CN111389573A - Construction waste treatment system - Google Patents

Construction waste treatment system Download PDF

Info

Publication number
CN111389573A
CN111389573A CN202010238424.7A CN202010238424A CN111389573A CN 111389573 A CN111389573 A CN 111389573A CN 202010238424 A CN202010238424 A CN 202010238424A CN 111389573 A CN111389573 A CN 111389573A
Authority
CN
China
Prior art keywords
dust
inlet
outlet
settling
conveying device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010238424.7A
Other languages
Chinese (zh)
Inventor
李慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Modern Environment Technology Co ltd
Original Assignee
Modern Rixin Changshu Environmental Protection Equipment Manufacturing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modern Rixin Changshu Environmental Protection Equipment Manufacturing Co ltd filed Critical Modern Rixin Changshu Environmental Protection Equipment Manufacturing Co ltd
Priority to CN202010238424.7A priority Critical patent/CN111389573A/en
Publication of CN111389573A publication Critical patent/CN111389573A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/10Combinations of devices covered by groups B01D45/00, B01D46/00 and B01D47/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/02Feeding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/14Separating or sorting of material, associated with crushing or disintegrating with more than one separator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/16Separating or sorting of material, associated with crushing or disintegrating with separator defining termination of crushing or disintegrating zone, e.g. screen denying egress of oversize material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/16Separating or sorting of material, associated with crushing or disintegrating with separator defining termination of crushing or disintegrating zone, e.g. screen denying egress of oversize material
    • B02C2023/165Screen denying egress of oversize material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2201/00Codes relating to disintegrating devices adapted for specific materials
    • B02C2201/06Codes relating to disintegrating devices adapted for specific materials for garbage, waste or sewage

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

The invention discloses a building garbage treatment system which comprises a feeding device, a first screening device, a crushing device, an intermediate conveying device, a second screening device, a finished product conveying device, a dust falling device and a dust removing device, wherein the feeding device is arranged on the middle of the feeding device; an oversize outlet of the first screening device is connected with an inlet of the crushing device, and a undersize outlet of the first screening device and an outlet of the crushing device are connected with the intermediate conveying device; the outlet of the middle conveying device is connected with the inlet of the second screening device, the undersize outlet of the second screening device is connected with the finished product conveying device, and the oversize outlet of the second screening device is connected to the inlet of the crushing device through a material returning and conveying device; the dust settling device comprises a plurality of dust settling assemblies arranged at multiple points; the dust removing device comprises an air exhaust pipeline with a plurality of gas inlets. The dust settling capacity, the dust removing capacity and the stability of the building waste treatment system are improved, and the scale of raised dust generated during the operation of the system and the cost and the consumption for treating the raised dust are reduced.

Description

Construction waste treatment system
Technical Field
The invention relates to the field of resource treatment of solid wastes in the environmental protection industry, in particular to a construction waste treatment system.
Background
With the economic development and the big development of the domestic construction industry, the construction and demolition projects of the construction industry are increased, so that a large amount of construction waste (containing construction waste after earthquake, such as Sichuan) is brought, the construction waste is basically not naturally degraded, and the ecological environment of human beings can be seriously influenced by a large amount of piled substances which can keep the original substance state for thousands of years. At the same time, a large number of construction projects bring about the demand for building materials. When the waste is treated on site to become useful building material, steel, plastics and combustible material (becoming heat energy) are obtained, i.e. the solid waste building waste is recycled, which can make contribution to maintaining good ecological environment and creating huge social and economic benefits for human beings.
The existing construction waste treatment is to crush construction waste on site to obtain a finished product with a smaller particle size and then transport the finished product out. During the processes of crushing, in-process transportation, finished product loading and the like, the finished products such as aggregate with small particle size and the like are easy to generate dust, and are not beneficial to environmental protection. The device and the treatment process of the existing construction waste treatment system have unsatisfactory treatment effect on the raised dust and higher treatment cost.
Disclosure of Invention
The invention aims to overcome the defects in the prior art and provides a building garbage treatment system which can obviously improve the dust fall capacity and the dust fall stability during building garbage treatment and is simple to operate and low in cost.
A building garbage treatment system comprises a feeding device, a first screening device, a crushing device, an intermediate conveying device, a second screening device, a finished product conveying device, a dust falling device and a dust removing device; the oversize outlet of the first screening device is connected with the inlet of the crushing device, and the undersize outlet of the first screening device and the outlet of the crushing device are connected with the intermediate conveying device; the outlet of the middle conveying device is connected with the inlet of the second screening device, the undersize outlet of the second screening device is connected with the finished product conveying device, and the oversize outlet of the second screening device is connected to the inlet of the crushing device through a returned material conveying device; the dust settling device comprises a plurality of dust settling assemblies arranged at multiple points; the dust removal device comprises an air extraction duct with a plurality of gas inlets. The specific thought of the design is that the construction waste treatment system disclosed by the invention adopts a two-stage screening mode, the raw materials and the crushed materials are screened twice, the crushed materials which do not meet the requirement on the particle size are returned to the crushing device again for crushing, and dust is easily generated in the crushing and transporting processes; the dust settling and dust removing devices are arranged at multiple points, and the scale of raised dust generated during the operation of the system is reduced through the composite synergistic effect of the dust settling and dust removing devices.
As a further improvement of the above technical solution:
the plurality of dust settling assemblies at least comprise a first dust settling assembly arranged at an inlet of the feeding device and a second dust settling assembly arranged on the return material conveying device; the extraction duct comprises at least a first gas inlet arranged in the vicinity of the intermediate conveyor and a second gas inlet arranged in the vicinity of the inlet of the breaking device.
The invention arranges three dust-settling components at the inlet of the feeding device, the return material conveying device and the finished product conveying device, the basis is that the three positions are the starting point and the end point of the process or the connecting part of the upper process and the lower process, the height difference between the two devices is larger, such as the screen outlet of the second screening device to the material returning and conveying device, the finished product conveying device to the stacking or loading transportation, dust is easy to cause in the falling process, dust particles at the inlet of the feeding device and at the returning and conveying device are large, the dust is difficult to be completely removed by using a negative pressure dust removal device, and the finished product conveying device is difficult to arrange a dust removal device due to the problem of finished product transportation, so that the dust removal components are arranged at the three positions to carry out spraying treatment on the raised dust, the effect of the dust removal components can be exerted to the maximum extent, the influence of the raised dust is reduced, and the cost and the resource consumption are saved. Meanwhile, the invention sets up the gas inlets of two dust collecting systems in the returning material conveying appliance and middle conveying appliance, its foundation lies in, this two positions are the end point of the process or junction of the upper process and following process, the apparatus is exposed outside, is apt to be influenced by weather (wind-force), and set up the height drop between the apparatuses is bigger, such as from returning material conveying appliance to breaker, from middle conveying appliance to the second screening plant, meanwhile, the material grain diameter after screening or breaking is relatively smaller, it is apt to cause the raise dust in the course of falling, therefore set up the gas inlet of the dust collecting system in this two positions and can exert the efficiency of the dust collecting apparatus to the maximum extent, reduce the raise dust and influence, save cost and resource consumption, this two positions are located at the upper position of the processing system of building rubbish of this invention, also facilitate the arrangement of the air exhaust pipeline.
The first dust-settling assembly comprises one or more connected first dust-settling nozzles, and the first dust-settling nozzles face the inlet of the feeding device, the outlet of the first screening device and the inlet of the crushing device respectively; one end of the first dust falling assembly is fixed on one side, close to the direction of the follow-up process, of the edge of the inlet of the feeding device, and the first dust falling assembly inclines towards the direction of the inlet far away from the feeding device. The dust fall component is arranged on one side, close to the direction of the subsequent process, of the inlet of the feeding device, so that the first dust fall component can be prevented from blocking the feeding device when feeding is conducted, the working efficiency of the building waste treatment system is better improved, meanwhile, the arrangement form of the dust fall component is designed to be a mode of inclining towards the direction far away from the inlet of the feeding device, the dust fall component can be prevented from being damaged during feeding, the arrangement form can enable the dust fall nozzle to face the screening device and the crushing device more accurately, and the dust fall effect of the dust fall device is improved.
The first dust falling assembly is fixed on the inlet edge of the feeding device through a hinge assembly capable of rotating 360 degrees in the horizontal plane. Through above-mentioned design, the dust fall subassembly can be at the inside 360 rotations in horizontal plane, can adjust its incline direction between feeder or crushing, screening plant for the user of service can adjust the orientation of dust fall subassembly according to the raise dust condition pertinence ground at different positions, thereby promotes dust device and feed system's dust fall ability.
The second dust fall component comprises a plurality of second dust fall nozzles which are arranged on the upper side and the lower side of a conveying belt of the return material conveying device.
The building garbage treatment system also comprises a third dust fall assembly arranged at the discharge port of the finished product conveying device; the discharge end of the finished product conveying device is arranged at a position which is obviously higher than a discharge blanking point, and the third dust fall component is arranged below the discharge end of the finished product conveying device and in an area through which discharge blanking passes; the third dust-settling component comprises a third dust-settling water pipe and a plurality of third dust-settling nozzles arranged on the third dust-settling water pipe, the third dust-settling water pipe is enclosed by a plurality of sections of sub-pipelines into a closed or unsealed ring shape, and the third dust-settling nozzles face an annular inner area enclosed by the third dust-settling water pipe; and an annular inner area defined by the third dust-settling water pipe is an area passed by the finished product conveying device during discharging and blanking. Set the third dust fall subassembly to above-mentioned structure and arrange in the terminal below of old article conveyor defeated material direction, can carry out the pertinence to the raise dust that makes the third dust fall subassembly produce the finished product material of whereabouts and spray and the dust fall, and so set up difficult production dead angle, can improve the suitability of building refuse handling system under open air or wind-force traffic big scene and stabilize the dust fall ability.
A plurality of block discharging ports are formed in the air exhaust pipeline; the block discharging port is a space formed by the pipe wall of the air exhaust pipeline and the pipe wall is sunken downwards, and an outlet with a switch function is arranged at the bottom of the block discharging port. Arrange the stifled mouth in the inside large granule materials such as stone that sets up of bleed-off line and can easily pile up originally in bleed-off line in time clear up out bleed-off line, avoid the large granule material to the dust collector's in the follow-up technology destruction and interference, the structure that will arrange the stifled mouth simultaneously sets up the space that the pipe wall of bleed-off line formed by inside undercut, can make heavier large granule material sink into when the bleed-off line and arrange the stifled mouthful inside, further protect dust collector, promote dust removal effect.
The upper part of the outlet of the block discharging port is provided with a baffle which is arranged in an upward inclined mode from the outlet direction, the outer edge of the lowest portion of the baffle is separated from the pipe wall of the block discharging port to form a notch, and the uppermost portion of the baffle is connected with the pipe wall of the air exhaust pipeline. The baffle that sets up in arranging the inside of choke orifice can be absorbed in by the breach when guaranteeing that large granule material is absorbed in row choke orifice when the baffle, can also reduce the probability that the tiny particle dust is absorbed in row choke orifice as far as possible to promote dust removal effect, also reduced the handling from arranging the cost of labor of choke orifice discharge dust.
The building waste treatment system further comprises a guide plate above the inlet of the feeding device, the guide plate is fixed in a region above the first dust fall assembly through a support, and two ends of the guide plate respectively extend to the inlet of the feeding device and the region near the inlet of the crushing device. Because the dust-settling component and the inlet of the feeding device form a certain included angle, the angle of elevation is larger when a part of dust-settling nozzles spray, and the dust-settling effect is reduced; arrange the guide plate in dust fall subassembly top and can be with dust fall nozzle spun liquid drop water conservancy diversion to the region that needs the dust fall to promote the dust fall effect, simultaneously, the existence of guide plate can also reduce the diffusion of raise dust to a certain extent.
The guide plate and the bracket form a similar T-shaped structure, two ends of the guide plate respectively extend to the inlet of the feeding device and the area near the inlet of the crushing device, and one side of the guide plate close to the inlet of the feeding device is shorter than one side of the guide plate close to the inlet of the crushing device. Set up the guide plate into above-mentioned structure, can strengthen the water conservancy diversion ability of guide plate, promote dust device and feed system's dust fall ability, can also avoid the guide plate right hindrance during feeder feeding.
The two ends of the guide plate respectively extend to the inlet of the feeding device and the area near the material conveying end point of the return material conveying device, an air suction opening is formed in the position, close to the return material conveying device, of the guide plate, and the air suction opening is connected with the second gas inlet of the dust removal device. The guide plate extends to the material returning device, so that the dust fall coverage of the dust fall device can be further extended, the feeding device, the screening device, the crushing device and the material returning device share one dust fall device, and the dust fall cost of the system is further reduced; meanwhile, the guide plate is connected with the dust removal device, so that the scale of dust emission discharged by the system can be further reduced, and the environment protection is facilitated.
Compared with the prior art, the invention has the advantages that: the invention sets the corresponding dust treatment device at the position of the building garbage treatment system which is easy to generate the dust, and carries out targeted optimization on the structures of the dust-settling device, the dust removal device and other structures, thereby improving the dust-settling and dust-removal capabilities and stability of the building garbage treatment system, and reducing the scale of the dust generated during the operation of the system and the cost and consumption for treating the dust.
Drawings
Fig. 1 is a schematic front view of a construction waste disposal system according to embodiment 1;
fig. 2 is a schematic top view of the construction waste disposal system according to embodiment 1;
fig. 3 is a schematic structural diagram of a first dust-settling assembly in the construction waste treatment system of embodiment 1;
fig. 4 is a schematic side view of the second dust-settling assembly and the returned material conveying device in the construction waste treatment system according to embodiment 1;
fig. 5 is a schematic structural diagram of a third dust-settling assembly in the construction waste treatment system of embodiment 1;
fig. 6 is a schematic bottom view of the third dust-settling assembly arranged on the finished product conveying device in embodiment 1;
fig. 7 is an enlarged schematic view of a portion a in fig. 1.
Illustration of the drawings:
1. a feeding device; 2. a first screening device; 3. a crushing device; 4. an intermediate conveying device; 5. a second screening device; 6. a finished product conveying device; 7. a return material conveying device; 8. a first dust fall assembly; 9. a second dust fall assembly; 10. a third dust fall assembly; 11. a baffle; 12. an air extraction pipeline; 13. a first gas inlet; 14. a second gas inlet; 15. removing the blockage; 16. a baffle plate; 17. a hinge assembly; 18. a water supply pipe; 19. a telescoping assembly; 20. a cyclone separator; 21. a bag type dust collector; 22. a screw feeder; 81. a first dust fall nozzle; 91. a second dust settling nozzle; 101. a third dust-settling water pipe; 102. and a third dust falling nozzle.
Detailed Description
The invention is described in further detail below with reference to the figures and specific examples.
Example 1:
as shown in fig. 1 and 2, the construction waste treatment system of the present embodiment includes a feeding device 1, a first screening device 2, a crushing device 3, an intermediate conveying device 4, a second screening device 5, a finished product conveying device 6, a dust settling device, and a dust removing device; the oversize outlet of the first screening device 2 is connected with the inlet of the crushing device 3, and the undersize outlet of the first screening device 2 and the outlet of the crushing device 3 are connected with the intermediate conveying device 4; the outlet of the middle conveying device 4 is connected with the inlet of a second screening device 5, the undersize outlet of the second screening device 5 is connected with a finished product conveying device 6, and the oversize outlet of the second screening device 5 is connected to the inlet of the crushing device 3 through a material returning and conveying device 7; the dust settling device comprises a plurality of dust settling assemblies arranged at multiple points; the dust removal device comprises an extraction duct 12 with a plurality of gas inlets.
In the embodiment, the multiple dust settling assemblies at least comprise a first dust settling assembly 8 arranged at an inlet of the feeding device 1 and a second dust settling assembly 9 arranged on the return material conveying device 7; the suction line 12 comprises at least a first gas inlet 13 arranged in the vicinity of the intermediate conveyor 4 and a second gas inlet 14 arranged in the vicinity of the inlet of the crushing device 3.
In this embodiment, the second dust settling assembly 9 is arranged in the area near the material transportation starting point of the return material conveying device 7; the first gas inlet 13 of the suction line 12 is arranged in the region of the intermediate conveyor 4 in the vicinity of the end of the transport of material.
In the present embodiment, as shown in fig. 3, the first dustfall assembly 8 comprises one or more connected first dustfall nozzles 81, and the first dustfall nozzles 81 are respectively directed towards the inlet of the feeding device 1, the outlet of the first screening device 2 and the inlet of the crushing device 3.
In this embodiment, one end of first dustfall assembly 8 is fixed to one side of the inlet edge of feeding device 1 near the direction of the subsequent process, and first dustfall assembly 8 inclines towards the inlet direction far away from feeding device 1.
In the present embodiment, first dust fall assembly 8 is fixed to the inlet edge of feeder 1 by a hinge assembly 17 rotatable 360 ° in the horizontal plane.
In the present embodiment, as shown in fig. 4, the second dustfall unit 9 includes a plurality of second dustfall nozzles 91 arranged on both upper and lower sides of the conveyor belt of the return conveyor 7.
In this embodiment, the construction waste treatment system further includes a third dust fall assembly 10 disposed at the discharge port of the finished product conveying device 6; the discharge end of finished product conveyor 6 is disposed at a position significantly higher than the discharge blanking point, and third dust fall assembly 10 is disposed below the discharge end of finished product conveyor 6 and in the region through which the discharged material passes when being blanked, which region is located inside the dashed box shown at B in fig. 1.
In the present embodiment, as shown in fig. 5 and 6, the third dustfall assembly 10 includes a third dustfall water pipe 101 and a plurality of third dustfall nozzles 102 provided on the third dustfall water pipe 101, the third dustfall water pipe 101 is enclosed by a plurality of sub-pipes in a closed or non-closed annular shape, and the third dustfall nozzles 102 face an annular inner region enclosed by the third dustfall water pipe 101; the annular inner area surrounded by the third dustfall water pipe 101 is an area passed by the finished product conveying device 6 during discharging and blanking.
In this embodiment, third dust reduction assembly 10 is connected to the end of product conveyor 6 by a telescoping assembly 19, which telescoping assembly 19 telescopes vertically, preferably a telescoping assembly as disclosed in the prior art.
In this embodiment, a plurality of third dust fall assemblies 10 are arranged below finished product conveying device 6 along different height positions, and an annular inner area surrounded by third dust fall water pipes 101 of each third dust fall assembly 10 is penetrated during discharging and blanking of finished product conveying device 6.
In this embodiment, the third dustfall water pipe 101 in the third dustfall assembly 10 forms an unsealed octagonal ring structure, and each segment of sub-pipe forming the octagon is provided with a third dustfall nozzle 102.
In this embodiment, third dustfall nozzle 102 is a fan or solid cone nozzle.
In this embodiment, first dustfall subassembly 8, second dustfall subassembly 9 and third dustfall subassembly 10 are all connected with the delivery pipe 18 that first, second, third dustfall subassembly 10 homogeneous phase communicates through solenoid valve, are provided with the booster pump on the delivery pipe 18.
In this embodiment, the first gas inlet 13 of the evacuation pipe 12 is arranged at the end of the material transport of the intermediate transport device 4.
In this embodiment, the air extraction duct 12 is provided with a plurality of block discharge ports 15; the block discharge port 15 is a space formed by the pipe wall of the air extraction pipeline 12 by the inner part sinking downwards, and the bottom of the block discharge port 15 is provided with an outlet with a switch function.
In this embodiment, as shown in fig. 7, a baffle 16 disposed in an upward inclined manner from the outlet direction is disposed above the outlet of the blocking outlet 15, the lowermost outer edge of the baffle 16 is separated from the tube wall of the blocking outlet 15 to form a gap, and the uppermost of the baffle 16 is connected to the tube wall of the air extraction duct 12.
In this embodiment, the construction waste disposal system further includes a guide plate 11 above the inlet of the feeding device 1, the guide plate 11 is fixed in the vicinity above the first dust fall assembly 8 through a bracket, and two ends of the guide plate 11 respectively extend to the inlet of the feeding device 1 and the vicinity of the inlet of the crushing device 3.
In this embodiment, the deflector 11 and the bracket form a similar T-shaped structure, and both ends of the deflector 11 extend to the inlet of the feeding device 1 and the area near the inlet of the crushing device 3, respectively, and the side of the deflector 11 close to the inlet of the feeding device 1 is shorter than the side of the deflector 11 close to the inlet of the crushing device 3.
In this embodiment, two ends of the guide plate 11 respectively extend to the inlet of the feeding device 1 and the area near the material conveying end point of the material returning and conveying device 7, and a suction opening is formed at a position of the guide plate 11 close to the material returning and conveying device 7, and the suction opening is connected with the second gas inlet 14 of the dust removing device.
In this embodiment, the dust removing assembly includes a cyclone 20 and a bag-type dust remover 21 that are connected in sequence, and a gas outlet of the cyclone 20 is communicated with a gas inlet of the bag-type dust remover 21.
In this embodiment, the bag filter 21 is a pulse bag filter, the bag filter 21 is further connected to the discharge port of the return conveying device 7 through an air exhaust pipeline 12, a screw feeder 22 is arranged below the bag filter 21, and a material outlet of the screw feeder 22 is connected to a starting point of material conveying of the finished product conveying device 6.
When the construction waste treatment system of the embodiment is used for crushing construction waste, the method is carried out according to the following procedures: the garbage to be treated is thrown into an inlet of a feeding device 1, the garbage to be treated is fed into an inlet of a first screening device 2 through an outlet of the feeding device 1, after being screened by the first screening device 2, the building garbage with the particle size being more than a set value enters a crushing device 3 through an oversize outlet of the first screening device 2, the building garbage is crushed by the crushing device 3 and falls to a conveying starting point of an intermediate conveying device 4 from the outlet, the building garbage with the particle size being less than the set value falls to the conveying starting point of the intermediate conveying device 4 through an undersize outlet of the first screening device 2, the materials are conveyed to an inlet of a second screening device 5 through the intermediate conveying device 4, after being screened by the second screening device 5, the materials which do not meet the particle size requirement fall to the conveying starting point of a material returning conveying device 7 from the oversize outlet of the second screening device 5, and return to the crushing device; finished products meeting the particle size requirement fall to the finished product conveying device 6 from the screen outlet for conveying, and subsequent stacking or loading and transporting treatment are carried out.
The above description is only a preferred embodiment of the present invention, and the protection scope of the present invention is not limited to the above-described embodiments. Modifications and variations that may occur to those skilled in the art without departing from the spirit and scope of the invention are to be considered as within the scope of the invention.

Claims (10)

1. The construction waste treatment system is characterized by comprising a feeding device (1), a first screening device (2), a crushing device (3), an intermediate conveying device (4), a second screening device (5), a finished product conveying device (6), a dust falling device and a dust removing device; the oversize outlet of the first screening device (2) is connected with the inlet of the crushing device (3), and the undersize outlet of the first screening device (2) and the outlet of the crushing device (3) are connected with the intermediate conveying device (4); the outlet of the intermediate conveying device (4) is connected with the inlet of the second screening device (5), the undersize outlet of the second screening device (5) is connected with the finished product conveying device (6), and the oversize outlet of the second screening device (5) is connected with the inlet of the crushing device (3) through a returned material conveying device (7); the dust settling device comprises a plurality of dust settling assemblies arranged at multiple points; the dust removal device comprises an extraction duct (12) having a plurality of gas inlets.
2. The construction waste disposal system of claim 1, wherein the plurality of dust fall assemblies comprises at least a first dust fall assembly (8) disposed at an inlet of the feeding device (1) and a second dust fall assembly (9) disposed on the return material conveyor (7); the extraction duct (12) comprises at least a first gas inlet (13) arranged in the vicinity of the intermediate conveyor (4) and a second gas inlet (14) arranged in the vicinity of the inlet of the breaking device (3).
3. The construction waste disposal system of claim 2, wherein the first dust fall assembly (8) comprises one or more connected first dust fall nozzles (81), the first dust fall nozzles (81) being directed towards the inlet of the feeding device (1), the outlet of the first screening device (2) and the inlet of the crushing device (3), respectively; one end of the first dust falling assembly (8) is fixed on one side, close to the direction of the subsequent process, of the edge of an inlet of the feeding device (1), and the first dust falling assembly (8) inclines towards the direction of the inlet far away from the feeding device (1).
4. The construction waste disposal system according to claim 3, wherein said first dust fall assembly (8) is fixed to the inlet edge of said feeding device (1) by a hinge assembly (17) rotatable 360 ° in the horizontal plane.
5. The construction waste disposal system of claim 2, wherein the second dust fall assembly (9) comprises a plurality of second dust fall nozzles (91) arranged on upper and lower sides of a conveyor belt of the return material conveyor (7).
6. The construction waste disposal system of claim 2, further comprising a third dust fall assembly (10) disposed at a discharge of the product conveyor (6); the discharge end of the finished product conveying device (6) is arranged at a position which is obviously higher than a discharge blanking point, and the third dust-settling component (10) is arranged below the discharge end of the finished product conveying device (6) and in an area through which discharging and blanking pass; the third dust-settling assembly (10) comprises a third dust-settling water pipe (101) and a plurality of third dust-settling nozzles (102) arranged on the third dust-settling water pipe (101), the third dust-settling water pipe (101) is enclosed by a plurality of sections of sub-pipes to form a closed or unsealed ring shape, and the third dust-settling nozzles (102) face to an annular inner area enclosed by the third dust-settling water pipe (101); and an annular inner area surrounded by the third dust-settling water pipe (101) is an area passed by the finished product conveying device (6) during discharging and blanking.
7. The construction waste disposal system according to any one of claims 1 to 6, wherein a plurality of discharge openings (15) are provided in the air extraction duct (12); the block discharging port (15) is a space formed by the pipe wall of the air extraction pipeline (12) and the inner part of the pipe wall is sunken downwards, and an outlet with a switch function is arranged at the bottom of the block discharging port (15).
8. The construction waste disposal system according to claim 7, wherein a baffle (16) is disposed above the outlet of the discharge port (15) and is inclined upward from the outlet direction, the lowermost outer edge of the baffle (16) is separated from the pipe wall of the discharge port (15) and forms a gap, and the uppermost edge of the baffle (16) is connected to the pipe wall of the suction pipe (12).
9. The construction waste disposal system according to any one of claims 2 to 6, further comprising a deflector (11) above the inlet of the feeding device (1), wherein the deflector (11) is fixed to the upper vicinity of the first dust fall assembly (8) through a bracket, and both ends of the deflector (11) extend to the inlet of the feeding device (1) and the vicinity of the inlet of the crushing device (3), respectively; the guide plate (11) and the bracket form a similar T-shaped structure, two ends of the guide plate (11) respectively extend to the inlet of the feeding device (1) and the area near the inlet of the crushing device (3), and one side of the guide plate (11) close to the inlet of the feeding device (1) is shorter than one side of the guide plate (11) close to the inlet of the crushing device (3).
10. The construction waste treatment system according to claim 9, wherein two ends of the guide plate (11) respectively extend to the inlet of the feeding device (1) and the area near the material conveying end point of the return material conveying device (7), and a suction opening is formed in a portion of the guide plate (11) close to the return material conveying device (7), and is connected with the second gas inlet (14) of the dust removal device.
CN202010238424.7A 2020-03-30 2020-03-30 Construction waste treatment system Pending CN111389573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010238424.7A CN111389573A (en) 2020-03-30 2020-03-30 Construction waste treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010238424.7A CN111389573A (en) 2020-03-30 2020-03-30 Construction waste treatment system

Publications (1)

Publication Number Publication Date
CN111389573A true CN111389573A (en) 2020-07-10

Family

ID=71417395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010238424.7A Pending CN111389573A (en) 2020-03-30 2020-03-30 Construction waste treatment system

Country Status (1)

Country Link
CN (1) CN111389573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112275431A (en) * 2020-11-16 2021-01-29 唐山冀东装备工程股份有限公司 Mobile crushing production line, tent house and production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112275431A (en) * 2020-11-16 2021-01-29 唐山冀东装备工程股份有限公司 Mobile crushing production line, tent house and production method

Similar Documents

Publication Publication Date Title
CN106391471A (en) Integrative sorting machine for household garbage
CN106669888A (en) Efficient roller pressing grinding station and technique thereof
CN207138082U (en) Dry method building waste process for producing line
CN111389573A (en) Construction waste treatment system
CN108607809A (en) A kind of multistage feed powder grading plant and its method
KR102324111B1 (en) Foreign matter separation apparatus for recycled aggregate of construction waste using blow vortex
CN212943453U (en) Construction waste treatment system
CN109848171A (en) A kind of processing is new to generate 2000 tons of intelligent equipments of house refuse
KR20140055836A (en) A method and apparatus for selection and crushing/ fine crush ofwastes construction
CN211839533U (en) Civil engineering room construction waste material processing apparatus
CN108080402A (en) Decoration garbage recycling recycles disposal system and method
KR101119068B1 (en) Solid fuel fabrication system using vinyl waste and the method using the same thereof
KR20010106385A (en) A system of crushing and sorting the construction wastes
CN211989130U (en) Building rubbish processing system with dust removal function
CN211997914U (en) Dust fall band conveyer
CN211989129U (en) Building rubbish processing system with dust fall function
CN211839044U (en) Stock garbage screening device
CN213349222U (en) Exempt from basic type and wash system sand all-in-one
CN206454764U (en) A kind of machinery and air-flow integral type pulverizer
CN102250961B (en) System for preparing sizing agent
CN105800812B (en) A kind of waste recovery tail water processing unit
CN212943436U (en) Construction waste feed system
CN201148291Y (en) Large-sized warehouse top discharge device
CN211359635U (en) Sorting mechanism for broken building waste
CN209520045U (en) Emery dust seperator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Room 905, Building B, Lugu Science and Technology Innovation and Entrepreneurship Park, No. 1698 Yuelu West Avenue, Changsha High tech Development Zone, Changsha City, Hunan Province, 410221

Applicant after: Hunan Modern Zhixin Environmental Protection Technology Co.,Ltd.

Address before: 215501 building 3, 33 Mogan Road, Mocheng management area, Yushan Town, Changshu City, Suzhou City, Jiangsu Province

Applicant before: Modern Rixin (Changshu) environmental protection equipment manufacturing Co.,Ltd.

CB02 Change of applicant information
TA01 Transfer of patent application right

Effective date of registration: 20230329

Address after: Room 303-2, Building A-7, Jinhongyuan, No. 229 Tongzipo West Road, Changsha High tech Development Zone, Changsha City, Hunan Province, 410205

Applicant after: HUNAN MODERN ENVIRONMENT TECHNOLOGY Co.,Ltd.

Address before: Room 905, Building B, Lugu Science and Technology Innovation and Entrepreneurship Park, No. 1698 Yuelu West Avenue, Changsha High tech Development Zone, Changsha City, Hunan Province, 410221

Applicant before: Hunan Modern Zhixin Environmental Protection Technology Co.,Ltd.

TA01 Transfer of patent application right