CN111398281A - 一种判断铝镁合金热轧厚板最低强度区域的方法 - Google Patents

一种判断铝镁合金热轧厚板最低强度区域的方法 Download PDF

Info

Publication number
CN111398281A
CN111398281A CN202010313266.7A CN202010313266A CN111398281A CN 111398281 A CN111398281 A CN 111398281A CN 202010313266 A CN202010313266 A CN 202010313266A CN 111398281 A CN111398281 A CN 111398281A
Authority
CN
China
Prior art keywords
magnesium alloy
aluminum magnesium
sample
thick plate
alloy hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010313266.7A
Other languages
English (en)
Other versions
CN111398281B (zh
Inventor
蒋显全
佘欣未
刘玉洁
张睿豪
曹伟男
杜伟昌
陈浩然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN202010313266.7A priority Critical patent/CN111398281B/zh
Publication of CN111398281A publication Critical patent/CN111398281A/zh
Application granted granted Critical
Publication of CN111398281B publication Critical patent/CN111398281B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/2005Preparation of powder samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

本发明公开了一种判断铝镁合金热轧厚板最低强度区域的方法,其包括如下步骤:S1,将铝镁合金热轧厚板进行预处理制得两份相同尺寸的金相样品,一份通过电解刻蚀制成表面覆膜的金相样品,另一份通过电解抛光制成电子背散射衍射测试样品;S2,采用金相显微镜观察表面覆膜的金相样品,获得样品表面晶粒形貌特征,利用电子背散射衍射分析技术对电子背散射衍射测试样品进行分析,获得样品晶粒分布特征,再根据判断标准得到铝镁合金热轧厚板最低强度区域。其操作简单,根据晶粒特征与铝镁合金热轧厚板最低强度区域之间的对应关系,能够迅速、准确地判断铝镁合金热轧厚板最低强度区域。

Description

一种判断铝镁合金热轧厚板最低强度区域的方法
技术领域
本发明涉及铝镁合金热轧板,具体涉及一种判断铝镁合金热轧厚板最低强度区域的方法。
背景技术
铝合金厚板被广泛用于制造飞机、舰船和轨道车辆等结构件,预先掌握厚板的最低强度位置对避免材料失效具有重要意义。
目前,大量研究表明铝镁合金热轧厚板的力学性能在厚度方向呈W形变化,必然存在一个最低强度区域。按照中厚板轧制理论中各道次变形区形状系数l/hcp的值与1的关系,可由各道次轧制变形量大致推测厚板最低强度区域的移动方向,但不能准确定位。
目前,判断铝合金厚板最低强度区域的方法大体有两种:一是直接测试厚板的拉伸性能,得到整板的抗拉强度和屈服强度;二是测试厚板的织构,通过计算泰勒因子来估计整板的屈服强度。前者对于无法制备拉伸试样的厚板,如小体积厚板,无法获得准确的强度值;后者根据现有文献报道,如《中南大学学报(自然科学版)》期刊2018年第49卷第8期“7056铝合金厚板轧制变形不均匀性的实验研究与数值模拟”中借助泰勒因子分析了厚板T/4厚度层屈服强度损失最大的可能原因,但不能和厚板的抗拉强度建立关联。因此,仅靠上述两种方法来判断铝合金厚板的最低强度位置是不完善的。
发明内容
本发明的目的是提供一种判断铝镁合金热轧厚板最低强度区域的方法,其操作简单,根据晶粒特征与铝镁合金热轧厚板最低强度区域之间的对应关系,能够迅速、准确地判断铝镁合金热轧厚板最低强度区域。
本发明所述的判断铝镁合金热轧厚板最低强度区域的方法,其包括如下步骤:
S1,将铝镁合金热轧厚板进行预处理制得两份相同尺寸的金相样品,一份通过电解刻蚀制成表面覆膜的金相样品,另一份通过电解抛光制成电子背散射衍射测试样品;
S2,采用金相显微镜观察表面覆膜的金相样品,获得样品表面晶粒形貌特征,利用电子背散射衍射分析技术对电子背散射衍射测试样品进行分析,获得样品晶粒分布特征,再根据判断标准得到铝镁合金热轧厚板最低强度区域;所述判断标准为:区域内晶粒形貌的纤维化程度减弱,晶界由模糊转变为清晰,并且回复亚晶粒或再结晶晶粒构成的晶粒带与变形晶粒呈交替层状分布时,即判定该区域为铝镁合金热轧厚板最低强度区域。
进一步,所述预处理具体为:沿板材厚度方向垂直切割铝镁合金热轧厚板得到样板,样板沿轧向和横向的尺寸均为10~15mm,再沿样板厚度方向将样板垂直切割均分为两块,然后进行打磨、抛光,得到两份尺寸相同的金相样品。
进一步,打磨采用标号为320~3000#的碳化硅砂纸,抛光采用粒径为0.5μm的金刚石喷雾抛光剂。
进一步,所述S1中电解刻蚀具体为:电解刻蚀剂为体积分数为94~96%的硫酸、体积分数为84~86%的磷酸和水按体积比38:43:19混合的溶液,电解刻蚀参数为:直流电压为10~30伏,电流密度为0.1~0.3安,通电时间为60~180秒。
进一步,所述S1中电解抛光具体为:电解抛光剂为质量分数为70~72%的高氯酸、无水乙醇按体积比1:9混合的溶液,电解抛光参数为:直流电压为10~30伏,电流密度为0.1~0.3安,通电时间为60~180秒。
进一步,所述电解刻蚀参数为:电流密度为0.15安,通电时间为90~120秒;所述电解抛光参数为:电流密度为0.15安,通电时间为90~120秒。
本发明公开的判断方法通过观察晶粒形貌特征和变形晶粒、回复亚晶粒和再结晶晶粒分布特征来确定铝镁合金热轧厚板最低强度区域的具体位置,其中晶粒形貌的纤维化程度减弱和晶界由模糊转变为清晰,表明晶粒的变形程度存在巨大差异,这一结果与l/hcp的值密切相关。随着轧制过程的继续,l/hcp的值将由小于1转变为大于1,这一转变会引起附加应力的交替,产生附加晶格畸变,在热轧厚板厚度方向特定区域诱发剧烈的回复或再结晶,进而形成由回复亚晶粒或再结晶晶粒构成的细晶带,即出现回复亚晶粒或再结晶晶粒构成的晶粒带与变形晶粒呈交替层状分布的现象。
本发明操作简单,能够迅速、准确地判断铝镁合金热轧厚板最低强度区域,并且也能为其他铝合金热轧厚板最低强度区域的确定提供参考。
附图说明
图1是本发明铝镁合金热轧厚板的切割形状示意图;
图2是本发明铝镁合金热轧厚板最低强度区域的晶粒形貌特征示意图;
图3是本发明铝镁合金热轧厚板最低强度区域的晶粒分布特征示意图。
图中,1—样板,2—晶粒形貌,3—模糊晶界,4—清晰晶界,5—回复亚晶粒,6—再结晶晶粒,7—晶粒带,8—变形晶粒,9—最低强度区域。
具体实施方式
下面结合附图和具体实施例对本发明作详细说明。
一种判断铝镁合金热轧厚板最低强度区域的方法,其包括如下步骤:
S1,将5083铝合金热轧厚板进行预处理制得金相样品,具体为:参见图1,沿板材厚度方向垂直切割5083铝合金热轧厚板得到样板1,样板1沿轧向和横向的尺寸均为10~15mm,再沿样板1厚度方向将样板1垂直切割均分为两块,然后进行打磨、抛光,得到两份尺寸相同的金相样品。其中打磨依次采用标号为320#、600#、1000#、1500#、2000#、3000#的碳化硅砂纸,抛光采用粒径为0.5μm的金刚石喷雾抛光剂。若样板1沿轧向和横向切割的尺寸过大,则预处理的表面较大,制出来的观察表面质量不均匀,放在扫描电镜中进行电子背散射衍射时也不安全,容易对电镜样品台和探头造成损伤。
一份金相样品进行电解刻蚀,制成表面覆膜的金相样品。电解刻蚀具体为:电解刻蚀剂为体积分数95%的硫酸、体积分数85%的磷酸和水按体积比38:43:19混合的溶液,电解刻蚀参数为:电流密度为0.15安,直流电压自动匹配,其值在10~30伏之间,通电时间为90秒。
另一份金相样品进行电解抛光,制成电子背散射衍射测试样品。电解抛光具体为:电解抛光剂为质量分数71%的高氯酸、无水乙醇按体积比1:9混合的溶液,电解抛光参数为:电流密度为0.15安,直流电压自动匹配,其值在10~30伏之间,通电时间为90秒。
S2,采用金相显微镜观察表面覆膜的金相样品,获得样品表面晶粒形貌特征。利用电子背散射衍射分析技术对电子背散射衍射测试样品进行分析,获得样品晶粒分布特征。再根据判断标准得到5083铝合金热轧厚板最低强度区域。所述判断标准为:参见图2和图3,当区域内晶粒形貌2的纤维化程度减弱,晶界由模糊晶界3转变为清晰晶界4,并且回复亚晶粒5或再结晶晶粒6构成的晶粒带7与变形晶粒8呈交替层状分布时,即判定该区域为5083铝合金热轧厚板最低强度区域9。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种判断铝镁合金热轧厚板最低强度区域的方法,其特征在于,包括如下步骤:
S1,将铝镁合金热轧厚板进行预处理制得两份相同尺寸的金相样品,一份通过电解刻蚀制成表面覆膜的金相样品,另一份通过电解抛光制成电子背散射衍射测试样品;
S2,采用金相显微镜观察表面覆膜的金相样品,获得样品表面晶粒形貌特征,利用电子背散射衍射分析技术对电子背散射衍射测试样品进行分析,获得样品晶粒分布特征,再根据判断标准得到铝镁合金热轧厚板最低强度区域;
所述判断标准为:区域内晶粒形貌的纤维化程度减弱,晶界由模糊转变为清晰,并且回复亚晶粒或再结晶晶粒构成的晶粒带与变形晶粒呈交替层状分布时,即判定该区域为铝镁合金热轧厚板最低强度区域。
2.根据权利要求1所述的判断铝镁合金热轧厚板最低强度区域的方法,其特征在于,所述预处理具体为:沿板材厚度方向垂直切割铝镁合金热轧厚板得到样板,样板沿轧向和横向的尺寸均为10~15mm,再沿样板厚度方向将样板垂直切割均分为两块,然后进行打磨、抛光,得到两份尺寸相同的金相样品。
3.根据权利要求2所述的判断铝镁合金热轧厚板最低强度区域的方法,其特征在于:打磨采用标号为320~3000#的碳化硅砂纸,抛光采用粒径为0.5μm的金刚石喷雾抛光剂。
4.根据权利要求1或2所述的判断铝镁合金热轧厚板最低强度区域的方法,其特征在于,所述S1中电解刻蚀具体为:电解刻蚀剂为体积分数为94~96%的硫酸、体积分数为84~86%的磷酸和水按体积比38:43:19混合的溶液,电解刻蚀参数为:直流电压为10~30伏,电流密度为0.1~0.3安,通电时间为60~180秒。
5.根据权利要求1或2所述的判断铝镁合金热轧厚板最低强度区域的方法,其特征在于,所述S1中电解抛光具体为:电解抛光剂为质量分数为70~72%的高氯酸、无水乙醇按体积比1:9混合的溶液,电解抛光参数为:直流电压为10~30伏,电流密度为0.1~0.3安,通电时间为60~180秒。
6.根据权利要求1或2所述的判断铝镁合金热轧厚板最低强度区域的方法,其特征在于,所述电解刻蚀参数为:电流密度为0.15安,通电时间为90~120秒;所述电解抛光参数为:电流密度为0.15安,通电时间为90~120秒。
CN202010313266.7A 2020-04-20 2020-04-20 一种判断铝镁合金热轧厚板最低强度区域的方法 Active CN111398281B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010313266.7A CN111398281B (zh) 2020-04-20 2020-04-20 一种判断铝镁合金热轧厚板最低强度区域的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010313266.7A CN111398281B (zh) 2020-04-20 2020-04-20 一种判断铝镁合金热轧厚板最低强度区域的方法

Publications (2)

Publication Number Publication Date
CN111398281A true CN111398281A (zh) 2020-07-10
CN111398281B CN111398281B (zh) 2023-04-14

Family

ID=71431640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010313266.7A Active CN111398281B (zh) 2020-04-20 2020-04-20 一种判断铝镁合金热轧厚板最低强度区域的方法

Country Status (1)

Country Link
CN (1) CN111398281B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049337A (zh) * 2021-03-24 2021-06-29 重庆市科学技术研究院 一种非沉淀强化铝合金铸锭强度和塑性的判断方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175831A (zh) * 2011-12-22 2013-06-26 北京有色金属研究总院 一种适于变形铝合金材料再结晶组织比例分析评价的方法
CN106148660A (zh) * 2016-07-05 2016-11-23 中国科学院合肥物质科学研究院 一种变形晶粒/部分再结晶组织孪生诱发塑性钢的制备方法
JP2016209895A (ja) * 2015-05-01 2016-12-15 株式会社戸畑タ−レット工作所 恒温鍛造部品及び恒温鍛造部品の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175831A (zh) * 2011-12-22 2013-06-26 北京有色金属研究总院 一种适于变形铝合金材料再结晶组织比例分析评价的方法
JP2016209895A (ja) * 2015-05-01 2016-12-15 株式会社戸畑タ−レット工作所 恒温鍛造部品及び恒温鍛造部品の製造方法
CN106148660A (zh) * 2016-07-05 2016-11-23 中国科学院合肥物质科学研究院 一种变形晶粒/部分再结晶组织孪生诱发塑性钢的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
于建波 等: "《金属材料与热处理习题与学习指导》", 30 November 2012, 北京理工大学出版社 *
俞景禄 等译: "《电炉炼钢理论基础》", 31 March 1985, 冶金工业出版社 *
彭滔等: "7075铝合金搅拌摩擦加工组织的EBSD表征", 《电子显微学报》 *
昌江郁等: "7056铝合金厚板轧制变形不均匀性的实验研究与数值模拟", 《中南大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049337A (zh) * 2021-03-24 2021-06-29 重庆市科学技术研究院 一种非沉淀强化铝合金铸锭强度和塑性的判断方法
CN113049337B (zh) * 2021-03-24 2023-06-09 重庆市科学技术研究院 一种非沉淀强化铝合金铸锭强度和塑性的判断方法

Also Published As

Publication number Publication date
CN111398281B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
Ghosh et al. Correlating r-value and through thickness texture in Al–Mg–Si alloy sheets
Panchanadeeswaran et al. Direct observation of orientation change by channel die compression of polycrystalline aluminum—use of a split sample
Kim et al. Effect of microstructural factors on void formation by ferrite/martensite interface decohesion in DP980 steel under uniaxial tension
Little et al. An electrochemical framework to explain the intergranular stress corrosion behavior in two Al–Cu–Mg–Ag alloys as a function of aging
Gasperini et al. Microstructure evolution and strain localization during shear deformation of an aluminium alloy
Slamova et al. Differences in microstructure and texture of Al–Mg sheets produced by twin-roll continuous casting and by direct-chill casting
Lou et al. Nanoindentation study of plasticity length scale effects in LIGA Ni microelectromechanical systems structures
Donatus et al. Corrosion and anodizing behaviour of friction stir weldment of AA2198-T851 Al-Cu-Li alloy
Dehmani et al. Experimental study of the impact of punching operations on the high cycle fatigue strength of Fe–Si thin sheets
CN111398281B (zh) 一种判断铝镁合金热轧厚板最低强度区域的方法
Bampton et al. The effect of superplastic deformation on subsequent service properties of fine grained 7475 Al
Huang et al. Influence of grain structure on anisotropic localised corrosion kinetics of AA7xxx-T6 alloys
Slámová et al. Polarized light microscopy: utilization in the investigation of the recrystallization of aluminum alloys
Dixon et al. Quantification of the fatigue severity of porosity in aluminium alloy 7050-T7451 thick plate
Lei et al. Interfacial microstructure evolution for coordinated deformation of Mg/Al composite plates by asymmetrical rolling with differential temperature rolls
Liu et al. Effect of temperature on microstructure and texture evolution of Mg-Zn-Er alloy during hot compression
Zhou et al. Finite element simulation and experimental investigation on homogeneity of Mg-9.8 Gd-2.7 Y-0.4 Zr magnesium alloy processed by repeated-upsetting
Turner et al. Modeling large-strain deformation behavior and neighborhood effects during hot working of a coarse-grain nickel-base superalloy
Ibrahim et al. Processing and specimen thickness to grain size (t/d) ratio effects on tensile behaviour and microformability of copper foils
Carvalho et al. The surface treatment influence on the fatigue crack propagation of Al 7050-T7451 alloy
Attolico et al. Influence of tartaric‐sulfuric acid anodic film on four‐point bending fatigue behavior of AA 7050‐T7451 samples
McCarron et al. Effect of geometrical defects in forming sheet steel by biaxial stretching
Kramer et al. Metallographic study of the surface layer
Xun et al. EBSD characterization of 8090 Al–Li alloy during dynamic and static recrystallization
Ratchev et al. Prediction of Forming Limit Diagrams of Al‐Mg Rolled Sheets Taking Texture Into Account

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant