CN106844828A - Two dimension H is realized based on digraph opinion∞The method of wave filter FM II state-space models - Google Patents
Two dimension H is realized based on digraph opinion∞The method of wave filter FM II state-space models Download PDFInfo
- Publication number
- CN106844828A CN106844828A CN201611110536.4A CN201611110536A CN106844828A CN 106844828 A CN106844828 A CN 106844828A CN 201611110536 A CN201611110536 A CN 201611110536A CN 106844828 A CN106844828 A CN 106844828A
- Authority
- CN
- China
- Prior art keywords
- digraph
- matrix
- monomial
- circulation
- arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
The invention discloses one kind based on the theoretical realization two dimension H of two-dimentional digraph∞The method of wave filter FM models, the method using two-dimentional digraph construction transmission function proper polynomial, then obtains state matrix A using the arc collection and vertex set of two-dimentional digraph first1,A2, and then determine ψ matrixes, determine to realize matrix B by ψ matrixes1,B2.FM model methods are constructed compared to simple digraph, it is first local in calculating process to realize denominator, then entirety obtains FM realizations, solution matrix B1,B2, substantial amounts of matrix computations and complex array can be produced during C, so as to substantially increase difficulty in computation and complexity.The present invention is implemented in combination with FM models with ψ matrix methods by digraph is theoretical, and this method possesses that calculating is simple, and obtain realize that order of matrix number is relatively low.
Description
Technical field
Two dimension H is realized the present invention relates to wave filter technology, more particularly to a kind of being discussed based on digraph∞Wave filter FM-II shapes
The method of state space model.
Background technology
Filtering plays very important effect in control theory research, and it is one of important data processing method.This
The method of kind is to recover status signal from observation noise output signal is carried.Most widely used at present is H∞Filtering, H∞Filtering
It is by H∞Norm is applied in performance indications, and predicted state vector is carried out from observable signal.The H of uncertain system∞Filtering Analysis
Need to construct a multinomial or uncertain parameters in LFR.And passing through FM models, the indefinite model problems of LFR are in algebra
On be equivalent to a realization for nD systems.Therefore, an efficient nD is realized to H∞Filtering control theory suffers from major contribution.
Have the FM models of accomplished in many ways multidimensional Rational Transfer both at home and abroad at present.These methods can substantially divide
It is three classes:One class first obtains local FM and realizes that obtaining overall FM again realizes.Given transfer function matrix is decomposed into and is comprised only
One-dimensional monomial and with product, to each factor construction Linear Fractional LFR (Linear Fractional
Represention), overall LFR is obtained using LFR coupling calculating volumes.Equations of The Second Kind is that direct entirety FM is realized.
The content of the invention
The technical problem to be solved in the present invention is for defect of the prior art, there is provided one kind is real based on digraph opinion
Existing two dimension H∞The method of wave filter FM-II state-space models.
The technical solution adopted for the present invention to solve the technical problems is:Two dimension H is realized based on digraph opinion∞Wave filter
The method of FM-II state-space models, comprises the following steps:
1) to the H of uncertain system∞Filtering is analyzed, and builds two dimension H∞The FM models of filtering, the two-dimentional H∞Filtering
FM models are as follows:
X (i, j)=A1x(i-1,j)+A2x(i,j-1)+B1u(i-1,j)+B2u(i,j-1) (1)
Y (i, j)=Cx (i, j)+Du (i, j) (2)
Wherein x (i, j) represents state vector, and u (i, j) represents external disturbance input, and y (i, j) represents controlled output;A1,
A2,B1,B2, C, D are real number matrix, and the transmission function of system (1) and (2) is
Wherein d (z1,z2) represent proper polynomial, z1,z2Represent and postpone operation;IrIt is r rank unit matrixs;
2) the Two-Dimensional Discrete Systems G (z for giving1,z2), by proper polynomial d (z1,z2) resolve into a series of list
Item formula, then one digraph circulation of each monomial correspondence;
3) the digraph circulation for combining all monomials obtains proper polynomial d (z1,z2) circulation, by two-dimentional digraph
Arc collection and vertex set obtain state matrix A1,A2;
4) using in ψ matrix methods:A1=A10+DHT1C,A2=A20+DHT2C, determines matrix A10,A20, by ψ=C (I-
A10z1-A20z2)-1, obtain ψ matrixes;
5) for transmission function molecule n (z1,z2)=ψ (B1z1+B2z2), accomplished matrix B1,B2。
By such scheme, step 2) in represent proper polynomial decompose monomial digraph circulation specific practice be, by d
(z1,z2) decompose as follows:
To a monomial di(z1,z2) the digraph circulation of construction monomial, vertex set number M=degdi(z1,z2), i=
1…p;Wherein degdi(z1,z2) it is 2-d polynomial d (z1,z2) in monomial number of times maximum.
By such scheme, step 3) middle combination monomial digraph circulation di(z1,z2) obtain proper polynomial d (z1,z2)
The detailed process of circular treatment is as follows:
One digraph D is made up of nonempty finite set V and S, and wherein V and S is respectively the vertex set and arc collection of digraph D,
Each element of vertex set V is referred to as the summit of digraph D, and each element of S is referred to as the arc of digraph D;One two dimension has
To figure D(2)=(V, S), wherein V={ v1,v2,...,vnAnd S={ ξ1,ξ2Respectively represent digraph D vertex set and arc collection;
Digraph D(2)Rank be summit in D number, digraph D(2)Scale be D(2)The number of middle arc;If from vertex viTo vjIn the presence of
(z1,z2) arc, then corresponding matrix (A1,A2) jth row, the i-th row (being its coefficient represented by correspondence arc) for 0, wherein i,
J=1 ..., n.
By such scheme, step 3) in combination monomial digraph circulation follow following principle:It is multinomial that combination obtains feature
The digraph of formula will not produce new circulation;All of monomial digraph meets at last summit;Proper polynomial is oriented
The coefficient of the arc that last summit is gone out is characterized polynomial coefficient in figure.
The beneficial effect comprise that:One avoids complicated solving ψ matrix processes using two-dimentional digraph theory, and
And n-D discrete system FM models can be generalized to by n dimension digraph theories.Secondly it is whole to make use of ψ matrixes to realize digraph
Body realizes transmission function, it is to avoid complicated solving realizes the process of matrix.
Brief description of the drawings
Below in conjunction with drawings and Examples, the invention will be further described, in accompanying drawing:
Fig. 1 is the method flow diagram of the embodiment of the present invention;
Fig. 2 is monomial d1(z1,z2),d2(z1,z2),d3(z1,z2),d4(z1,z2),d5(z1,z2) two-dimentional digraph;
Fig. 3 is D(2)Realize proper polynomial d (z1,z2) it is unsatisfactory for the schematic diagram of condition;
Fig. 4 is D(2)Realize proper polynomial d (z1, z2) meet the schematic diagram of condition.
Specific embodiment
In order to make the purpose , technical scheme and advantage of the present invention be clearer, with reference to embodiments, to the present invention
It is further elaborated.It should be appreciated that specific embodiment described herein is only used to explain the present invention, limit is not used to
The fixed present invention.
According to reality digraph of the invention it is theoretical withψMatrix method method overall procedure such as Fig. 1.Comprise the following steps:
Step S1:Two-dimentional H∞The transmission function of wave filter FM models
Step S2:By proper polynomial d (z1,z2) a series of monomial is resolved into, for each monomial correspondence one
Individual digraph circulation.
The value of monomial:d1(z1,z2)=a1z2, such as Fig. 2 (a);d2(z1,z2)=a2z2, such as Fig. 2 (b);Such as Fig. 2 (c);Such as Fig. 2 (d);Such as Fig. 2 (e);Correspondence 5
Digraph is circulated.Vertex set number M=degdi(z1,z2), i=1 ... 5, then Mi=3.
Step S3:The digraph circulation of combination monomial is according to following condition:
1. combination obtains the digraph of proper polynomial and will not produce new circulation.
2. all of monomial digraph meets at last summit.
3. the coefficient of the arc that last summit is gone out is characterized polynomial coefficient in proper polynomial digraph.
According to vertex set number 3 in monomial, construction such as Fig. 3 proper polynomial d (z1,z2) circulation, from the figure 3, it may be seen that all lists
The digraph circulation of item formula meets at last vertex v of summit3Then meet condition 2.Digraph circulation number remains as 5 and meets bar
Part 1, without the new circulation of generation (not having new monomial to produce).Each term coefficient a in proper polynomialiNot all by most
Latter summit to other summits arc coefficient determine (Coefficient by vertex v1To v2Arc coefficient determine), no
Meet condition 3.Then by vertex set number M+1, construction such as Fig. 4 proper polynomial d (z1,z2) circulation.As shown in Figure 4, all monomials
Digraph circulation meets at last vertex v of summit4Then meet condition 2.Digraph circulation number remains as 5, new without producing
Circulation then meet condition 1.Each term coefficient a in proper polynomialiThe arc coefficient all gone out by last summit determines, then
Meet condition 3.
It is hereby achieved that state matrix A in ψ matrix methods1,A2。
Step S4:Using in ψ matrix methods:A1=A10+DHT1C,A2=A20+DHT2C, determines matrix A10,A20, by ψ=C
(I-A10z1-A20z2)-1Obtain ψ matrixes.From formula (12)
Can be obtained by formula (9) and C=[0 00 1]
ψ=[z1z2 z2 z11] and ψ z1∪ψz2Comprising all items of transmission function, then the ψ meets condition, otherwise returns to step
Rapid S3 reconfigures monomial digraph.
Step S5:Using n (z1,z2)=ψ (B1z1+B2z2), accomplished matrix B1,B2。
Then B1=[0 b3 0 b1]T B2=[b4 0 0 b2]T。
It should be appreciated that for those of ordinary skills, can according to the above description be improved or be become
Change, and all these modifications and variations should all belong to the protection domain of appended claims of the present invention.
Claims (4)
1. it is a kind of that two dimension H is realized based on digraph opinion∞The method of wave filter FM-II state-space models, it is characterised in that including
Following steps:
1) to the H of uncertain system∞Filtering is analyzed, and builds two dimension H∞The FM models of filtering, the two-dimentional H∞The FM moulds of filtering
Type is as follows:
X (i, j)=A1x(i-1,j)+A2x(i,j-1)+B1u(i-1,j)+B2u(i,j-1) (1)
Y (i, j)=Cx (i, j)+Du (i, j) (2)
Wherein x (i, j) represents state vector, and u (i, j) represents external disturbance input, and y (i, j) represents controlled output;A1,A2,B1,
B2, C, D are real number matrix, and the transmission function of system (1) and (2) is
Wherein d (z1,z2) represent proper polynomial, z1,z2Represent and postpone operation;IrIt is r rank unit matrixs;
2) the Two-Dimensional Discrete Systems G (z for giving1,z2), by proper polynomial d (z1,z2) a series of monomial is resolved into,
Then one digraph circulation of each monomial correspondence;
3) the digraph circulation for combining all monomials obtains proper polynomial d (z1,z2) circulation, by two-dimentional digraph arc collection
State matrix A is obtained with vertex set1,A2;
4) using in ψ matrix methods:A1=A10+DHT1C,A2=A20+DHT2C, determines matrix A10,A20, by ψ=C (I-A10z1-
A20z2)-1, obtain ψ matrixes;
5) for transmission function molecule n (z1,z2)=ψ (B1z1+B2z2), accomplished matrix B1,B2。
2. method according to claim 1, it is characterised in that the step 2) in represent the individual event that proper polynomial is decomposed
Formula digraph circulation specific practice is, by d (z1,z2) decompose as follows:
To a monomial di(z1,z2) the digraph circulation of construction monomial, vertex set number M=degdi(z1,z2), i=1 ... p;
Wherein degdi(z1,z2) it is 2-d polynomial d (z1,z2) in monomial number of times maximum.
3. method according to claim 1, it is characterised in that the step 3) in combination monomial digraph circulation di
(z1,z2) obtain proper polynomial d (z1,z2) circular treatment detailed process it is as follows:
One digraph D is made up of nonempty finite set V and S, and wherein V and S is respectively the vertex set and arc collection of digraph D, summit
Each element for collecting V is referred to as the summit of digraph D, and each element of S is referred to as the arc of digraph D;One two-dimentional digraph D(2)=(V, S), wherein V={ v1,v2,…,vnAnd S={ ξ1,ξ2Respectively represent digraph D vertex set and arc collection;Digraph D(2)Rank be summit in D number, digraph D(2)Scale be D(2)The number of middle arc;If from vertex viTo vjIn the presence of (z1,z2)
Arc, then corresponding matrix (A1,A2) jth row, the i-th row are not 0, wherein i, j=1 ..., n.
4. method according to claim 1, it is characterised in that the step 3) in the digraph circulation of combination monomial follow
Following principle:The digraph that combination obtains proper polynomial will not produce new circulation;All of monomial digraph meets at most
Latter summit;The coefficient of the arc that last summit is gone out is characterized polynomial coefficient in proper polynomial digraph.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611110536.4A CN106844828A (en) | 2016-12-02 | 2016-12-02 | Two dimension H is realized based on digraph opinion∞The method of wave filter FM II state-space models |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611110536.4A CN106844828A (en) | 2016-12-02 | 2016-12-02 | Two dimension H is realized based on digraph opinion∞The method of wave filter FM II state-space models |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106844828A true CN106844828A (en) | 2017-06-13 |
Family
ID=59145522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611110536.4A Pending CN106844828A (en) | 2016-12-02 | 2016-12-02 | Two dimension H is realized based on digraph opinion∞The method of wave filter FM II state-space models |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106844828A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111399395A (en) * | 2020-03-23 | 2020-07-10 | 武汉科技大学 | Implementation method of F-M II state space model based on radar target prediction system |
CN114385964A (en) * | 2021-12-10 | 2022-04-22 | 兰州大学 | State space model calculation method, system and equipment of multivariate fractional order system |
-
2016
- 2016-12-02 CN CN201611110536.4A patent/CN106844828A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111399395A (en) * | 2020-03-23 | 2020-07-10 | 武汉科技大学 | Implementation method of F-M II state space model based on radar target prediction system |
CN111399395B (en) * | 2020-03-23 | 2022-11-25 | 武汉科技大学 | Implementation method of F-M II state space model based on radar target prediction system |
CN114385964A (en) * | 2021-12-10 | 2022-04-22 | 兰州大学 | State space model calculation method, system and equipment of multivariate fractional order system |
CN114385964B (en) * | 2021-12-10 | 2023-11-07 | 兰州大学 | State space model calculation method, system and equipment of multi-element fractional order system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lafferriere et al. | Symbolic reachability computation for families of linear vector fields | |
US10445065B2 (en) | Constant depth, near constant depth, and subcubic size threshold circuits for linear algebraic calculations | |
Yang et al. | A fixed point iterative method for low n-rank tensor pursuit | |
CN101902258A (en) | Method and device for acquiring digital pre-distortion processing parameter | |
Beatson et al. | Fast evaluation of radial basis functions: Moment-based methods | |
Wallin et al. | Maximum likelihood estimation of linear SISO models subject to missing output data and missing input data | |
CN106844828A (en) | Two dimension H is realized based on digraph opinion∞The method of wave filter FM II state-space models | |
CN106168942A (en) | A kind of fluctuation types dynamic data reconstructing method based on singular boundary method | |
Isaacson et al. | Numerical solution of linear Volterra integral equations of the second kind with sharp gradients | |
CN107241081A (en) | The design method of the sparse FIR ptototype filters of cosine modulated filters group | |
Li et al. | Error correction schemes for fully correlated quantum channels protecting both quantum and classical information | |
Liu et al. | An entropy-regularized ADMM for binary quadratic programming | |
Jacquemet et al. | All hyperbolic Coxeter n-cubes | |
Bethuel et al. | On the Korteweg–de Vries long-wave approximation of the Gross–Pitaevskii equation II | |
Cybenko | Fast approximation of dominant harmonics | |
CN109885887A (en) | The method for simulating transient state temperature field equation numerical value | |
Shahverdi | Algebraic Complexity and Neurovariety of Linear Convolutional Networks | |
Massri | Solving a sparse system using linear algebra | |
Bouaziz et al. | Universal approximation propriety of flexible beta basis function neural tree | |
Biere et al. | Challenges in verifying arithmetic circuits using computer algebra | |
Zhang et al. | One-Step Multi-Derivative Methods for Backward Stochastic Differential Equations. | |
Fonarev | On the Kuznetsov-Polishchuk conjecture | |
Hached et al. | Numerical methods for differential linear matrix equations via Krylov subspace methods | |
Hilaire et al. | Finite wordlength controller realisations using the specialised implicit form | |
Karcanias et al. | Matrix pencil methodologies for computing the greatest common divisor of polynomials: hybrid algorithms and their performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170613 |