CN111389365A - 一种碳纳米管/二氧化钛复合薄膜及其制备方法和应用 - Google Patents

一种碳纳米管/二氧化钛复合薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN111389365A
CN111389365A CN202010299624.3A CN202010299624A CN111389365A CN 111389365 A CN111389365 A CN 111389365A CN 202010299624 A CN202010299624 A CN 202010299624A CN 111389365 A CN111389365 A CN 111389365A
Authority
CN
China
Prior art keywords
carbon nanotube
titanium dioxide
film
composite film
dioxide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010299624.3A
Other languages
English (en)
Other versions
CN111389365B (zh
Inventor
上媛媛
常书龙
庞瑞
曹安源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Zhengzhou University
Original Assignee
Peking University
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University, Zhengzhou University filed Critical Peking University
Priority to CN202010299624.3A priority Critical patent/CN111389365B/zh
Publication of CN111389365A publication Critical patent/CN111389365A/zh
Application granted granted Critical
Publication of CN111389365B publication Critical patent/CN111389365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明提出了一种碳纳米管/二氧化钛复合薄膜及其制备方法和应用,碳纳米管/二氧化钛复合薄膜包括单壁碳纳米管薄膜,单壁碳纳米管薄膜是交错的碳纳米管组成的网络结构,碳纳米管的表面包覆有同轴的二氧化钛层,二氧化钛层由多个纳米二氧化钛球组成。本发明通过原位水解和高温煅烧组装了柔性碳纳米管二氧化钛复合薄膜,室温下对NO具有高的灵敏度和优异的选择性,简化了制备工艺,复合薄膜可以实现快速回复和完全回复,具有良好的稳定性。

Description

一种碳纳米管/二氧化钛复合薄膜及其制备方法和应用
技术领域
本发明涉及气敏传感器技术领域领域,特别是指一种碳纳米管/二氧化钛复合薄膜及其制备方法和应用。
背景技术
随着科技化、信息化的发展,气体传感器应用于环境监测、工业生产以及我们的日常生活中。一氧化氮作为一种有毒的有害气体,对我们人体本身和生态环境带来巨大威胁,健康人群即使短期暴露在NO气体下,也会对人体的呼吸道带来刺激。目前,NO传感器主要以半导体金属氧化物为主,由于其高的灵敏度,快速响应与回复,收到了人们的广泛关注,但其往往在高温下才具有优异的气敏性能,室温响应往往不令人满意。碳纳米管在室温下可以对一些气体做出快速响应,大的比表面积使其在室温气敏传感有着巨大潜力。碳纳米管在室温下可以对一些气体做出快速响应,大的比表面积使其在室温气敏传感有着巨大潜力。以碳纳米管为基底负载半导体金属氧化物,是提升NO传感性能的有效方法。
现有的碳纳米管/二氧化钛,基底多采用碳纳米管粉末,如CN101318646B公开了一种制备TiO2包覆碳纳米管复合材料,先将碳纳米管粉末超声分散于无水乙醇中,然后在超声振荡的条件下,加入钛酸四丁酯、乙二胺和乙酸,最后将混合溶液置于反应釜,将反应釜密封并在250℃-300℃保温1-4小时,冷却、离心和干燥。
如“纳米TiO2包覆CNTs复合载体的制备研究[J],梁海龙等,稀有金属材料与工程,2015-11,第44卷”,先将碳纳米管粉末硝酸氧化处理,然后将钛酸四丁酯溶解在乙醇溶液中,然后加入酸化的碳纳米管粉末,超声分散,然后将密封后的烧杯放在水浴中80℃放置10h,抽滤3次在100℃下干燥6h,最后在350℃煅烧2h。
上述方法,采用碳纳米管粉末作为载体,一方面牵涉到碳纳米管处理,如何保证其分散性,使复合材料的制备工艺复杂化,另一方面制备的复合材料导电性、作为传感器的灵敏性都较低。
发明内容
本发明提出一种碳纳米管/二氧化钛复合薄膜及其制备方法和应用,通过原位水解和高温煅烧组装了柔性碳纳米管二氧化钛复合薄膜,室温下对NO具有高的灵敏度和优异的选择性,简化了制备工艺,复合薄膜可以实现快速回复和完全回复,具有良好的稳定性。
本发明的技术方案是这样实现的:一种碳纳米管/二氧化钛复合薄膜,包括单壁碳纳米管薄膜,单壁碳纳米管薄膜是交错的碳纳米管组成的网络结构,碳纳米管的表面包覆有同轴的二氧化钛层,二氧化钛层由多个纳米二氧化钛球组成。
进一步地,纳米二氧化钛球为锐钛矿二氧化钛。
一种碳纳米管/二氧化钛复合薄膜的制备方法,包括以下步骤:
(1)采用化学气相沉积制备的自支撑且连续的单壁碳纳米管薄膜,将单壁碳纳米管薄膜平铺在支撑圈上;
(2)将带有单壁碳纳米管薄膜的支撑圈放入钛酸四丁酯与乙醇的混合溶液中静置后捞出,在空气中进行原位水解,再依次用乙醇和去离子水洗涤;
(3)将步骤(2)中洗涤后的单壁碳纳米管薄膜在氩气氛围下煅烧;
(4)将步骤(3)煅烧后的单壁碳纳米管薄膜从支撑圈上取下,获得碳纳米管/二氧化钛复合薄膜。
进一步地,步骤(2)中,钛酸四丁酯与乙醇以体积比1:5混合均匀,获得混合溶液。
进一步地,步骤(3)中,单壁碳纳米管薄膜在管式炉中氩气氛围下500℃煅烧180min。
一种碳纳米管/二氧化钛复合薄膜作为室温NO气体传感器的应用。
一种碳纳米管/二氧化钛复合薄膜作为柔性可穿戴传感器的应用。
本发明的有益效果:
本发明通过化学气相沉积法制备了具有自支撑的单壁碳纳米管薄膜,提供了导电网络,导电网络是连续的,有利于提高复合薄膜的导电性和响应强度,且不需要对用单壁碳纳米管薄膜进行预处理,通过原位水解,煅烧,形成了具有同轴结构的纤维,本发明的制备方法操作简单,避免了对碳纳米管网络的破坏。
本发明通过原位水解(Ti(OC4H9)+2H2O→TiO2+4C4H9OH)和高温煅烧组装了柔性碳纳米管二氧化钛复合薄膜,碳纳米管和二氧化钛纳米颗粒形成了同轴结构,二氧化钛纳米颗粒直径是10nm左右,多孔的二氧化钛包覆在单壁碳纳米管表面,提供了更大的比表面积,有利于NO的吸附,提升了薄膜对NO的灵敏度,另外,煅烧后形成的半导体性质的锐钛矿型二氧化钛独特的纳米尺寸和纳米结构,增加了复合薄膜对氧离子的吸附,提升灵敏度,使传感器实现了对NO的高选择性;在紫外光照射下,该复合薄膜制备的传感器实现了快速回复和完全恢复,且具有良好的稳定性,解决了传统碳纳米管基传感器恢复缓慢和电阻随循环次数漂移的问题。本发明高灵敏的NO传感器在室温气体传感领域有着巨大的应用潜力。
碳纳米管具有疏水亲酒精的性质,本发明步骤(2)中,将钛酸四丁酯与酒精互溶可以对钛酸四丁酯进行稀释,有利于在碳纳米管上形成均匀的包覆结构;空气中的水蒸气使钛酸四丁酯在碳纳米管上发生原位水解,为了控制原位水解时间,在水解完成后,利用无水乙醇洗去薄膜表面多余的二氧化钛,再利用水洗去薄膜表面的多余的无水乙醇;步骤(3)中,煅烧后,碳纳米管表面的无定形二氧化钛转化为锐钛矿二氧化钛,并在碳纳米管表面形成同轴多孔的球状外壳。
本发明的碳纳米管/二氧化钛复合薄膜为二维片材的薄膜结构,在室温NO气体传感器组装过程中不需要其他的电极片,将碳纳米管/二氧化钛复合薄膜置于柔性衬底上,然后添加用作导线的银丝,可实现柔性的同时保持良好的选择性和灵敏性,其柔性特征在可穿戴柔性电子器件领域有着巨大潜力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的制备过程示意图;
图2本发明制备的碳纳米管/二氧化钛复合薄膜的扫描电子显微镜照片;
图3为本发明制备的碳纳米管薄膜,碳纳米管/无定形二氧化钛复合薄膜和碳纳米管/锐钛矿型二氧化钛复合薄膜对20ppm NO的响应;
图4为碳纳米管/二氧化钛复合薄膜对50ppm NO的循环稳定响应;
图5为碳纳米管/二氧化钛复合薄膜的投射图。
1.钛酸四丁酯与乙醇的混合溶液,2.原始的碳纳米管薄膜,3.管式炉,4.氩气,5.被水解生成的二氧化钛包裹的碳纳米管复合薄膜。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种碳纳米管/二氧化钛复合薄膜的制备方法,包括以下步骤:
(1)采用化学气相沉积制备的自支撑、无衬底且连续的单壁碳纳米管薄膜,将单壁碳纳米管薄膜平铺在支撑圈上,支撑圈为圆形铜圈;
化学气相沉积以二甲苯为碳源,二茂铁为催化剂,在管式炉中1200℃下氢氩混合气体的环境下生长碳纳米管,制备单壁碳纳米管薄膜;制备的单壁碳纳米管薄膜自支撑,具有良好的力学强度,无需衬底,即可保证后续原位水解的过程中薄膜保持完整;
(2)钛酸四丁酯与乙醇以体积比1:5混合均匀,获得混合溶液,将带有单壁碳纳米管薄膜的圆形铜圈放入混合溶液中静置后捞出,在空气中进行原位水解,再依次用乙醇和去离子水洗涤;
(3)将步骤(2)中洗涤后的单壁碳纳米管薄膜在管式炉中氩气氛围下500℃煅烧180min;
(4)将步骤(3)煅烧后的单壁碳纳米管薄膜从圆形铜圈上取下,获得碳纳米管/二氧化钛复合薄膜。
单壁碳纳米管/二氧化钛复合薄膜的扫描电子显微镜照片如图2所示,碳纳米管/二氧化钛复合薄膜,包括单壁碳纳米管薄膜,单壁碳纳米管薄膜是多根交错的碳纳米管组成的网络结构,碳纳米管的表面包覆有同轴的二氧化钛层,二氧化钛层由多个纳米二氧化钛球组成,纳米二氧化钛球为锐钛矿二氧化钛。如图5所示,二氧化钛纳米球直径是10nm左右。
将步骤(4)制备的碳纳米管/二氧化钛复合薄膜放置于柔性衬底上,然后将两根银丝作为导线放置于碳纳米管/二氧化钛复合薄膜上,完成NO气体传感器的组装,进行CGS-1TP进行气敏测试。碳纳米管/二氧化钛复合薄膜为柔性薄膜,制备的NO气体传感器可应用于柔性可穿戴传感器中。
以下结合具体实施例进行详细说明。
实施例1
通过化学气相沉积制备单壁碳纳米管薄膜,将薄膜平铺在铜圈上,放入钛酸四丁酯和乙醇的混合溶液(1:5)静止后捞出,在空气中进行原位水解,再依次用乙醇和去离子水洗涤,在管式炉中氩气氛围下500℃煅烧180min,将得到的薄膜组装成器件放入CGS-TP1中测试,在电阻稳定后,打入20ppm NO的气体保持(约1800s),之后使其暴露在空气中,待电阻稳定后(约5500s)照射紫外光。
对比例1
通过化学气相沉积制备单壁碳纳米管薄膜,将薄膜组装成器件放入CGS-TP1中测试,在电阻稳定后,打入20ppm NO的气体保持(约1800s),之后使其暴露在空气中,待电阻稳定后(约5500s)照射紫外光。
对比例2
通过化学气相沉积制备单壁碳纳米管薄膜,将薄膜平铺在铜圈上,放入钛酸四丁酯和乙醇的混合溶液(1:5)静止后捞出,在空气中进行原位水解,再依次用乙醇和去离子水洗涤,将得到的薄膜组装成器件放入CGS-TP1中测试,在电阻稳定后,打入20ppm NO的气体保持(约1800s),之后使其暴露在空气中,待电阻稳定后(约5500s)照射紫外光。
实施例1和对比例1-2对20ppm NO的响应如图3所示,碳纳米管/二氧化钛复合薄膜相对于原始的单壁碳纳米管薄膜或者未烧结的碳纳米管/二氧化钛薄膜,对NO具有高的灵敏度,在紫外光照射下实现了快速回复和完全回复。
实施例2
通过化学气相沉积制备单壁碳纳米管薄膜,将薄膜平铺在铜圈上,放入钛酸四丁酯和乙醇的混合溶液(1:5)静止后捞出,在空气中进行原位水解,再依次用乙醇和去离子水洗涤,在管式炉中氩气氛围下500℃煅烧180min,将得到的薄膜组装成器件放入CGS-TP1中测试,在电阻稳定后(约600s),打入50ppm NO的气体保持(约1800s),之后使其暴露在空气中照射紫外光。
对比例3
通过化学气相沉积制备单壁碳纳米管薄膜,将薄膜平铺在铜圈上,放入钛酸四丁酯和乙醇的混合溶液(1:5)静止后捞出,在空气中进行原位水解,再依次用乙醇和去离子水洗涤,在管式炉中氩气氛围下500℃煅烧180min,将得到的薄膜组装成器件放入CGS-TP1中测试,在电阻稳定后(约600s),打入50ppm H2S的气体保持(约1800s),之后使其暴露在空气中照射紫外光。
对比例4
通过化学气相沉积制备单壁碳纳米管薄膜,将薄膜平铺在铜圈上,放入钛酸四丁酯和乙醇的混合溶液(1:5)静止后捞出,在空气中进行原位水解,再依次用乙醇和去离子水洗涤,在管式炉中氩气氛围下500℃煅烧180min,将得到的薄膜组装成器件放入CGS-TP1中测试,在电阻稳定后(约600s),打入50ppm NH3的气体保持(约1800s),之后使其暴露在空气中照射紫外光。
对比例5
通过化学气相沉积制备单壁碳纳米管薄膜,将薄膜平铺在铜圈上,放入钛酸四丁酯和乙醇的混合溶液(1:5)静止后捞出,在空气中进行原位水解,再依次用乙醇和去离子水洗涤,在管式炉中氩气氛围下500℃煅烧180min,将得到的薄膜组装成器件放入CGS-TP1中测试,在电阻稳定后(约600s),打入50ppm CH4的气体保持(约1800s),之后使其暴露在空气中照射紫外光。
对比例6
通过化学气相沉积制备单壁碳纳米管薄膜,将薄膜平铺在铜圈上,放入钛酸四丁酯和乙醇的混合溶液(1:5)静止后捞出,在空气中进行原位水解,再依次用乙醇和去离子水洗涤,在管式炉中氩气氛围下500℃煅烧180min,将得到的薄膜组装成器件放入CGS-TP1中测试,在电阻稳定后(约600s),打入50ppm NO2的气体保持(约1800s),之后使其暴露在空气中照射紫外光。
实施例2以及对比例3-6对检测气体的响应强度如下表所示
序号 样品 检测气体 响应强度(%)
1 实施例2 NO 45.5%
2 对比例3 H<sub>2</sub>S 2.8%
3 对比例4 NH<sub>3</sub> 9.8%
4 对比例5 CH<sub>4</sub> 1.1%
5 对比例6 NO<sub>2</sub> 2.2%
从表以看出,相对于H2S、NH3、CH4和NO2,碳纳米管/二氧化钛复合薄膜对NO具有优异的选择性响应。
实施例3
通过化学气相沉积制备单壁碳纳米管薄膜,将薄膜平铺在铜圈上,放入钛酸四丁酯和乙醇的混合溶液(1:5)静止后捞出,在空气中进行原位水解,再依次用乙醇和去离子水洗涤,在管式炉中氩气氛围下500℃煅烧180min,将得到的薄膜组装成器件放入CGS-TP1中测试,在电阻稳定后(约600s),打入50ppm NO的气体保持(约1800s),之后使其暴露在空气中照射紫外光,响应和回复过程重复5次,碳纳米管/二氧化钛复合薄膜对50ppm NO的循环稳定响应图4所示,从图4中可以看出,碳纳米管/二氧化钛复合薄膜具有稳定的气敏性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种碳纳米管/二氧化钛复合薄膜,其特征在于:包括单壁碳纳米管薄膜,单壁碳纳米管薄膜是交错的碳纳米管组成的网络结构,碳纳米管的表面包覆有同轴的二氧化钛层,二氧化钛层由多个纳米二氧化钛球组成。
2.根据权利要求1所述的一种碳纳米管/二氧化钛复合薄膜,其特征在于:纳米二氧化钛球为锐钛矿型二氧化钛。
3.一种权利要求1或2所述的碳纳米管/二氧化钛复合薄膜的制备方法,其特征在于,包括以下步骤:
(1)采用化学气相沉积制备的自支撑且连续的单壁碳纳米管薄膜,将单壁碳纳米管薄膜平铺在支撑圈上;
(2)将带有单壁碳纳米管薄膜的支撑圈放入钛酸四丁酯与乙醇的混合溶液中静置后捞出,在空气中进行原位水解,再依次用乙醇和去离子水洗涤;
(3)将步骤(2)中洗涤后的单壁碳纳米管薄膜在氩气氛围下煅烧;
(4)将步骤(3)煅烧后的单壁碳纳米管薄膜从支撑圈上取下,获得碳纳米管/二氧化钛复合薄膜。
4.根据权利要求3所述的制备方法,其特征在于:步骤(2)中,钛酸四丁酯与乙醇以体积比1:5混合均匀,获得混合溶液。
5.根据权利要求3所述的制备方法,其特征在于:步骤(3)中,单壁碳纳米管薄膜在管式炉中氩气氛围下500℃煅烧180min。
6.根据权利要求3所述的制备方法,其特征在于:步骤(2)中,静置时间5min,原位水解时间1min。
7.一种权利要求1-6之一所述的碳纳米管/二氧化钛复合薄膜作为室温NO气体传感器的应用。
8.一种权利要求1-6之一所述的碳纳米管/二氧化钛复合薄膜作为柔性可穿戴传感器的应用。
CN202010299624.3A 2020-04-16 2020-04-16 一种碳纳米管/二氧化钛复合薄膜及其制备方法和应用 Active CN111389365B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010299624.3A CN111389365B (zh) 2020-04-16 2020-04-16 一种碳纳米管/二氧化钛复合薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010299624.3A CN111389365B (zh) 2020-04-16 2020-04-16 一种碳纳米管/二氧化钛复合薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111389365A true CN111389365A (zh) 2020-07-10
CN111389365B CN111389365B (zh) 2022-11-25

Family

ID=71417565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010299624.3A Active CN111389365B (zh) 2020-04-16 2020-04-16 一种碳纳米管/二氧化钛复合薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111389365B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114940490A (zh) * 2022-04-08 2022-08-26 合肥工业大学 一种碳纳米管/二氧化钛柔性复合膜的制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021716A1 (fr) * 1999-09-17 2001-03-29 Nihon Parkerizing Co., Ltd. MATERIAU DE REVETEMENT PHOTOCATALYSEUR DESTINE A L'ELIMINATION DE NOx, ET PROCEDE DE FORMATION D'UNE PELLICULE DE REVETEMENT A BASE DE CE MATERIAU
US20080242785A1 (en) * 2007-03-27 2008-10-02 National Tsing Hua University TiO2-coated CNT, TiO2-coated CNT reinforced polymer composite and methods of preparation thereof
CN101654219A (zh) * 2009-09-14 2010-02-24 北京大学 图形化碳纳米管薄膜或阵列的方法
CN101701927A (zh) * 2009-10-14 2010-05-05 苏州纳米技术与纳米仿生研究所 碳纳米管阵列有机污染物传感器及用途
CN101851343A (zh) * 2010-05-19 2010-10-06 湖南大学 一种具有光催化氧化性的复合薄膜及其制备方法
CN101972641A (zh) * 2010-10-13 2011-02-16 中国科学院苏州纳米技术与纳米仿生研究所 大面积氧化钛纳米管薄膜、其制备方法及应用
WO2012052624A1 (en) * 2010-10-21 2012-04-26 Oulun Yliopisto Photocatalytic material
CN103088648A (zh) * 2013-01-25 2013-05-08 中国科学院新疆生态与地理研究所 一种复合纳米结构碳纤维材料的制备方法
US20140158986A1 (en) * 2012-12-10 2014-06-12 The Hong Kong Polytechnic University Highly Conductive Nano-structures incorporated in Semiconductor Nanocomposites
US20160293341A1 (en) * 2012-01-18 2016-10-06 Northwestern University Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same
CN106560230A (zh) * 2016-06-03 2017-04-12 天津城建大学 基于铁氮掺杂二氧化钛的复合催化剂在一氧化氮光催化中的应用
CN107889471A (zh) * 2015-06-12 2018-04-06 朱马国际公司 一种包含TiO2的光催化颗粒及其制备方法
US20180309115A1 (en) * 2017-04-24 2018-10-25 Tsinghua University Method for making lithium-ion battery anodes
CN109621902A (zh) * 2019-01-29 2019-04-16 辽宁大学 碳纳米管与二氧化钛复合材料及其制备方法和在回收镓中的应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021716A1 (fr) * 1999-09-17 2001-03-29 Nihon Parkerizing Co., Ltd. MATERIAU DE REVETEMENT PHOTOCATALYSEUR DESTINE A L'ELIMINATION DE NOx, ET PROCEDE DE FORMATION D'UNE PELLICULE DE REVETEMENT A BASE DE CE MATERIAU
US20080242785A1 (en) * 2007-03-27 2008-10-02 National Tsing Hua University TiO2-coated CNT, TiO2-coated CNT reinforced polymer composite and methods of preparation thereof
CN101654219A (zh) * 2009-09-14 2010-02-24 北京大学 图形化碳纳米管薄膜或阵列的方法
CN101701927A (zh) * 2009-10-14 2010-05-05 苏州纳米技术与纳米仿生研究所 碳纳米管阵列有机污染物传感器及用途
CN101851343A (zh) * 2010-05-19 2010-10-06 湖南大学 一种具有光催化氧化性的复合薄膜及其制备方法
CN101972641A (zh) * 2010-10-13 2011-02-16 中国科学院苏州纳米技术与纳米仿生研究所 大面积氧化钛纳米管薄膜、其制备方法及应用
WO2012052624A1 (en) * 2010-10-21 2012-04-26 Oulun Yliopisto Photocatalytic material
US20160293341A1 (en) * 2012-01-18 2016-10-06 Northwestern University Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same
US20140158986A1 (en) * 2012-12-10 2014-06-12 The Hong Kong Polytechnic University Highly Conductive Nano-structures incorporated in Semiconductor Nanocomposites
CN103088648A (zh) * 2013-01-25 2013-05-08 中国科学院新疆生态与地理研究所 一种复合纳米结构碳纤维材料的制备方法
CN107889471A (zh) * 2015-06-12 2018-04-06 朱马国际公司 一种包含TiO2的光催化颗粒及其制备方法
CN106560230A (zh) * 2016-06-03 2017-04-12 天津城建大学 基于铁氮掺杂二氧化钛的复合催化剂在一氧化氮光催化中的应用
US20180309115A1 (en) * 2017-04-24 2018-10-25 Tsinghua University Method for making lithium-ion battery anodes
CN109621902A (zh) * 2019-01-29 2019-04-16 辽宁大学 碳纳米管与二氧化钛复合材料及其制备方法和在回收镓中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MINGCHU ZOU ET AL: ""Coaxial TiO2–carbon nanotube sponges as compressible anodes for lithium-ion batteries"", 《JOURNAL OF MATERILS CHEMISTRY A》 *
T.UDES ET AL: ""Preparation of single-walled carbon nanotube/TiO2 hybrid atmospheric gas sensor operated at ambient temperature"", 《DIAMOND & RELATED MATERIALS》 *
YEN, CY ET AL: "The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites", 《NANOTECHNOLOGY》 *
张哲 等: ""CNTs/TiO2多孔复合膜的组装及光催化性能"", 《高等学校化学学报》 *
李清文 等: "《高性能纤维技术丛书 碳纳米管线网》", 31 July 2018, 国防工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114940490A (zh) * 2022-04-08 2022-08-26 合肥工业大学 一种碳纳米管/二氧化钛柔性复合膜的制备方法

Also Published As

Publication number Publication date
CN111389365B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
Li et al. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments
Seekaew et al. Ultrahigh selective room-temperature ammonia gas sensor based on tin–titanium dioxide/reduced graphene/carbon nanotube nanocomposites by the solvothermal method
Meng et al. ZnO-reduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing
Dai et al. Hierarchical assembly of α-Fe2O3 nanorods on multiwall carbon nanotubes as a high-performance sensing material for gas sensors
Shi et al. Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity
Choi et al. Synthesis and gas sensing performance of ZnO–SnO2 nanofiber–nanowire stem-branch heterostructure
Lee et al. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p–n heterojunctions by loading reduced graphene oxide nanosheets
Li et al. Electrochemical biosensor based on one-dimensional MgO nanostructures for the simultaneous determination of ascorbic acid, dopamine, and uric acid
Li et al. Enhanced toluene sensing performance of gold-functionalized WO3· H2O nanosheets
Lin et al. Highly stabilized and rapid sensing acetone sensor based on Au nanoparticle-decorated flower-like ZnO microstructures
Fan et al. Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature
Sun et al. Chemiresistive sensor arrays based on noncovalently functionalized multi-walled carbon nanotubes for ozone detection
Kim et al. Electrospun SnO 2 nanofiber mats with thermo-compression step for gas sensing applications
CN104965008A (zh) 一种丙酮气体传感器及其制备方法
Salikhov et al. Nanocomposite thin-film structures based on a polyelectrolyte complex of chitosan and chitosan succinamide with SWCNT
Sun et al. CuO-sensitized amorphous ZnSnO3 hollow-rounded cubes for highly sensitive and selective H2S gas sensors
Zhou et al. Ultrathin Ti/TiO2/BiVO4 nanosheet heterojunction arrays for photoelectrochemical water oxidation
Akhtar et al. Acetone sensing properties of the g–C3N4–CuO nanocomposites prepared by hydrothermal method
Sun et al. Novel in-situ deposited V2O5 nanorods array film sensor with enhanced gas sensing performance to n-butylamine
CN111389365B (zh) 一种碳纳米管/二氧化钛复合薄膜及其制备方法和应用
CN111501206B (zh) 一种碳纳米纤维/CoS2/MoS2复合薄膜及其制备方法和应用
He et al. The development of high-performance room temperature NOX one-dimensional Na0. 23TiO2/TiO2 compound gas sensor
Xue et al. One-dimensional Z-scheme NiO/Bi 2 WO 6 heterostructures for enhancing visible-light photocatalytic activity
Gu et al. Novel ginkgo-like core-shell WO3 for enhanced ppb-level NO2 sensing at room temperature
Wang et al. Three-dimensional CeO2@ carbon-quantum-dots scaffold modified with Au nanoparticles on flexible substrates for high performance gas sensing at room temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant