CN111388669A - 一种供氧纳米平台及其制备方法和应用 - Google Patents
一种供氧纳米平台及其制备方法和应用 Download PDFInfo
- Publication number
- CN111388669A CN111388669A CN202010196184.9A CN202010196184A CN111388669A CN 111388669 A CN111388669 A CN 111388669A CN 202010196184 A CN202010196184 A CN 202010196184A CN 111388669 A CN111388669 A CN 111388669A
- Authority
- CN
- China
- Prior art keywords
- oxygen
- platform
- nano
- oxygen supply
- nano platform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 114
- 239000001301 oxygen Substances 0.000 title claims abstract description 114
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 114
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- RVZRBWKZFJCCIB-UHFFFAOYSA-N perfluorotributylamine Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)N(C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F RVZRBWKZFJCCIB-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000000243 solution Substances 0.000 claims abstract description 19
- 238000004945 emulsification Methods 0.000 claims abstract description 15
- 239000002244 precipitate Substances 0.000 claims abstract description 12
- IRPKBYJYVJOQHQ-UHFFFAOYSA-M (2e)-2-[(2e)-2-[2-chloro-3-[(e)-2-(3,3-dimethyl-1-propylindol-1-ium-2-yl)ethenyl]cyclohex-2-en-1-ylidene]ethylidene]-3,3-dimethyl-1-propylindole;iodide Chemical compound [I-].CC1(C)C2=CC=CC=C2N(CCC)\C1=C\C=C/1C(Cl)=C(\C=C/C=2C(C3=CC=CC=C3[N+]=2CCC)(C)C)CCC\1 IRPKBYJYVJOQHQ-UHFFFAOYSA-M 0.000 claims abstract description 11
- 238000003756 stirring Methods 0.000 claims abstract description 11
- 239000000839 emulsion Substances 0.000 claims abstract description 10
- 239000011259 mixed solution Substances 0.000 claims abstract description 10
- 229920001577 copolymer Polymers 0.000 claims abstract description 9
- 239000011258 core-shell material Substances 0.000 claims abstract description 9
- 239000003960 organic solvent Substances 0.000 claims abstract description 7
- XBBVURRQGJPTHH-UHFFFAOYSA-N 2-hydroxyacetic acid;2-hydroxypropanoic acid Chemical compound OCC(O)=O.CC(O)C(O)=O XBBVURRQGJPTHH-UHFFFAOYSA-N 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000003814 drug Substances 0.000 claims abstract description 5
- 239000003995 emulsifying agent Substances 0.000 claims abstract description 5
- 238000005406 washing Methods 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 11
- 239000006185 dispersion Substances 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 4
- 239000007853 buffer solution Substances 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 2
- 230000001093 anti-cancer Effects 0.000 claims 1
- 239000013049 sediment Substances 0.000 claims 1
- 206010028980 Neoplasm Diseases 0.000 abstract description 39
- 230000000694 effects Effects 0.000 abstract description 27
- 206010021143 Hypoxia Diseases 0.000 abstract description 14
- 238000002474 experimental method Methods 0.000 abstract description 9
- 230000007954 hypoxia Effects 0.000 abstract description 9
- 238000011282 treatment Methods 0.000 abstract description 9
- 230000000259 anti-tumor effect Effects 0.000 abstract description 4
- 238000001727 in vivo Methods 0.000 abstract description 4
- 230000005917 in vivo anti-tumor Effects 0.000 abstract description 3
- 230000009885 systemic effect Effects 0.000 abstract description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 239000003642 reactive oxygen metabolite Substances 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 238000009214 sonodynamic therapy Methods 0.000 description 6
- 102000001554 Hemoglobins Human genes 0.000 description 5
- 108010054147 Hemoglobins Proteins 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000001146 hypoxic effect Effects 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 239000007850 fluorescent dye Substances 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002428 photodynamic therapy Methods 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 4
- 102100032742 Histone-lysine N-methyltransferase SETD2 Human genes 0.000 description 3
- 101000654725 Homo sapiens Histone-lysine N-methyltransferase SETD2 Proteins 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 229940041181 antineoplastic drug Drugs 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010054094 Tumour necrosis Diseases 0.000 description 2
- 238000011319 anticancer therapy Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- MOFVSTNWEDAEEK-UHFFFAOYSA-M indocyanine green Chemical compound [Na+].[O-]S(=O)(=O)CCCCN1C2=CC=C3C=CC=CC3=C2C(C)(C)C1=CC=CC=CC=CC1=[N+](CCCCS([O-])(=O)=O)C2=CC=C(C=CC=C3)C3=C2C1(C)C MOFVSTNWEDAEEK-UHFFFAOYSA-M 0.000 description 2
- 229960004657 indocyanine green Drugs 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 208000004852 Lung Injury Diseases 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 206010029350 Neurotoxicity Diseases 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- 206010069363 Traumatic lung injury Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 206010047139 Vasoconstriction Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000000141 anti-hypoxic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 231100000515 lung injury Toxicity 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 239000002055 nanoplate Substances 0.000 description 1
- 239000002078 nanoshell Substances 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000007135 neurotoxicity Effects 0.000 description 1
- 231100000228 neurotoxicity Toxicity 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 208000037905 systemic hypertension Diseases 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 230000025033 vasoconstriction Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0028—Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
- A61K41/0033—Sonodynamic cancer therapy with sonochemically active agents or sonosensitizers, having their cytotoxic effects enhanced through application of ultrasounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/0019—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
- A61K49/0021—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
- A61K49/0032—Methine dyes, e.g. cyanine dyes
- A61K49/0034—Indocyanine green, i.e. ICG, cardiogreen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/005—Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
- A61K49/0054—Macromolecular compounds, i.e. oligomers, polymers, dendrimers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0063—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
- A61K49/0069—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
- A61K49/0089—Particulate, powder, adsorbate, bead, sphere
- A61K49/0091—Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
- A61K49/0093—Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Nanotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明公开了一种供氧纳米平台,由外壳和内核组成的核壳结构,内核包括携氧载体,外壳中包封有声敏剂IR780碘化物。本发明还公开了该供氧纳米平台的制备方法:(1)将聚(乳酸‑羟基乙酸)共聚物、IR780碘化物、全氟三丁胺溶于有机溶剂中,搅拌均匀得到混合液;(2)在混合液中加入乳化剂溶液,进行超声乳化得到乳化液;(3)将乳化液进行搅拌,离心后取沉淀,并用水洗涤沉淀,所得沉淀即为具有核壳结构的纳米供氧平台。本发明通过实验验证了该供氧纳米平台在体内具有优异的体内抗肿瘤效果,可改善肿瘤缺氧微环境,并具有良好的生物相容性,可将全身性副作用降到最低,有望成为具有前景的抗肿瘤治疗药物。
Description
技术领域
本发明属于生物技术和医药技术领域,涉及一种供氧纳米平台及其制备方法和应用,尤其涉及一种用以声动力作用的供氧纳米平台及其制备方法和应用。
背景技术
癌症是全世界人类死亡的主要原因之一,癌症患者数量正在迅速增加,如何提高癌症治疗率是当今一大难题之一。近年来,光动力疗法(PDT)在癌症治疗中获得了可观的发展势头,用于皮肤癌症、膀胱癌等。PDT的机制是在激光辐照下,声敏剂与周围的氧气反应产生活性氧(ROS),以单态氧为主。活性氧(ROS)可通过诱导氧化损伤引起细胞凋亡或坏死从而发挥消灭肿瘤细胞作用。然而,激光的穿透距离较短限制PDT对深部肿瘤或者体积较大的大肿瘤疗效。
超声作为一种潜在的替代能源吸引了研究人员的越来越多的关注。已经发现,低强度的超声辐射可触发声敏剂以产生用于癌症治疗的ROS,声动力治疗(SDT)可为抗癌治疗的一种新兴选择。声动力治疗相比与PDT可辐射到更远的距离,并且有研究表明超声可通过空化效应增加一些抗癌药物的释放。
实体肿瘤常由于畸形的血管系统和癌细胞的异常增殖而处于缺氧状态,声动力在产生ROS的过程中消耗大量的氧气。因而,缺氧环境会降低声动力抗癌治疗的效率。如何缓解缺氧,目前有以下方法。高压氧(HBO)疗法最先用于中肿瘤缺氧的调节,但是HBO会引起肺损伤和神经毒性,限制了其临床广泛应用。一些研究利用了肿瘤微环境中的内源性过氧化氢,与过氧化氢酶或MnO2纳米颗粒反应生成氧气。但是,肿瘤中可用的H2O2量是有限的,并且Mn2+具有较差的生物相容性。有些学者提出“血液替代方案”,例如基于血红蛋白的氧气载体,其中基于血红蛋白的氧气载体能够在肺中较高的氧气分压(pO2)下加载氧气,并在较低的pO2下释放组织中的氧气。但是循环中的游离Hb会迅速还原成另一种状态,并释放有毒的游离血红素,从而引起肾小管损害甚至肾衰竭,血管收缩和全身性高血压。基于血红蛋白的“血液替代方案”引起的强烈副作用进一步限制了其临床应用。
发明内容
本发明所要解决的技术问题是:开发一种供氧纳米平台,可改善肿瘤缺氧,同时在超声辐照下,增强声动力作用,以期达到较好的综合效果应用于抗肿瘤药物中。
为解决上述技术问题,本发明的技术方案是,提供一种供氧纳米平台,该供氧纳米平台为外壳和内核组成的核壳结构,内核包括携氧载体,外壳中含有声敏剂,所述声敏剂为IR780碘化物。R780碘化物是一种新型的亲脂性阳离子近红外荧光染料,在激光照射下,可发生光热作用和光动力作用。IR780在超声辐照下,产生大量的活性氧,称为声动力作用。IR780具有较高的摩尔消光系数,可用于荧光成像。IR780与FDA批准的水溶性试剂吲哚箐绿(ICG)相比,IR780具有更高的光稳定性和更高的荧光强度。因此,本发明选择IR780是作为声敏剂,结合其多种特点,实现诊断和治疗一体化。
优选地,所述携氧载体为全氟三丁胺。传统的携氧载体是基于血红蛋白的携氧载体,血红蛋白是以共价的方式结合氧气,注射入体内存在快速消除、氧气高亲和力的优势,但是因具有严重的心脑血管副作用而停止了临床应用。而本发明采用全氟三丁胺为携氧载体,全氟三丁胺常温呈为液态,物理特性中氧气溶解度高;全氟三丁胺还具有一定的血小板活性抑制作用,注射入体内后,可增加肿瘤血管中红细胞的聚集,提高周围氧气的释放。
优选地,所述外壳为聚(乳酸-羟基乙酸)共聚物。
优选地,所述聚(乳酸-羟基乙酸)共聚物由摩尔比为50︰50的乳酸和羟基乙酸单体聚合得到。
优选地,所述声敏剂的质量与携氧载体的体积比为1:0.1-0.2,比值单位为mg/mL;所述声敏剂和聚(乳酸-羟基乙酸)共聚物的质量比为1:25-30。
优选地,所述供氧纳米平台的粒径为300-350nm。本发明的供氧纳米平台是一个纳米级别大小,可部分躲过巨噬细胞的吞噬,并通过肿瘤的EPR效应(高通透和滞留效应),靶向聚集在肿瘤周围。
作为一个发明构思,本发明还提供一种供氧纳米平台的制备方法,包括以下步骤:
(1)将聚(乳酸-羟基乙酸)共聚物、IR780碘化物、全氟三丁胺溶于有机溶剂中,搅拌均匀得到混合液;
(2)在步骤(1)后得到的混合液中加入乳化剂溶液,进行超声乳化得到乳化液;
(3)将步骤(2)后得到的乳化液进行搅拌,离心后取沉淀,并用水洗涤沉淀,所得沉淀即为具有核壳结构的纳米供氧平台。
优选地,所述步骤(1)中,在1体积份(以mL计)有机溶剂中溶解有25-30质量份(以mg计)聚(乳酸-羟基乙酸)共聚物、1质量份(以mg计)IR780碘化物、0.1-0.2体积份(以mL计)全氟三丁胺。
优选地,所述步骤(2)中,乳化剂溶液为聚乙烯醇溶液,质量浓度为3-5%,聚乙烯醇溶液与有机溶剂的体积之比为5-10︰1;超声乳化的功率为100-120W,超声乳化的时间为100-150秒。
优选地,所述步骤(3)中,搅拌的时间为2-3h,离心速度为8000-12000rpm。
作为同一个发明构思,本发明还提供上述供氧纳米平台分散液的制备方法,将上述的制备方法获得的沉淀(即供氧纳米平台)用PBS缓冲液重悬后,灌氧后密封,即得供氧纳米平台分散液。
作为同一个发明构思,本发明还提供上述的供氧纳米平台,或上述制备方法所得的供氧纳米平台及其分散液在制备声动力抗癌药物中的应用。
我们设计开发一种供氧纳米平台用以增强声动力。用聚(乳酸-羟基乙酸)共聚物(PLGA)作为该纳米粒的外壳,将具有携氧作用的全氟三丁胺(PFTBA)作为内核,并通过化学方法载入声敏剂(IR780碘化物),IR780碘化物包封在PLGA壁上。其中,声敏剂IR780碘化物是一种新型的亲脂性阳离子近红外荧光染料,具有较高的单态氧产率。全氟三丁胺为声敏剂提供了充足的氧气,提高肿瘤微环境中氧气的含量,产生更多的单线态氧来诱导细胞凋亡。此外,超声具有的空化效应可进一步增加药物的释放。
全氟三丁胺是一种具有高氧气溶解度的和性质稳定的化学合成惰性材料。全氟三丁胺吸收氧气的能力与外界氧气浓度成线性关系,随着吸入氧气(FiO2)比例的增加,全氟三丁胺可以装载更多的氧气,并通过氧气梯度迅速扩散到组织中。除此之外,全氟三丁胺还具有血小板抑制作用,可增强红细胞在肿瘤部位的渗透,从而进一步增强肿瘤周围氧气浓度。基于PFTBA出色的携氧能力和较高的生物安全性,采用PFTBA作为氧气输送载体(即携氧载体)。
聚(乳酸-羟基乙酸)共聚物是一种具有优异的生物相容性的聚合物,且负载能力强,可作为治疗剂中的纳米载体首选,由于其核壳结构,可以通过共封装各种疏水或亲水材料、将不同的传统单一模式疗法整合后来提高癌症治疗效率。
与现有技术相比,本发明的优点在于:
(1)本发明利用单乳化法,在PLGA纳米粒中封装PFTBA,并将IR780装载在PLGA纳米球壳中,在该纳米平台中,PFTBA作为氧气输送系统可显著提高氧气浓度,使得声敏剂TR780在超声辐照下产生更多的单态氧,从而增强SDT的功效。
(2)本发明通过实验验证了该供氧纳米平台在体内具有优异的体内抗肿瘤效果,可改善肿瘤缺氧微环境,并具有良好的生物相容性,可将全身性副作用降到最低,有望成为具有前景的抗肿瘤治疗药物。
(3)本发明的制备方法采用的是简单的单乳法,所采用的材料都是易获取的,并有助于大型的生产纳米级别的供氧平台。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1中供氧纳米平台的结构图;
图2为实施例1中供氧纳米平台的透射电镜图;
图3为实施例1中供氧纳米平台的粒径分布图;
图4为实施例1中供氧纳米平台的电位图;
图5为实施例1中供氧纳米平台的紫外吸收光谱图;
图6为实施例1中供氧纳米平台稳定性检测图;
图7为实施例1中供氧纳米平台和脱气水的氧负荷能力图;
图8为实施例1中供氧纳米平台在超声辐照下单态氧产生图;
图9为实施例1中供氧纳米平台在超声辐照下相对单态氧生成图;
图10为实施例1中供氧纳米平台的肿瘤位置缓解缺氧图;
图11为实施例1中供氧纳米平台的声动力抗肿瘤效果图;
图12为实施例1中供氧纳米平台处理后,肿瘤HE病理结果图;
图13为实施例2中供氧纳米平台的粒径分布图。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本文发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:
一种本发明的供氧纳米平台的制备方法,步骤如下:
(1)将25mg乳酸-羟基乙酸共聚物(山东岱罡生物科技有限公司)溶于1mL二氯甲烷中,再加入1mg IR780和100ul PFTBA搅拌至完全溶解,得到混合液;
(2)在步骤(1)后得到的混合液中加入8mL 4%聚乙烯醇溶液,进行超声乳化得到乳化液,超声乳化的功率为110W,超声乳化的时间为120s;
(3)在步骤(2)后得到的乳化液进行磁力搅拌2-3h,以10000rpm的离心速度离心漂洗3次,所得沉淀即为具有核壳结构的纳米供氧平台。
将制备所得的纳米供氧平台重悬于1×PBS缓冲液,利用医用氧气瓶灌氧5分钟,流速为1L/min,得到供氧纳米平台分散液,然后密封保存。
本实施例得到的供氧纳米平台的结构示意如图1所示,透射电镜图如图2所示。由图可知,本实施例的供氧纳米平台,为一个核壳结构,外壳为羟基端乳酸-羟基乙酸共聚物共聚物,外壳中负载着IR780,内核为全氟三丁胺,形成羟基端乳酸-羟基乙酸共聚物纳米粒。
本实施例得到的供氧纳米平台的粒径分布如图3所示,结合图3可知该供氧纳米平台的粒径为320nm左右。
本实施例得到的供氧纳米平台的电位分布如图4所示,由图可知该供氧纳米平台的电位是-2.0mV。
本实施例得到的供氧纳米平台的紫外吸收光谱如图5所示,根据吸收光谱,PLGA/PFTBA纳米粒在400-900nm范围内没有吸收强度,游离的IR780溶液在780-795nm处有吸收峰;供氧纳米平台的光谱在780-790nm处显示吸收峰,表明IR780成功包裹在供氧纳米平台中。
实验一:评价供氧纳米平台的稳定性
将所制备的供氧纳米平台分别重悬于PBS和血清中,放置于4℃冰箱,连续7天测量其粒径,结果如图6所示,供氧纳米平台重悬于PBS中,平均流体动力学直径在一周内从323nm增加到340nm,相比之下,供氧纳米平台重悬于含10%胎牛血清的磷酸缓盐冲溶液中(FBS)的流体动力学直径略有变化,增加了约10nm,该结果表明供氧纳米平台十分稳定,可以在体内进行研究。
实验二:评价供氧纳米平台运输氧气能力
为了测量供氧纳米平台的氧负荷能力,使用便携式溶解氧测量仪(AMT08,美国),将10mL供氧纳米平台分散液以及对照组脱气水分别加入25mL的瓶中,然后将瓶用橡皮塞封闭,将氧电极探针插入溶液中,实时测量溶液中的氧气浓度,所得成像如图7所示,在4分钟内,供氧纳米平台维持了高浓度的氧气,为18mg/mL,并且缓慢释放,为周围的低氧环境提供更多的氧气。相比之下,脱气水在相同的步骤后,氧气浓度只达到14mg/mL,并且在4分钟内很快释放。因此,本实施例的供氧纳米平台可作为一个有效的氧气输送载体。
实验三:本实施例的供氧纳米平台可作声敏剂,具体步骤如下:
将1μL的单线态氧绿色荧光探针(SOSG)(5μM)与100μL的供氧纳米平台(10mg/mL)分散液混合。然后,通过超声以1.0W/cm2的功率辐照。每隔30s使用多功能酶标仪测量SOSG荧光强度,所得成像如图8所示,随着时间的延长,SOSG的荧光强度急剧增加。证明该供氧纳米平台随着超声辐照时间的延长,所产生的单态氧也随之增加。说明本实施例的供氧纳米平台可作为声敏剂。
实验四:本实施例的供氧纳米平台可增强声动力效应
使用SOSG作为荧光探针测量单态氧的产生。按照本实施例相同的实施步骤,制得不含PFTBA的PLGA/IR780纳米溶液(制备方法同供氧纳米平台步骤一致,只是不含相应的物质),用以接下来的实验。取以上各组100μL添加到1mL含有SOSG的PBS中。超声时间(1MHz,1W/cm2)分别为0s,30s,60s,90s,120s,150s。探测SOSG的荧光值。并根据以下公式计算单态氧的相对生产效率=F/F0,F:US照射下三组的荧光强度,F0:US照射前三组的荧光强度,所得结果如图9所示。对于在超声辐射下的PLGA/IR780纳米溶液(不含PFTBA),SOSG的荧光强度增加了320%。对于在相同条件下供氧纳米平台,SOSG的荧光强度增加了高达400%。因此,产生了更多的单态氧,这可以归因于SDT作用中PFTBA提供的额外氧气,供氧纳米平台中PFTBA出色的载氧能力赋予了SDT更高的效率。
实验五:本实施例的供氧纳米平台改善肿瘤缺氧效果图
缺氧诱导因子(HIF)是在缺氧肿瘤微环境中表达的转录因子。为了验证供氧纳米平台在体内的抗缺氧功效,采用HIF-1α探针评估不同治疗后肿瘤组织的缺氧状态。BALB/c小鼠(5周,雌性)通过向右方皮下注射4T1细胞(2×106)建立荷瘤乳腺癌小鼠,当肿瘤体积达到100mm3时,随机分成三组,分别瘤内注射相应体积的供氧纳米平台分散液和PLGA/IR780纳米溶液以及PBS,24小时之后,取出瘤块组织,用抗Hif-1ɑ抗体进行免疫组织化学染色,Hif-1ɑ为缺氧诱导因子,所得结果如图10所示。DAPI将细胞核染成蓝色,而HIF-1α探针将缺氧细胞染成绿色。用PBS和PLGA/IR780纳米溶液处理的肿瘤组织显示出强绿色荧光和HIF-1α的高表达,这表明低氧性肿瘤状况。相比之下,对于用供氧纳米平台治疗的组,观察到与HIF-1α表达相对应的弱得多和更少的绿色免疫荧光,表明供氧纳米平台明显改善了肿瘤的缺氧。经供氧纳米平台处理后,缺氧诱导因子荧光强度明显降低,由此可知,肿瘤缺氧环境得到改善。
实验六:本实施例的供氧纳米平台在体内抗肿瘤效果,具体步骤如下:
BALB/c荷瘤鼠:雌性BALB/c小鼠(20g,5周龄),将4T1细胞(1×106)皮下注射到小鼠的右边腿部上方以建立乳腺癌模型。1周后,肿瘤体积达到约100mm3。
荷瘤小鼠分为4组:(1)盐水,(2)超声照射,(3)PLGA/IR780+超声,(4)供氧纳米平台+超声。取本实施例得到的供氧纳米平台瘤内注射相应体积后,进行超声辐照(1MHZ,2W/cm2)5分钟,隔天治疗一次,并记录肿瘤体积。所得结果如图11所示,可以发现14天后,对照组的肿瘤体积增加了9.0倍,超声组的肿瘤体积增加了8.5倍,表明单独超声辐射没有明显的抗肿瘤作用。PLGA/IR780+超声组的肿瘤体积抑制率为4.1倍,这表明声动力作用抑制癌症生长。供氧纳米平台+超声组治疗后的肿瘤体积为原先的3倍。说明经供氧纳米平台治疗后,抑制肿瘤生长比不含PFTBA的PLGA/IR780效果更为明显。正是供氧纳米平台提供的额外氧气,增强其声动力作用,从而提高声动力抑癌效果。各组处理后相应的病理结果如图12所示,PLGA/IR780+超声和供氧纳米平台+超声组中,均出现肿瘤坏死和凋亡现象,其中,供氧纳米平台+超声凋亡更为明显。经单独超声治疗和生理盐水治疗组,未出现肿瘤细胞坏死情况。说明供氧纳米平台在超声的辐照下,由于PFTBA携带的氧气,具有增强的声动力作用,从而发挥着出色的抗癌效果。
实施例2:
一种本发明的供氧纳米平台,其制备方法,包括如下步骤:
(1)将25mg聚(乳酸-羟基乙酸)共聚物溶于1mL二氯甲烷中,再加入1mg IR780和100ul PFTBA搅拌至完全溶解,得到混合液。
(2)在所述步骤(1)后得到的混合液中加入8mL 5%聚乙烯醇溶液,进行超声乳化得到乳化液超声乳化的功率为100W,超声乳化的时间为90s。
(3)在所述步骤(2)后得到的乳化液进行磁力搅拌2-3h,以10000rpm离心漂洗3次。
(4)将所述步骤(3)后的沉淀重悬于1×PBS,重悬后利用医用氧气瓶灌氧5分钟,流速为1L/min,然后密封保存。
本实施例得到的供氧纳米平台的粒径分布如图13所示,该供氧纳米平台的粒径为395nm左右。
Claims (10)
1.一种供氧纳米平台,其特征在于,该供氧纳米平台为由外壳和内核组成的核壳结构,内核包括携氧载体,外壳中含有声敏剂,所述声敏剂为IR780碘化物。
2.根据权利要求1所述的供氧纳米平台,其特征在于,所述携氧载体为全氟三丁胺;所述外壳为聚(乳酸-羟基乙酸)共聚物。
3.根据权利要求2所述的供氧纳米平台,其特征在于,所述声敏剂的质量与所述携氧载体的体积比为1:0.1-0.2,比值单位为mg/mL;所述声敏剂和聚(乳酸-羟基乙酸)共聚物的质量比为1:25-30。
4.根据权利要求1所述的供氧纳米平台,其特征在于,该供氧纳米平台的粒径为300-350nm。
5.一种供氧纳米平台的制备方法,其特征在于,包括以下步骤:
(1)将聚(乳酸-羟基乙酸)共聚物、IR780碘化物、全氟三丁胺溶于有机溶剂中,搅拌均匀得到混合液;
(2)在步骤(1)后得到的混合液中加入乳化剂溶液,进行超声乳化得到乳化液;
(3)将步骤(2)后得到的乳化液进行搅拌,离心后取沉淀,并用水洗涤沉淀,所得沉淀即为具有核壳结构的纳米供氧平台。
6.根据权利要求5所述的制备方法,其特征在于,步骤(1)中,1体积份有机溶剂中溶解25-30质量份聚(乳酸-羟基乙酸)共聚物、1质量份IR780碘化物、0.1-0.2体积份全氟三丁胺,其中,体积份以mL计时,质量份以mg计。
7.根据权利要求5所述的制备方法,其特征在于,步骤(2)中,乳化剂溶液为聚乙烯醇溶液,质量浓度为3-5%,聚乙烯醇溶液与有机溶剂的体积之比为5-10︰1;超声乳化的功率为100-120W,超声乳化的时间为100-150秒。
8.根据权利要求5所述的制备方法,其特征在于,步骤(3)中,搅拌的时间为2-3h,离心速度为8000-12000rpm。
9.一种供氧纳米平台分散液的制备方法,其特征在于,将权利要求5-8任一项所述的制备方法获得的沉淀用PBS缓冲液重悬后,灌氧后密封,即得供氧纳米平台分散液。
10.一种由权利要求1-4任一项所述的供氧纳米平台、权利要求5-8任一项制备方法所得的供氧纳米平台或权利要求9所述的制备方法所得的供氧纳米平台的分散液在制备声动力抗癌药物中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010196184.9A CN111388669A (zh) | 2020-03-19 | 2020-03-19 | 一种供氧纳米平台及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010196184.9A CN111388669A (zh) | 2020-03-19 | 2020-03-19 | 一种供氧纳米平台及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111388669A true CN111388669A (zh) | 2020-07-10 |
Family
ID=71410942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010196184.9A Pending CN111388669A (zh) | 2020-03-19 | 2020-03-19 | 一种供氧纳米平台及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111388669A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115068608A (zh) * | 2022-06-22 | 2022-09-20 | 福州大学 | 酞菁-青蒿琥酯携氧脂质体复合物及在声动力中的应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180126011A1 (en) * | 2015-05-19 | 2018-05-10 | Universite D'avignon Et Des Pays Du Vaucluse | Dendri-tac and their use as theranostics |
CN110354273A (zh) * | 2019-07-15 | 2019-10-22 | 西安交通大学 | Ros响应型纳米颗粒及其在声动力介导的肿瘤精准治疗中的应用 |
-
2020
- 2020-03-19 CN CN202010196184.9A patent/CN111388669A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180126011A1 (en) * | 2015-05-19 | 2018-05-10 | Universite D'avignon Et Des Pays Du Vaucluse | Dendri-tac and their use as theranostics |
CN110354273A (zh) * | 2019-07-15 | 2019-10-22 | 西安交通大学 | Ros响应型纳米颗粒及其在声动力介导的肿瘤精准治疗中的应用 |
Non-Patent Citations (5)
Title |
---|
BIYING HUANG ET AL: "Oxygen-Sufficient Nanoplatform for Chemo-Sonodynamic Therapy of Hypoxic Tumors", 《FRONTIERS IN CHEMISTRY》 * |
HAO REN ET AL: "Relighting Photosensitizers by Synergistic Integration of Albumin and Perfluorocarbon for Enhanced Photodynamic Therapy", 《ACS APPL. MATER. INTERFACES》 * |
JIE CHEN ET AL: "Oxygen-Self-Produced Nanoplatform for Relieving Hypoxia and Breaking Resistance to Sonodynamic Treatment of Pancreatic Cancer", 《ACS NANO》 * |
JINGYI LI ET AL: "Near-infrared-induced IR780-loaded PLGA nanoparticles for photothermal therapy to treat breast cancer metastasis in bones", 《RSC ADV.》 * |
NIANNIAN LI ET AL: "Perfluorocarbon Nanocapsules Improve Hypoxic Microenvironment for the Tumor Ultrasound Diagnosis and Photodynamic Therapy", 《JOURNAL OF BIOMEDICAL NANOTECHNOLOGY》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115068608A (zh) * | 2022-06-22 | 2022-09-20 | 福州大学 | 酞菁-青蒿琥酯携氧脂质体复合物及在声动力中的应用 |
CN115068608B (zh) * | 2022-06-22 | 2023-07-28 | 福州大学 | 酞菁-青蒿琥酯携氧脂质体复合物及在声动力中的应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wei et al. | Oxygen self-sufficient photodynamic therapy | |
An et al. | A pH/Ultrasound dual-response biomimetic nanoplatform for nitric oxide gas-sonodynamic combined therapy and repeated ultrasound for relieving hypoxia | |
Sneider et al. | Remotely triggered nano-theranostics for cancer applications | |
Ayala-Orozco et al. | Sub-100 nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors | |
Liu et al. | Functional nanomaterials for near-infrared-triggered cancer therapy | |
Wang et al. | Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery | |
Hu et al. | Oxygen-generating hybrid polymeric nanoparticles with encapsulated doxorubicin and chlorin e6 for trimodal imaging-guided combined chemo-photodynamic therapy | |
Qian et al. | Insights into the unique functionality of inorganic micro/nanoparticles for versatile ultrasound theranostics | |
Serpe et al. | Nanosonotechnology: the next challenge in cancer sonodynamic therapy | |
Zhao et al. | Advanced nanotechnology for hypoxia-associated antitumor therapy | |
Jin et al. | Drug delivery system based on nanobubbles | |
Han et al. | pH/NIR-responsive nanocarriers based on mesoporous polydopamine encapsulated gold nanorods for drug delivery and thermo-chemotherapy | |
Zhang et al. | Nanobiotechnology‐enabled energy utilization elevation for augmenting minimally‐invasive and noninvasive oncology thermal ablation | |
You et al. | Reactive oxygen species mediated theranostics using a Fenton reaction activable lipo-polymersome | |
Chen et al. | Injectable hydrogel for NIR-II photo-thermal tumor therapy and dihydroartemisinin-mediated chemodynamic therapy | |
CN111529510A (zh) | 一种纳米粒子作为肿瘤微环境响应性药物或者成像剂的应用 | |
Gao et al. | AuNRs@ MIL-101-based stimuli-responsive nanoplatform with supramolecular gates for image-guided chemo-photothermal therapy | |
Xu et al. | Multifunctional MoS2 nanosheets with Au NPs grown in situ for synergistic chemo-photothermal therapy | |
CN108379600A (zh) | 一种载氧液态氟碳的多功能造影剂及其制备方法 | |
CN113633769B (zh) | 一种载脂多糖复合纳米粒的制备方法及其应用 | |
CN111729093B (zh) | 一种造影剂成膜剂组合物、造影剂成膜脂液、造影剂及其制备方法 | |
Shi et al. | Insights into stimuli-responsive diselenide bonds utilized in drug delivery systems for cancer therapy | |
Li et al. | Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: A review | |
Wang et al. | Flexible CuS-embedded human serum albumin hollow nanocapsules with peroxidase-like activity for synergistic sonodynamic and photothermal cancer therapy | |
Hu et al. | Multifunctional biomaterials that modulate oxygen levels in the tumor microenvironment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200710 |