CN111384730A - 一种风机虚拟惯量控制参数的确定方法 - Google Patents

一种风机虚拟惯量控制参数的确定方法 Download PDF

Info

Publication number
CN111384730A
CN111384730A CN202010227313.6A CN202010227313A CN111384730A CN 111384730 A CN111384730 A CN 111384730A CN 202010227313 A CN202010227313 A CN 202010227313A CN 111384730 A CN111384730 A CN 111384730A
Authority
CN
China
Prior art keywords
virtual inertia
fan
determining
wind turbine
inertia control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010227313.6A
Other languages
English (en)
Other versions
CN111384730B (zh
Inventor
刘知凡
薛万磊
赵龙
安鹏
赵昕
徐楠
杨雍琦
李晨辉
于佰建
王艳
郑志杰
岳彩阳
侯庆旭
李校莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Zhiyuan Electric Power Design Consulting Co ltd
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd
Original Assignee
Shandong Zhiyuan Electric Power Design Consulting Co ltd
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Zhiyuan Electric Power Design Consulting Co ltd, State Grid Corp of China SGCC, Economic and Technological Research Institute of State Grid Shandong Electric Power Co Ltd filed Critical Shandong Zhiyuan Electric Power Design Consulting Co ltd
Priority to CN202010227313.6A priority Critical patent/CN111384730B/zh
Publication of CN111384730A publication Critical patent/CN111384730A/zh
Application granted granted Critical
Publication of CN111384730B publication Critical patent/CN111384730B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

本发明实施例公开了一种风机虚拟惯量控制参数的确定方法,包括基于虚拟惯量控制结束后,系统能够运行于平衡点的考虑,构建虚拟惯量参数的平衡约束;根据系统的状态方程构建非线性规划,确定所述虚拟惯量参数的最优解。本发明针对虚拟惯量控制参数缺乏依据的缺点,提出了一种新的参数确定方法。推导关于虚拟惯量参数Kp、Kd的平衡约束,确保在虚拟惯量控制结束后,系统能够运行于平衡点;根据系统的状态方程构建非线性规划问题,确定Kp、Kd的最优值,在确保风机稳定运行的同时,实现调频效果的最优化。

Description

一种风机虚拟惯量控制参数的确定方法
技术领域
本发明涉及机组调频技术领域,具体地说是一种风机虚拟惯量控制参数的确定方法。
背景技术
风机通过换流装置接入电力系统,因此其输出功率与系统频率解耦,不能响应系统的频率变化。如今风电接入电力系统规模的日益扩大,给系统频率稳定性带来挑战。虚拟惯量控制通过模拟同步机组的特性,使风机的输出功率随系统频率的变化而变化,从而改善系统频率特性。
目前,虚拟惯量控制的参数主要依据经验或仿真结果确定,缺乏理论依据,风机有可能在虚拟惯量控制的过程中达到转速下限,退出虚拟惯量控制,引起频率二次跌落,难以保证风机运行的稳定性和频率调整效果;且依赖仿真结果的方法运算量较大,当系统参数改变时需要重新进行大量计算。
发明内容
本发明实施例中提供了一种风机虚拟惯量控制参数的确定方法,以解决现有技术中依赖经验或仿真结果确定的虚拟惯量控制参数难以保证风机运行稳定性和频率调整效果的问题。
为了解决上述技术问题,本发明实施例公开了如下技术方案:
本发明提供了一种风机虚拟惯量控制参数的确定方法,所述方法包括以下步骤:
基于虚拟惯量控制结束后,系统能够运行于平衡点的考虑,构建虚拟惯量参数的平衡约束;
根据系统的状态方程构建非线性规划,确定所述虚拟惯量参数的最优解。
进一步地,所述构建虚拟惯量参数的平衡约束的具体过程为:
采用虚拟惯量控制时的风机模型以及系统的频率响应模型,确定系统的状态方程;
在系统达到平衡时,各状态变量对时间导数为零,得到关于风机转速的二次多项式;
在满足虚拟惯量控制过程中达到平衡点,所述二次多项式至少一个根大于风机运行转速下限的条件下,得到虚拟惯量参数满足的平衡约束。
进一步地,所述风机模型为:
Figure BDA0002428151240000021
(1)式中,Cp(λ,β)由下式确定:
Figure BDA0002428151240000022
其中,Pew为风机输出的电磁功率;Kp、Kd为虚拟惯量控制的参数;Δf为系统频率偏差量;k为风机最大功率跟踪曲线的系数;ω为风机转速;Pmw为风机捕获的机械功率;ρ为空气密度;A为风力机扫过的面积;Cp为风机的风能转换系数;λ为叶尖速比;λi为中间变量;r为风力机叶片半径;β为桨距角,Vw为风速;Hw为风机的惯性时间常数。
进一步地,所述系统的频率响应模型为:
Figure BDA0002428151240000031
(3)式中,R为同步机调节器调差系数;ΔPms为同步机机械功率的偏差量;Km为与发电机功率因数和备用系数相关的系数;FH为原动机高压缸做功比例;TR为原动机再热时间常数;ΔPes为同步机电磁功率的偏差量;PL为负荷功率在初始时刻的变化量,由扰动初始时刻的频率变化率计算得出;Hs为同步机的惯性时间常数。
进一步地,所述系统状态方程为:
Figure BDA0002428151240000032
所述在系统达到平衡时,各状态变量对时间导数为零,则有:
Figure BDA0002428151240000033
对ω在扰动前的运行点ω=ω0处进行二阶近似,得到关于ω的二次多项式:
2+Nω+Q=0 (7)
(7)式中,
Figure BDA0002428151240000041
Figure BDA0002428151240000042
Figure BDA0002428151240000043
Figure BDA0002428151240000044
进一步地,所述虚拟惯量参数满足的平衡约束为:
Figure BDA0002428151240000045
Figure BDA0002428151240000046
进一步地,所述系统的状态方程为:
Figure BDA0002428151240000047
对(9)式在扰动前的系统运行点处进行线性化,得到:
Figure BDA0002428151240000048
以及频率最低点出现的时间:
Figure BDA0002428151240000049
频率最低点的表达式:
Figure BDA00024281512400000410
欲使虚拟惯量控制达到最佳调频效果,Kp、Kd应使Δfmin最小,考虑式(8)中的平衡约束,则可构建以下非线性规划问题:
Figure BDA0002428151240000051
利用内点法求解所述非线性规划问题,得到Kp、Kd的最优解Kp *、Kd *,即为最终确定的虚拟惯量参数值。
发明内容中提供的效果仅仅是实施例的效果,而不是发明所有的全部效果,上述技术方案中的一个技术方案具有如下优点或有益效果:
本发明针对虚拟惯量控制参数缺乏依据的缺点,提出了一种新的参数确定方法。推导关于虚拟惯量参数Kp、Kd的平衡约束,确保在虚拟惯量控制结束后,系统能够运行于平衡点;根据系统的状态方程构建非线性规划问题,确定Kp、Kd的最优值,在确保风机稳定运行的同时,实现调频效果的最优化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明所述方法的流程示意图。
具体实施方式
为能清楚说明本方案的技术特点,下面通过具体实施方式,并结合其附图,对本发明进行详细阐述。下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。应当注意,在附图中所图示的部件不一定按比例绘制。本发明省略了对公知组件和处理技术及工艺的描述以避免不必要地限制本发明。
如图1所示,本发明一种风机虚拟惯量控制参数的确定方法,方法包括以下步骤:
S1,基于虚拟惯量控制结束后,系统能够运行于平衡点的考虑,构建虚拟惯量参数的平衡约束;
S2,根据系统的状态方程构建非线性规划,确定所述虚拟惯量参数的最优解。
步骤S1中,构建虚拟惯量参数的平衡约束的具体过程为:
采用虚拟惯量控制时的风机模型以及系统的频率响应模型,确定系统的状态方程;
在系统达到平衡时,各状态变量对时间导数为零,得到关于风机转速的二次多项式;
在满足虚拟惯量控制过程中达到平衡点,所述二次多项式至少一个根大于风机运行转速下限的条件下,得到虚拟惯量参数满足的平衡约束。
为了保证在虚拟惯量的控制过程中,风机转速能够自行达到平衡状态且不低于转速下限,以避免退出虚拟惯量控制引起的频率二次跌落,需要对Kp、Kd做出约束。本步骤推导出了关于Kp、Kd的平衡约束。
采用虚拟惯量控制时,所述风机模型为:
Figure BDA0002428151240000071
(1)式中,Cp(λ,β)由下式确定:
Figure BDA0002428151240000072
其中,Pew为风机输出的电磁功率;Kp、Kd为虚拟惯量控制的参数;Δf为系统频率偏差量;k为风机最大功率跟踪曲线的系数;ω为风机转速;Pmw为风机捕获的机械功率;ρ为空气密度;A为风力机扫过的面积;Cp为风机的风能转换系数;λ为叶尖速比;λi为中间变量;r为风力机叶片半径;β为桨距角,Vw为风速;Hw为风机的惯性时间常数。
系统的频率响应模型为:
Figure BDA0002428151240000073
(3)式中,R为同步机调节器调差系数;ΔPms为同步机机械功率的偏差量;Km为与发电机功率因数和备用系数相关的系数;FH为原动机高压缸做功比例;TR为原动机再热时间常数;ΔPes为同步机电磁功率的偏差量;PL为负荷功率在初始时刻的变化量,由扰动初始时刻的频率变化率计算得出;Hs为同步机的惯性时间常数。当系统中有多台同步发电机时,上述参数是多台机的等效参数。
将(1)(2)两式联立并整理,得到系统状态方程为:
Figure BDA0002428151240000081
在系统达到平衡时,各状态变量对时间导数为零,则有:
Figure BDA0002428151240000082
为简化计算,对ω在扰动前的运行点ω=ω0处进行二阶近似,
Figure BDA0002428151240000083
对(6)式进行整理,得到关于ω的二次多项式:
2+Nω+Q=0 (7)
(7)式中,
Figure BDA0002428151240000084
Figure BDA0002428151240000085
Figure BDA0002428151240000086
Figure BDA0002428151240000091
欲使风机在虚拟惯量控制的过程中能够达到平衡点,则方程(7)必须是可解的,且至少有一个根大于风机运行的转速下限0.7,得到虚拟惯量参数满足的平衡约束为:
Figure BDA0002428151240000092
Figure BDA0002428151240000093
确保风机在虚拟惯量控制结束时运行在平衡点。通过化简系统平衡点的表达式,推导出平衡约束,能够有效防止风机转速失去平衡。
步骤S2中,对系统频率最低点进行优化。通过将系统的状态方程线性化,将虚拟惯量控制的参数优化问题转化为非线性规划问题,优化频率极小值,实现最优的调频效果。
关于Kp、Kd的平衡约束保证了风电机组的稳定运行,除此之外,Kp、Kd还应使系统频率响应尽可能地优化。本步骤通过构建非线性优化模型,实现了对频率极值点的优化。系统的状态方程为:
Figure BDA0002428151240000094
对(9)式在扰动前的系统运行点处进行线性化,得到:
Figure BDA0002428151240000101
求解以上(10)微分方程组,可得:
Figure BDA0002428151240000102
以及频率最低点出现的时间:
Figure BDA0002428151240000103
频率最低点的表达式:
Figure BDA0002428151240000104
欲使虚拟惯量控制达到最佳调频效果,Kp、Kd应使Δfmin最小,考虑式(8)中的平衡约束,则可构建以下非线性规划问题:
Figure BDA0002428151240000105
联立(12)(13)两式,则(14)式可整理为:
Figure BDA0002428151240000111
利用内点求解非线性规划问题(15),得到Kp、Kd的最优解Kp *、Kd *,即为最终确定的虚拟惯量参数值。
以上所述只是本发明的优选实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也被视为本发明的保护范围。

Claims (7)

1.一种风机虚拟惯量控制参数的确定方法,其特征是,所述方法包括以下步骤:
基于虚拟惯量控制结束后,系统能够运行于平衡点的考虑,构建虚拟惯量参数的平衡约束;
根据系统的状态方程构建非线性规划,确定所述虚拟惯量参数的最优解。
2.根据权利要求1所述的风机虚拟惯量控制参数的确定方法,其特征是,所述构建虚拟惯量参数的平衡约束的具体过程为:
采用虚拟惯量控制时的风机模型以及系统的频率响应模型,确定系统的状态方程;
在系统达到平衡时,各状态变量对时间导数为零,得到关于风机转速的二次多项式;
在满足虚拟惯量控制过程中达到平衡点,所述二次多项式至少一个根大于风机运行转速下限的条件下,得到虚拟惯量参数满足的平衡约束。
3.根据权利要求2所述的风机虚拟惯量控制参数的确定方法,其特征是,所述风机模型为:
Figure FDA0002428151230000011
(1)式中,Cp(λ,β)由下式确定:
Figure FDA0002428151230000021
其中,Pew为风机输出的电磁功率;Kp、Kd为虚拟惯量控制的参数;Δf为系统频率偏差量;k为风机最大功率跟踪曲线的系数;ω为风机转速;Pmw为风机捕获的机械功率;ρ为空气密度;A为风力机扫过的面积;Cp为风机的风能转换系数;λ为叶尖速比;λi为中间变量;r为风力机叶片半径;β为桨距角,Vw为风速;Hw为风机的惯性时间常数。
4.根据权利要求3所述的风机虚拟惯量控制参数的确定方法,其特征是,所述系统的频率响应模型为:
Figure FDA0002428151230000022
(3)式中,R为同步机调节器调差系数;ΔPms为同步机机械功率的偏差量;Km为与发电机功率因数和备用系数相关的系数;FH为原动机高压缸做功比例;TR为原动机再热时间常数;ΔPes为同步机电磁功率的偏差量;PL为负荷功率在初始时刻的变化量,由扰动初始时刻的频率变化率计算得出;Hs为同步机的惯性时间常数。
5.根据权利要求4所述的风机虚拟惯量控制参数的确定方法,其特征是,所述系统状态方程为:
Figure FDA0002428151230000031
所述在系统达到平衡时,各状态变量对时间导数为零,则有:
Figure FDA0002428151230000032
对ω在扰动前的运行点ω=ω0处进行二阶近似,得到关于ω的二次多项式:
2+Nω+Q=0 (7)
(7)式中,
Figure FDA0002428151230000033
Figure FDA0002428151230000034
Figure FDA0002428151230000035
Figure FDA0002428151230000036
6.根据权利要求5所述的风机虚拟惯量控制参数的确定方法,其特征是,所述虚拟惯量参数满足的平衡约束为:
Figure FDA0002428151230000041
7.根据权利要求6所述的风机虚拟惯量控制参数的确定方法,其特征是,所述系统的状态方程为:
Figure FDA0002428151230000042
对(9)式在扰动前的系统运行点处进行线性化,得到:
Figure FDA0002428151230000043
以及频率最低点出现的时间:
Figure FDA0002428151230000044
频率最低点的表达式:
Figure FDA0002428151230000045
欲使虚拟惯量控制达到最佳调频效果,Kp、Kd应使Δfmin最小,考虑式(8)中的平衡约束,则可构建以下非线性规划问题:
Figure FDA0002428151230000046
利用内点法求解所述非线性规划问题,得到Kp、Kd的最优解
Figure FDA0002428151230000047
即为最终确定的虚拟惯量参数值。
CN202010227313.6A 2020-03-27 2020-03-27 一种风机虚拟惯量控制参数的确定方法 Active CN111384730B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010227313.6A CN111384730B (zh) 2020-03-27 2020-03-27 一种风机虚拟惯量控制参数的确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010227313.6A CN111384730B (zh) 2020-03-27 2020-03-27 一种风机虚拟惯量控制参数的确定方法

Publications (2)

Publication Number Publication Date
CN111384730A true CN111384730A (zh) 2020-07-07
CN111384730B CN111384730B (zh) 2022-10-25

Family

ID=71221893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010227313.6A Active CN111384730B (zh) 2020-03-27 2020-03-27 一种风机虚拟惯量控制参数的确定方法

Country Status (1)

Country Link
CN (1) CN111384730B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864769A (zh) * 2020-07-29 2020-10-30 国网山东省电力公司日照供电公司 考虑风机和系统频率响应特性的调频参数确定方法及系统
CN113422376A (zh) * 2021-06-30 2021-09-21 国网陕西省电力公司 一种基于频率稳定约束的事故备用、等效惯量配置方法、系统、终端及可读存储介质
CN114884143A (zh) * 2022-07-08 2022-08-09 西南交通大学 基于转子动能调节的风电机组输出功率虚拟滤波控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3002453A1 (en) * 2014-09-30 2016-04-06 Siemens Aktiengesellschaft Automatically setting parameter values of a wind farm controller
CN108964032A (zh) * 2018-07-13 2018-12-07 华北电力大学(保定) 一种建立含风电的系统频率响应模型的方法
CN109630354A (zh) * 2018-12-06 2019-04-16 国网山东省电力公司潍坊供电公司 惯性控制下基于转换器控制的风机和同步机协同调频方法及系统
CN110212574A (zh) * 2019-06-04 2019-09-06 重庆大学 考虑虚拟惯量的风电控制参数协调设置方法
CN110417046A (zh) * 2019-06-04 2019-11-05 重庆大学 面向小干扰稳定提升的风电虚拟惯量优化配置方法
CN110890765A (zh) * 2019-11-19 2020-03-17 山东大学 双馈风机虚拟惯量调频的动态转速保护方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3002453A1 (en) * 2014-09-30 2016-04-06 Siemens Aktiengesellschaft Automatically setting parameter values of a wind farm controller
CN108964032A (zh) * 2018-07-13 2018-12-07 华北电力大学(保定) 一种建立含风电的系统频率响应模型的方法
CN109630354A (zh) * 2018-12-06 2019-04-16 国网山东省电力公司潍坊供电公司 惯性控制下基于转换器控制的风机和同步机协同调频方法及系统
CN110212574A (zh) * 2019-06-04 2019-09-06 重庆大学 考虑虚拟惯量的风电控制参数协调设置方法
CN110417046A (zh) * 2019-06-04 2019-11-05 重庆大学 面向小干扰稳定提升的风电虚拟惯量优化配置方法
CN110890765A (zh) * 2019-11-19 2020-03-17 山东大学 双馈风机虚拟惯量调频的动态转速保护方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHIFAN LIU 等: "Control Strategy to Mitigate Secondary Frequency Dips for DFIG with Virtual Inertial Control", 《2016 CHINA INTERNATIONAL CONFERENCE ON ELECTRICITY DISTRIBUTION (CICED)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864769A (zh) * 2020-07-29 2020-10-30 国网山东省电力公司日照供电公司 考虑风机和系统频率响应特性的调频参数确定方法及系统
CN113422376A (zh) * 2021-06-30 2021-09-21 国网陕西省电力公司 一种基于频率稳定约束的事故备用、等效惯量配置方法、系统、终端及可读存储介质
CN114884143A (zh) * 2022-07-08 2022-08-09 西南交通大学 基于转子动能调节的风电机组输出功率虚拟滤波控制方法

Also Published As

Publication number Publication date
CN111384730B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
CN109217362B (zh) 一种双馈风机并网系统低频振荡扰动源定位系统及方法
CN111384730B (zh) 一种风机虚拟惯量控制参数的确定方法
BOUDJEMA et al. Second order sliding mode control of a dual-rotor wind turbine system by employing a matrix converter
Mohammadpour et al. SSR analysis of a DFIG-based wind farm interfaced with a gate-controlled series capacitor
CN106059422B (zh) 一种用于双馈风电场次同步振荡抑制的模糊控制方法
CN106295001B (zh) 适用于电力系统中长时间尺度的准稳态变步长仿真方法
Natarajan Robust PID controller design for hydroturbines
CN110518631B (zh) 一种直驱风电机组的稳定性评估方法及系统
CN106227950B (zh) 基于桨距控制的风电机组一次调频系统建模方法
CN106786673B (zh) 双馈风机串补输电系统次同步谐振的抑制方法及装置
CN105794067A (zh) 具有改进的上升时间的风力发电站
CN106058922A (zh) 一种含虚拟惯量控制的双馈风电机组降阶仿真系统及方法
CN112542855A (zh) 一种双馈风力发电系统相量模型建模及仿真方法
Hansen et al. Initialisation of grid-connected wind turbine models in power-system simulations
Yingying et al. A new method of wind turbines modeling based on combined simulation
CN118040717A (zh) 一种计及源荷惯量支撑能力的系统临界惯量需求量化评估方法
Krpan et al. Towards the new low-order system frequency response model of power systems with high penetration of variable-speed wind turbine generators
CN110417047B (zh) 基于复转矩系数分析双馈风机ssci阻尼特性的方法
Riquelme et al. A review of limitations of wind synthetic inertia methods
CN115455687A (zh) 基于虚拟同步型风力发电机组的风电场动态聚合建模方法
CN113612238A (zh) 一种分析风电并网引发火电机组轴系小干扰振荡的改进阻尼转矩方法
CN113708367A (zh) 一种基于一致性算法的电力系统分布式协同控制方法
Melhem et al. Frequency support and stability analysis for an integrated power system with wind farms
Ullah et al. Linear active disturbance rejection control approach base pitch angle control of variable speed wind turbine
CN108011393A (zh) 一种基于概率灵敏度指标的风电落点配置方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant