under test in a complex environment. The research of this patent aims to provide a new research idea for the practical application of the F-M II state space model and vehicle radar target prediction, which not only expands the detection algorithm of vehicle radar target prediction for dynamic targets, but also extends the F-M II model in practical application.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于雷达目标预测系统的F-M II状态空间模型的实现方法,对多维传递函数特征多项式运用图表转换运算时,减少图像算法复杂度的目的,提出了一种新的低阶实现解决方法,通过直接获得分解结果,避开部分计算,并用这些结果实现系统模型,有效降低由图表描述转换而产生多种系统矩阵实现可能性的数量,并减少系统的冗余度,从而提高系统实现过程中的计算效率。The purpose of the present invention is to provide a realization method of the F-M II state space model based on the radar target prediction system. When using the graph transformation operation for the multi-dimensional transfer function characteristic polynomial, the purpose of reducing the complexity of the image algorithm is proposed. The first-order implementation solution, by directly obtaining the decomposition results, avoiding part of the calculation, and using these results to realize the system model, effectively reduces the number of realization possibilities of various system matrices generated by the transformation of the diagram description, and reduces the redundancy of the system, thereby Improve the computational efficiency in the system implementation process.
为实现上述目的,本发明实施例提供如下技术方案:一种基于雷达目标预测系统的F-M II状态空间模型的实现方法,包括如下步骤:To achieve the above purpose, the embodiments of the present invention provide the following technical solutions: a method for implementing an F-M II state space model based on a radar target prediction system, comprising the following steps:
S1,对不定系统进行分析,并构建F-M II模型,从所述F-M II模型获得传递函数;S1, analyzes the indeterminate system, and constructs the F-M II model, and obtains the transfer function from the F-M II model;
S2,设立一维数组并根据所述传递函数,将其特征多项式的每项式记为数组元素 S2, set up a one-dimensional array And according to the transfer function, each term of its characteristic polynomial is recorded as an array element
S3,将所述数组元素从小到大重新排列,然后判断数组中相邻元素之比是否等于或若否则插入数组元素使相邻元素之比符合条件,再删除的元素,若是则直接删除的元素;S3, rearrange the array elements from small to large, and then judge the array Is the ratio of adjacent elements in or if else insert array element Make the ratio of adjacent elements meet the conditions, and then delete element, if it is, delete it directly Elements;
S4,在删除后,判断相邻两元素和若或则与之间不插入新元素;若则在与之间插入再将之前删除的重新插入;S4, in delete Then, judge the adjacent two elements and like or but and No new elements are inserted between; if then in and insert between delete the previously reinsert;
S5,将中的数组元素用方式表达,根据与所述传递函数求得模型的矩阵A1,A2,B1,B2,C,D。S5, will array elements in way of expression, according to The matrixes A 1 , A 2 , B 1 , B 2 , C, D of the model are obtained with the transfer function.
进一步,在所述S1步骤中,构建的F-M II模型为:Further, in the step S1, the constructed F-M II model is:
x(i,j)=A1x(i-1,j)+A2x(i,j-1)+B1u(i-1,j)+B2u(i,j-1)x(i,j)=A 1 x(i-1,j)+A 2 x(i,j-1)+B 1 u(i-1,j)+B 2 u(i,j-1)
y(i,j)=Cx(i,j)+Du(i,j)y(i,j)=Cx(i,j)+Du(i,j)
其中x(i,j)表示状态向量,u(i,j)表示外部扰动输入,y(i,j)表示被控输出,A1,A2,B1,B2,C,D是实数矩阵;where x(i,j) represents the state vector, u(i,j) represents the external disturbance input, y(i,j) represents the controlled output, A 1 ,A 2 ,B 1 ,B 2 ,C,D are real numbers matrix;
传递函数为:The transfer function is:
其中zi表示单位延迟运算,in z i represents unit delay operation,
对给定的传递函数,系统矩阵D为:For a given transfer function, the system matrix D is:
进一步,在所述S2步骤中,将H(z1,z2)的特征多项式的每项顺序填充到一维数组的每个数组元素中,Further, in the step S2, each item of the characteristic polynomial of H(z 1 , z 2 ) is sequentially filled into a one-dimensional array each array element of middle,
进一步,所述S3步骤具体为:对一维数组中的每个数组元素的数值从大到小重新排列,将得到的新排列顺序数组元素下标按现有顺序依次替换成1,2,…,l,即新的一维数组对传递函数H(z1,z2)进行判断,如果函数中含有和则从一维数组的第三个元素开始;如果函数中含有或则从一维数组的第二个元素开始;如果函数中不含有和则从一维数组的第一个元素开始。当数组中第i元素对应数值与前i-1个元素对应值之比都不等于或时,在该一维数组中第i元素之前添加n(n≥1)个使得添加后的一维数组中从第三个元素开始每个元素对应值与该元素之前所有元素对应值中的至少一个数值之比为或 Further, the step S3 is specifically: for a one-dimensional array the value of each array element in Rearrange from large to small, and replace the subscripts of the array elements in the new arrangement order with 1, 2, ..., l in the existing order, that is, a new one-dimensional array Judge the transfer function H(z 1 ,z 2 ), if the function contains and then from a one-dimensional array starts with the third element of ; if the function contains or then from a one-dimensional array starts with the second element of ; if the function does not contain and then from a one-dimensional array starts with the first element of . When the ratio of the corresponding value of the i-th element in the array to the corresponding value of the first i-1 elements is not equal to or , in this one-dimensional array Add n (n≥1) before the i-th element in makes the added one-dimensional array The ratio of the corresponding value of each element starting from the third element to at least one of the corresponding values of all the elements before the element is or
进一步,所述S4步骤具体为:删除的元素后,对数组中的剩余元素判断,当相邻两元素或时,在与之间不添加任何元素,并将之前删除的元素以删除前位置左侧插入接着在添加后的一维数组的新排列顺序数组元素下标按现有顺序依次替换成1,2,…,n,数组为用的表达方法表示出来。Further, the step S4 is specifically: delete After the elements of the array The remaining elements in the judgment, when two adjacent elements or when, at and add no elements in between, and insert the previously removed elements Insert left at position before deletion Then after adding the one-dimensional array The new arrangement order of the array element subscripts are replaced by 1, 2, ..., n in the existing order, and the array for use expression method.
进一步,对中的判断:further, yes middle of judge:
当n=1时,系统矩阵A1的第β行第α列的数值为1;When n=1, the value of the βth row and the αth column of the system matrix A1 is 1 ;
当n=2时,系统矩阵A2的第β行第α列的数值为1。When n= 2 , the value of the βth row and the αth column of the system matrix A2 is 1.
进一步,结合传递函数中的项所对应的判断:Further, combining the transfer function with item corresponding to judge:
当属于时,系统矩阵A1的第i行第1列数值为其中i=τ1,τ1为一维数组中元素数值为的元素的下标数值;when belong When , the value of the i-th row and the first column of the system matrix A 1 is where i=τ 1 , τ 1 is a one-dimensional array The value of the element is Elements The subscript value of ;
当属于时,系统矩阵A2的第i行第1列数值为其中i=τ2-1,τ2为一维数组中元素数值为的元素的下标数值;则when belong When , the value of the i-th row and the first column of the system matrix A 2 is Where i=τ 2 -1, τ 2 is a one-dimensional array The value of the element is Elements The subscript value of ; then
系统矩阵A1,A2为:The system matrix A 1 , A 2 is:
进一步,结合传递函数中的项所对应的判断每个所对应的属于还是 Further, combining the transfer function with item corresponding to judge each corresponding to belong still
当属于时,系统矩阵B1的第i行第1列数值为其中i为每个所对应的在一维数组的元素下标;when belong When , the value of the i-th row and the first column of the system matrix B 1 is where i is each corresponding to one-dimensional array The element subscript of ;
当属于时,系统矩阵B2的第i行第1列数值为其中i为每个所对应的在一维数组的元素下标减1;when belong When , the value of the i-th row and the first column of the system matrix B 2 is where i is each corresponding to one-dimensional array The element subscript of is minus 1;
可得系统矩阵B1,B2:The system matrix B 1 , B 2 can be obtained:
B1=[bm-1,n 0 … 0 b00]Τ B2=[bm,n-1 0 … 0 b10]Τ。B 1 =[b m-1,n 0 . . . 0 b 00 ] Τ B 2 =[b m,n-1 0 . . . 0 b 10 ] Τ .
进一步,求得的矩阵A1,A2,B1,B2,C,D分别为:Further, the obtained matrices A 1 , A 2 , B 1 , B 2 , C and D are respectively:
B1=[bm-1,n 0… 0 b00]Τ,B2=[bm,n-1 0 … 0 b10]Τ B 1 =[b m-1,n 0... 0 b 00 ] Τ ,B 2 =[b m,n-1 0... 0 b 10 ] Τ
C=[1,0,0,...,0],D=[bm]C=[1,0,0,...,0], D=[b m ]
进一步,运用Matlab软件进行验证,具体的:将A1,A2,B1,B2,C,D代入F-M II状态空间模型中,得到的传递函数与原传递函数一致。Further, use Matlab software to verify, specifically: Substitute A 1 , A 2 , B 1 , B 2 , C, D into the FM II state space model , the obtained transfer function is consistent with the original transfer function.
与现有技术相比,本发明的有益效果是:一种基于雷达目标预测系统的F-M II状态空间模型的实现方法,针对基于方框图的F-M II状态空间模型实现方法中存在的一些问题,比如系统状态空间模型低阶实现过程中因对多维传递函数特征多项式运用图表转换运算而导致的复杂度增加,以及转换过程中无效系数的存在而导致的系统矩阵实现可能性数量的增加等问题,通过对一维数组的设立,有效降低现有算法中由图表描述转换而产生多种系统矩阵实现可能性的数量,并减少系统的冗余度,从而提高系统实现过程中的计算效率。Compared with the prior art, the beneficial effects of the present invention are: an implementation method of the F-M II state space model based on the radar target prediction system, aiming at some problems existing in the implementation method of the F-M II state space model based on the block diagram, such as the system In the low-order implementation of the state space model, the complexity increases due to the use of graph transformation operations on the multi-dimensional transfer function characteristic polynomial, and the number of system matrix realization possibilities caused by the existence of invalid coefficients in the transformation process increases. The establishment of a one-dimensional array effectively reduces the number of realization possibilities of various system matrices generated by the conversion of graph descriptions in the existing algorithm, and reduces the redundancy of the system, thereby improving the computational efficiency in the process of system realization.
附图说明Description of drawings
图1为本发明实施例提供的一种基于雷达目标预测系统的F-M II状态空间模型的实现方法的逻辑图。FIG. 1 is a logic diagram of a method for implementing an F-M II state space model based on a radar target prediction system according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
请参阅图1,本发明实施例提供一种基于雷达目标预测系统的F-M II状态空间模型的实现方法,包括如下步骤:S1,对不定系统进行分析,并构建F-M II模型,从所述F-M II模型获得传递函数;S2,设立一维数组并根据所述传递函数,将其特征多项式的每项式记为数组元素S3,将所述数组元素从小到大重新排列,然后判断数组中相邻元素之比是否等于或若否则插入数组元素使相邻元素之比符合条件,再删除的元素,若是则直接删除的元素;S4,在删除后,判断相邻两元素和若或则与之间不插入新元素;若则在与之间插入再将之前删除的重新插入;S5,将中的数组元素用方式表达,根据与所述传递函数求得模型的矩阵A1,A2,B1,B2,C,D。现有技术中,在方框图的F-M II状态空间模型实现方法中存在着一些问题,比如系统状态空间模型低阶实现过程中因对多维传递函数特征多项式运用图表转换运算而导致的复杂度增加,以及转换过程中无效系数的存在而导致的系统矩阵实现可能性数量的增加等问题。因此在本实施例中,通过对一维数组的设立,有效降低现有算法中由图表描述转换而产生多种系统矩阵实现可能性的数量,并减少系统的冗余度,从而提高系统实现过程中的计算效率。Referring to FIG. 1, an embodiment of the present invention provides a method for implementing an FM II state space model based on a radar target prediction system, including the following steps: S1, analyzing an indeterminate system, and constructing an FM II model, from the FM II The model obtains the transfer function; S2, sets up a one-dimensional array And according to the transfer function, each term of its characteristic polynomial is recorded as an array element S3, rearrange the array elements from small to large, and then judge the array Is the ratio of adjacent elements in or if else insert array element Make the ratio of adjacent elements meet the conditions, and then delete element, if it is, delete it directly element of ; S4, after deleting Then, judge the adjacent two elements and like or but and No new elements are inserted between; if then in and insert between delete the previously reinsert; S5, will array elements in way of expression, according to The matrixes A 1 , A 2 , B 1 , B 2 , C, D of the model are obtained with the transfer function. In the prior art, there are some problems in the implementation method of the FM II state space model of the block diagram, such as the increase in complexity caused by the use of graph transformation operations on the multi-dimensional transfer function characteristic polynomial during the low-order implementation of the system state space model, and The existence of invalid coefficients in the conversion process leads to the increase of the number of system matrix realization possibilities. Therefore, in this embodiment, through the establishment of a one-dimensional array, the number of realization possibilities of various system matrices generated by the conversion of graph description in the existing algorithm is effectively reduced, and the redundancy of the system is reduced, thereby improving the system realization process. computational efficiency in .
以下为具体实施例:The following are specific examples:
优化上述方案,在所述S1步骤中,构建的F-M II模型为:To optimize the above scheme, in the step S1, the constructed F-M II model is:
x(i,j)=A1x(i-1,j)+A2x(i,j-1)+B1u(i-1,j)+B2u(i,j-1)x(i,j)=A 1 x(i-1,j)+A 2 x(i,j-1)+B 1 u(i-1,j)+B 2 u(i,j-1)
y(i,j)=Cx(i,j)+Du(i,j)y(i,j)=Cx(i,j)+Du(i,j)
其中x(i,j)表示状态向量,u(i,j)表示外部扰动输入,y(i,j)表示被控输出,A1,A2,B1,B2,C,D是实数矩阵;where x(i,j) represents the state vector, u(i,j) represents the external disturbance input, y(i,j) represents the controlled output, A 1 ,A 2 ,B 1 ,B 2 ,C,D are real numbers matrix;
传递函数为:The transfer function is:
其中zi表示单位延迟运算,in z i represents unit delay operation,
对给定的传递函数,系统矩阵D为:For a given transfer function, the system matrix D is:
在本实施例中,针对的不定系统可以是一个二维雷达系统,对其进行建模后,可得到系统传递函数: In this embodiment, the target indefinite system can be a two-dimensional radar system, and after modeling it, the system transfer function can be obtained:
作为本发明实施例的优化方案,在所述S2步骤中,将H(z1,z2)的特征多项式的每项顺序填充到一维数组的每个数组元素中,As an optimization solution of the embodiment of the present invention, in the step S2, each item of the characteristic polynomial of H(z 1 , z 2 ) is sequentially filled into a one-dimensional array each array element of middle,
数组的数组元素值:array Array element values:
对H(z1,z2)判断,可知a1≠0和a2≠0,则左侧不插入新的数组元素。Judging H(z 1 , z 2 ), we know that a 1 ≠0 and a 2 ≠0, then No new array elements are inserted on the left.
作为本发明实施例的优化方案,所述S3步骤具体为:对一维数组中的每个数组元素的数值从大到小重新排列,将得到的新排列顺序数组元素下标按现有顺序依次替换成1,2,…,l,即新的一维数组 As an optimization solution of the embodiment of the present invention, the step S3 is specifically: for a one-dimensional array the value of each array element in Rearrange from large to small, and replace the subscripts of the array elements in the new arrangement order with 1, 2, ..., l in the existing order, that is, a new one-dimensional array
作为本发明实施例的优化方案,所述S4步骤具体为:对的数组元素判断则与之间不插入数组元素将添加后的一维数组删除的元素,对数组中的剩余元素判断,当相邻两元素或时,在与之间不添加任何元素,并将之前删除的元素以删除前位置左侧插入:将一维数组的新排列顺序数组元素下标按现有顺序依次替换成1,2,…,n,数组为用的表达方法表示出来。。As an optimization solution of the embodiment of the present invention, the step S4 is specifically: Array element judgment of but and Do not insert array elements between 1D array after adding delete elements of an array of pairs The remaining elements in the judgment, when two adjacent elements or when, at and add no elements in between, and insert the previously removed elements Insert to the left of the position before deletion: one-dimensional array The new arrangement order of the array element subscripts are replaced by 1, 2, ..., n in the existing order, and the array for use expression method. .
进一步优化上述方案,从数组的第三个元素开始,用的表示方法将数组的每个元素表示出来,对中的判断:Further optimize the above scheme, from the array starting with the third element of The representation method converts the array to represent each element of , for middle of judge:
当n=1时,系统矩阵A1的第β行第α列的数值为1;When n=1, the value of the βth row and the αth column of the system matrix A1 is 1 ;
当n=2时,系统矩阵A2的第β行第α列的数值为1,When n= 2 , the value of the βth row and the αth column of the system matrix A2 is 1,
则系统矩阵A2的第1行第3列的数值为1,第2行第4列的数值为1,第3行第4列的数值为1。Then the value of the 1st row and the 3rd column of the system matrix A2 is 1 , the value of the 2nd row and the 4th column is 1, and the value of the 3rd row and the 4th column is 1.
作为本发明实施例的优化方案,结合传递函数中的项所对应的判断:As an optimization solution of the embodiment of the present invention, combined with the transfer function item corresponding to judge:
当属于时,系统矩阵A1的第i行第1列数值为其中i=τ1,τ1为一维数组中元素数值为的元素的下标数值;when belong When , the value of the i-th row and the first column of the system matrix A 1 is where i=τ 1 , τ 1 is a one-dimensional array The value of the element is Elements The subscript value of ;
当属于时,系统矩阵A2的第i行第1列数值为其中i=τ2-1,τ2为一维数组中元素数值为的元素的下标数值;when belong When , the value of the i-th row and the first column of the system matrix A 2 is Where i=τ 2 -1, τ 2 is a one-dimensional array The value of the element is Elements The subscript value of ;
则系统矩阵A1的第1行第1列的数值为a1,第3行第1列的数值为a4,第5行第1列的数值为a5;系统矩阵A2的第1行第1列的数值为a2,第3行第1列的数值为a3,可得系统矩阵A1,A2。Then the value of the first row and the first column of the system matrix A 1 is a 1 , the value of the third row and the first column is a 4 , and the value of the fifth row and the first column is a 5 ; the first row of the system matrix A 2 The value of the first column is a 2 , the value of the third row and the first column is a 3 , and the system matrix A 1 , A 2 can be obtained.
作为本发明实施例的优化方案,结合传递函数中的项所对应的判断每个所对应的属于还是当属于时,系统矩阵B1的第i行第1列数值为其中i=τ3,τ3为一维数组中元素数值为的元素的下标数值;;当属于时,系统矩阵B2的第i行第1列数值为其中i=τ4-1,τ4为一维数组中元素数值为的元素的下标数值,可得系统矩阵B1,B2。As an optimization solution of the embodiment of the present invention, combined with the transfer function item corresponding to judge each corresponding to belong still when When belongs to, the value of the i-th row and the 1st column of the system matrix B 1 is where i=τ 3 , τ 3 is a one-dimensional array The value of the element is Elements The subscript value of ;; when belong When , the value of the i-th row and the first column of the system matrix B2 is Where i=τ 4 -1, τ 4 is a one-dimensional array The value of the element is Elements The subscript value of , the system matrix B 1 , B 2 can be obtained.
作为本发明实施例的优化方案,求得的矩阵A1,A2,B1,B2,C,D分别为:As an optimization scheme of the embodiment of the present invention, the obtained matrices A 1 , A 2 , B 1 , B 2 , C, and D are respectively:
B1=[b1 0 0 0 b4]Τ B 1 =[b 1 0 0 0 b 4 ] Τ
B2=[b2 0 b3 0 0]Τ B 2 =[b 2 0 b 3 0 0] Τ
C=[1 0 0 0 0]C=[1 0 0 0 0]
D=0。D=0.
作为本发明实施例的优化方案,运用Matlab软件进行验证,具体的:将A1,A2,B1,B2,C,D代入F-M II状态空间模型As the optimization scheme of the embodiment of the present invention, use Matlab software to verify, specifically: Substitute A 1 , A 2 , B 1 , B 2 , C, D into the FM II state space model
中,得到的传递函数与实例给出的传递函数一致。 , the resulting transfer function is the same as the transfer function given by the example Consistent.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications, and substitutions can be made in these embodiments without departing from the principle and spirit of the invention and modifications, the scope of the present invention is defined by the appended claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010206817.XA CN111399395B (en) | 2020-03-23 | 2020-03-23 | Realization Method of F-M II State Space Model Based on Radar Target Prediction System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010206817.XA CN111399395B (en) | 2020-03-23 | 2020-03-23 | Realization Method of F-M II State Space Model Based on Radar Target Prediction System |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111399395A true CN111399395A (en) | 2020-07-10 |
CN111399395B CN111399395B (en) | 2022-11-25 |
Family
ID=71432755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010206817.XA Active CN111399395B (en) | 2020-03-23 | 2020-03-23 | Realization Method of F-M II State Space Model Based on Radar Target Prediction System |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111399395B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006053720A (en) * | 2004-08-11 | 2006-02-23 | Fuji Electric Holdings Co Ltd | Transfer function setting device |
CN104808190A (en) * | 2015-04-09 | 2015-07-29 | 周口师范学院 | Steady waveform design method for improving worst parameter estimation performance of MIMO (multiple-input and multiple-output) radar |
CN106844828A (en) * | 2016-12-02 | 2017-06-13 | 武汉科技大学 | Two dimension H is realized based on digraph opinion∞The method of wave filter FM II state-space models |
CN107728139A (en) * | 2017-09-12 | 2018-02-23 | 电子科技大学 | A kind of phased-array radar group network system method for managing resource based on multiple target tracking |
CN109856637A (en) * | 2017-11-30 | 2019-06-07 | 比亚迪股份有限公司 | Automobile and car radar object detection method and device based on constant false alarm |
CN110261841A (en) * | 2019-07-26 | 2019-09-20 | 南京信息工程大学 | MIMO radar list based on iteration weighting proximal end projection measures vector DOA estimation method |
-
2020
- 2020-03-23 CN CN202010206817.XA patent/CN111399395B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006053720A (en) * | 2004-08-11 | 2006-02-23 | Fuji Electric Holdings Co Ltd | Transfer function setting device |
CN104808190A (en) * | 2015-04-09 | 2015-07-29 | 周口师范学院 | Steady waveform design method for improving worst parameter estimation performance of MIMO (multiple-input and multiple-output) radar |
CN106844828A (en) * | 2016-12-02 | 2017-06-13 | 武汉科技大学 | Two dimension H is realized based on digraph opinion∞The method of wave filter FM II state-space models |
CN107728139A (en) * | 2017-09-12 | 2018-02-23 | 电子科技大学 | A kind of phased-array radar group network system method for managing resource based on multiple target tracking |
CN109856637A (en) * | 2017-11-30 | 2019-06-07 | 比亚迪股份有限公司 | Automobile and car radar object detection method and device based on constant false alarm |
CN110261841A (en) * | 2019-07-26 | 2019-09-20 | 南京信息工程大学 | MIMO radar list based on iteration weighting proximal end projection measures vector DOA estimation method |
Non-Patent Citations (1)
Title |
---|
郭修燕等: "离散区间2-D时滞系统的二次稳定与镇定", 《电机与控制学报》 * |
Also Published As
Publication number | Publication date |
---|---|
CN111399395B (en) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111667051B (en) | Neural network accelerator applicable to edge equipment and neural network acceleration calculation method | |
KR102316670B1 (en) | computational accelerator | |
CN108154240A (en) | A kind of quantum wire simulation system of low complex degree | |
CN109710213A (en) | A kind of sparse matrix accelerates to calculate method, apparatus, equipment and its system | |
CN110399591B (en) | Data processing method and device based on convolutional neural network | |
CN113759338A (en) | Target detection method and device, electronic equipment and storage medium | |
Li et al. | Respipe: Resilient model-distributed dnn training at edge networks | |
CN110929854A (en) | Data processing method and device and hardware accelerator | |
CN112632874B (en) | Helicopter flow field numerical simulation optimization method and system | |
CN111640296B (en) | Traffic flow prediction method, system, storage medium and terminal | |
CN114003201B (en) | Matrix transformation method, device and convolutional neural network accelerator | |
CN114758209B (en) | Convolution result obtaining method and device, computer equipment and storage medium | |
CN111399395A (en) | The Realization Method of F-M II State Space Model Based on Radar Target Prediction System | |
CN118312818B (en) | Semi-supervised clustering method based on bipartite graph acceleration and fused into paired constraint | |
CN114254563A (en) | Data processing method and device, electronic equipment and storage medium | |
CN109598059B (en) | Thermal protection system optimization design method and design system based on proxy model | |
CN116434039B (en) | A target detection method based on multi-scale split attention mechanism | |
CN112364985A (en) | Convolution optimization method based on distributed coding | |
CN117992905A (en) | Multi-source data fusion and edge calculation method and system for electric power operation site | |
CN116578163A (en) | Implementation method of large-scale photoelectric reservoir computing system | |
CN112598122A (en) | Convolutional neural network accelerator based on variable resistance random access memory | |
CN118192236B (en) | Vehicle control method and device based on model predictive control | |
CA3140980A1 (en) | Systems for emulating a quantum computer and methods for use therewith | |
CN118013132B (en) | Information prediction method based on artificial intelligence, related equipment and storage medium | |
CN118468223B (en) | A vehicle trajectory prediction method based on STGNN-Net |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |