CN111375425A - 一种IrO2负载的含有氧空位的单层NiFe LDHs电解水析氧催化剂的制备方法 - Google Patents

一种IrO2负载的含有氧空位的单层NiFe LDHs电解水析氧催化剂的制备方法 Download PDF

Info

Publication number
CN111375425A
CN111375425A CN202010346692.0A CN202010346692A CN111375425A CN 111375425 A CN111375425 A CN 111375425A CN 202010346692 A CN202010346692 A CN 202010346692A CN 111375425 A CN111375425 A CN 111375425A
Authority
CN
China
Prior art keywords
iro
nife ldhs
ldhs
nife
formamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010346692.0A
Other languages
English (en)
Other versions
CN111375425B (zh
Inventor
赵强
李丹丹
郝根彦
李晋平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202010346692.0A priority Critical patent/CN111375425B/zh
Publication of CN111375425A publication Critical patent/CN111375425A/zh
Application granted granted Critical
Publication of CN111375425B publication Critical patent/CN111375425B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明公开了一种IrO2负载的含有氧空位的单层NiFe LDHs(SL‑NiFe LDHs)电解水析氧催化剂的制备方法,通过外加入锚定官能团‑NH2充当配位点,控制IrO2纳米颗粒的成核和生长,抑制其聚集,使其高分散度在SL‑NiFe LDHs表面,此外,还原性环境使SL‑NiFe‑LDHs纳米片表面形成氧空位。因此IrO2@SL‑NiFe LDHs的制备实现了IrO2与SL‑NiFe LDHs的有效复合,SL‑NiFe LDHs表面氧空位的形成有利于提高电子迁移速率,降低OER能垒,进一步提高OER催化性能。

Description

一种IrO2负载的含有氧空位的单层NiFe LDHs电解水析氧催化 剂的制备方法
技术领域
本发明属于纳米材料、能源技术领域,具体为一种IrO2负载的单层NiFe LDHs电解水析氧催化剂的制备方法。
背景技术
电催化水裂解有望在未来电力制氢的可持续发展中发挥关键作用。结合可再生能源发电技术(如太阳能发电、水力发电和风能发电),预计其将成为储存多余电力,生产丰富的氢燃料和作为太阳能利用的一种低排放的方法。电催化水的分裂可分为两个半反应,阴极的析氢反应(HER)和阳极的析氧反应(OER),阳极反应涉及动力学较为缓慢的四电子转移过程,也是当前将太阳能或电能转化为可储存燃料中发展和应用的主要瓶颈。目前IrO2为最优的析氧催化剂,但是其储量稀有成本高昂,为降低贵金属用量和催化剂成本,需要提高Ir的利用率。增加活性位点的固有催化活性是减少贵金属用量和提高贵金属利用率的有效方法。常见的策略是降低贵金属的尺寸,将它们负载到耐腐蚀的高比表面积导电载体材料上,如IrO2/CNT和G-Ir,但是这将导致贵金属纳米粒子的团聚,使催化剂稳定性降低;另一种方法是导电载体本身包含锚点或通过后处理过程添加锚点来固定Ir/IrO2(Ir/g-C3N4/NG,Ir/CN),但这类载体相对惰性,催化性能相对较低,并且选择的类型相对固定,限制了它们的广泛应用。
NiFe层状双氢氧化物(LDHs)析氧性能优异,且低成本、高丰度和易于扩增而被认为是碱性环境中最有前途的非贵金属OER催化剂。NiFe LDHs是由带正电的类水镁石状八面体层堆积而成,其OER活性位点位于2D材料的边缘处而不是基面。目前层状材料的剥离已成为制备新型二维材料的有效方法。据文献报道通过剥离NiFe LDHs的层状物而获得的单层二维NiFe LDHs的表面积和边缘活性位点显著增加,并且OER活性也大大提高。
发明内容
本发明目的是提供一种IrO2负载的含有氧空位的单层NiFe LDHs电解水析氧催化剂的制备方法,以含有SL-NiFe LDHs的甲酰胺剥离液为锚定剂,以乙二醇为还原剂,在其混合液中还原H2IrCl6,制备IrO2负载的SL-NiFe LDHs(IrO2@SL-NiFe LDHs)。
本发明是采用如下技术方案实现的:
一种IrO2负载的含有氧空位的单层NiFe LDHs电解水析氧催化剂的制备方法,包括如下步骤:
(1)、通过阴离子交换逐层剥离的方式将多层NiFe LDHs剥离成SL-NiFe LDHs的甲酰胺胶体液,配置其浓度为0.5mg·L-1
(2)、将30mM的H2IrCl6添加到上述的SL-NiFe LDHs甲酰胺胶体溶液中,30~110℃温度下磁力搅拌5min;
(3)、将乙二醇加入上述混合溶液中继续反应,反应温度同步骤(2);
(4)、将上述反应后液体离心,分别用去离子水和乙醇洗涤,60℃下真空干燥,得到IrO2@SL-NiFe LDHs粉末;
(5)、最后将得到的IrO2@SL-NiFe LDHs粉末配制成2mg·mL-1的甲酰胺胶体状溶液。
优选的,步骤(2)中:H2IrCl6的体积为10~60μL,SL-NiFe LDHs甲酰胺胶体溶液体积为20mL;步骤(3)中:乙二醇用量为20~80mL,反应时间为3~9h。
本发明以暴露更多边缘活性位点的单层NiFe LDHs(SL-NiFe LDHs)为载体,通过外加入锚定官能团作为配位点的方式,将IrO2锚定在SL-NiFe LDHs表面,具体过程为:锚定剂甲酰胺中的羰基由于其强电负性而与LDHs中羟基形成较强的氢键作用,而甲酰胺的另一端NH2无法牢固地连接到ClO4-上,从而形成活动相;当加入氯铱酸时,-NH2与Ir4+络合,使Ir4+固定在SL-NiFe LDHs表面;然后通过乙二醇还原,在空气中自然氧化得到IrO2@SL-NiFeLDHs。锚定官能团-NH2的加入可抑制IrO2纳米粒子的团聚,提高贵金属IrO2的利用率,同时IrO2@SL-NiFe LDHs的制备实现了IrO2和SL-NiFe LDHs的有效复合,提高了OER性能。这种以第三方形式添加锚定点的方法可以有效地抑制贵金属的团聚,并且丰富载体的选择性,有望成为实现贵金属和过渡金属复合的有效方法。
本发明技术具有以下优点:
1、本发明以单层NiFe LDHs为载体,充分利用其基面为负载面,而不遮蔽边缘活性位点。
2、本发明通过以具有锚定官能团-NH2的甲酰胺剥离液为锚定剂,从而有效地抑制IrO2纳米粒子的团聚,控制其颗粒尺寸。
3、本发明以第三方形式引入锚定点的方法,不仅可以抑制IrO2的团聚,同时丰富了载体的选择性,且可以扩展到过渡金属的范围。
4、本发明中还原性环境使得SL-NiFe LDHs表面形成氧空位,进一步促进电荷转移速率,降低OER能垒。
本发明设计合理,有望成为实现贵金属和过渡金属复合的有效方法,具有很好的实际应用价值。
附图说明
图1表示实施例1所得产物IrO2@SL-NiFe LDHs的X射线衍射图谱(XRD)图。
图1a表示图1中部分放大图。
图2a表示实施例1所得产物IrO2@SL-NiFe LDHs的透射电子显微镜(TEM)图。
图2b表示图2a中局部放大图。
图2c表示实施例1所得产物IrO2@SL-NiFe LDHs的HRTEM图。
图3表示实施例1所得产物IrO2@SL-NiFe LDHs和bulk-NiFe LDHs的电子顺驰共振(EPR)图。
图4a表示实施例1所得产物IrO2@SL-NiFe LDHs在1M KOH中的析氧极化曲线(含有iR补偿)。
图4b表示实施例1所得产物IrO2@SL-NiFe LDHs在1M KOH中的Tafel斜率图。
具体实施方式
下面结合附图对本发明的具体实施例进行详细说明。
实施例1
一种IrO2负载的含有氧空位的单层NiFe LDH电解水析氧催化剂的制备方法,包括如下步骤:
(1)、通过阴离子交换逐层剥离的方式将多层NiFe LDHs剥离成SL-NiFe LDHs甲酰胺胶体液,配置其浓度为0.5mg·L-1
(2)、将40μL 30mM的H2IrCl6添加到20mL SL-NiFe LDHs的上述甲酰胺胶体溶液中,70℃磁力搅拌5min;
(3)、将40mL乙二醇加入上述混合溶液中继续反应7h,反应温度为70℃;
(4)、将上述反应后液体离心,分别用去离子水和乙醇洗涤,60℃下真空干燥,得到IrO2@SL-NiFe LDHs粉末;
(5)、最后将得到的IrO2@SL-NiFe LDHs粉末配制成2mg·mL-1的甲酰胺胶体状溶液。
以本实施例得到的IrO2@SL-NiFe LDHs粉末为例,进行XRD分析,IrO2@SL-NiFeLDHs的结晶度与bulk-NiFe LDHs相比有所降低(如图1所示),表明缺陷度增加,从IrO2@SL-NiFe LDHs的XRD局部放大图(如图1a所示),可看出在28.05˚有一个小的IrO2衍射峰出现,表明IrO2成功负载在NiFe LDHs上。对IrO2@SL-NiFe LDHs纳米片进行TEM表征,IrO2 纳米颗粒均匀地分布在SL-NiFe LDHs纳米片表面(如图2a、图2b所示);HRTEM得到了SL-NiFe LDHs相和IrO2相的精细结构,原子较重的IrO2 纳米颗粒和明亮背景的SL-NiFe LDHs相,IrO2纳米颗粒的晶格间距为0.318nm和0.225nm与(110)和(200)的晶面相匹配(如图2c所示);而SL-NiFe LDHs中的晶面间距为0.267nm与(010)的晶面匹配,进一步证明IrO2存在于SL-NiFe LDHs的表面;从图2a还中可以看出,在SL-NiFe LDHs的表面有明显的孔洞和沟壑出现,其晶格条纹变得粗糙或消失,表明IrO2@SL-NiFe LDHs催化剂的SL-NiFe LDHs上有缺陷生成,并且通过EPR测试可知此缺陷属于氧缺陷(如图3所示)。
本实施例中IrO2@SL-NiFe LDHs的电化学析氧性能测试均在常温(25℃)常压(1atm)下标准三电极电解池中进行,所使用电化学工作站为普林斯顿工作站,电解槽体积容量为100mL,工作电极为玻碳电极(Փ5mm),辅助电极为Pt电极(Փ0.5mm×1cm),参比电极为Hg/HgO,催化剂负载量为0.1mg·cm-2。所使用的电解质为O2饱和的1M KOH,OER极化曲线通过阶梯线性扫描伏安法在2mV·s-1扫描速率下测量。
本实施例中IrO2@SL-NiFe LDHs在10mA·cm-2处的析氧过电势为270mV,远小于在相同条件下SL-NiFe LDHs(327mV)的过电势(如图4a所示),其Tafel斜率为59mV·dec-1,与SL-NiFe LDHs相比也明显降低(如图4b所示),表明IrO2@SL-NiFe LDHs具有更优的OER催化活性和反应动力学。
实施例2
一种IrO2负载的含有氧空位的单层NiFe LDH电解水析氧催化剂的制备方法,包括如下步骤:
(1)、通过阴离子交换逐层剥离的方式将多层NiFe LDHs剥离成SL-NiFe LDHs甲酰胺胶体液,配置其浓度为0.5mg·L-1
(2)、将20μL 30mM的H2IrCl6添加到20mL SL-NiFe LDHs的上述甲酰胺胶体溶液中,70℃磁力搅拌5min;
(3)、将40mL乙二醇加入上述混合溶液中继续反应7h,反应温度为70℃;
(4)、将上述反应后液体离心,分别用去离子水和乙醇洗涤,60℃下真空干燥,得到IrO2@SL-NiFe LDHs粉末;
(5)、最后将得到的IrO2@SL-NiFe LDHs粉末配制成2mg·mL-1的甲酰胺胶体状溶液。
本实施例中得到的IrO2@SL-NiFe LDHs在10mA·cm-2处的析氧过电势为280mV,Tafel斜率为72mV·dec-1
实施例3
一种IrO2负载的含有氧空位的单层NiFe LDH电解水析氧催化剂的制备方法,包括如下步骤:
(1)、通过阴离子交换逐层剥离的方式将多层NiFe LDHs剥离成SL-NiFe LDHs甲酰胺胶体液,配置其浓度为0.5mg·L-1
(2)、将40μL 30mM的H2IrCl6添加到20mL SL-NiFe LDHs的上述甲酰胺胶体溶液中,70℃磁力搅拌5min;
(3)、将40mL乙二醇加入上述混合溶液中继续反应9h,反应温度为70℃;
(4)、将上述反应后液体离心,分别用去离子水和乙醇洗涤,60℃下真空干燥,得到IrO2@SL-NiFe LDHs粉末;
(5)、最后将得到的IrO2@SL-NiFe LDHs粉末配制成2mg·mL-1的甲酰胺胶体状溶液。
本实施例中得到的IrO2@SL-NiFe LDHs在10mA·cm-2处的析氧过电势为278mV,Tafel斜率为83mV·dec-1
实施例4
一种IrO2负载的含有氧空位的单层NiFe LDH电解水析氧催化剂的制备方法,包括如下步骤:
(1)、通过阴离子交换逐层剥离的方式将多层NiFe LDHs剥离成SL-NiFe LDHs甲酰胺胶体液,配置其浓度为0.5mg·L-1
(2)、将40μL 30mM的H2IrCl6添加到20mL SL-NiFe LDHs的上述甲酰胺胶体溶液中,90℃磁力搅拌5min;
(3)、将40mL乙二醇加入上述混合溶液中继续反应7h,反应温度为90℃;
(4)、将上述反应后液体离心,分别用去离子水和乙醇洗涤,60℃下真空干燥,得到IrO2@SL-NiFe LDHs粉末;
(5)、最后将得到的IrO2@SL-NiFe LDHs粉末配制成2mg·mL-1的甲酰胺胶体状溶液。
本实施例中得到的IrO2@SL-NiFe LDHs在10mA·cm-2处的析氧过电势为277mV,Tafel斜率为69mV·dec-1
实施例5
一种IrO2负载的含有氧空位的单层NiFe LDH电解水析氧催化剂的制备方法,包括如下步骤:
(1)、通过阴离子交换逐层剥离的方式将多层NiFe LDHs剥离成SL-NiFe LDHs甲酰胺胶体液,配置其浓度为0.5mg·L-1
(2)、将40μL 30mM的H2IrCl6添加到20mL SL-NiFe LDHs的上述甲酰胺胶体溶液中,70℃磁力搅拌5min;
(3)、将20mL乙二醇加入上述混合溶液中继续反应7h,反应温度为70℃;
(4)、将上述反应后液体离心,分别用去离子水和乙醇洗涤,60℃下真空干燥,得到IrO2@SL-NiFe LDHs粉末;
(5)、最后将得到的IrO2@SL-NiFe LDHs粉末配制成2mg·mL-1的甲酰胺胶体状溶液。
本实施例中得到的IrO2@SL-NiFe LDHs在10mA·cm-2处的析氧过电势为296mV,Tafel斜率为72mV·dec-1
总之,本发明通过外加入锚定官能团-NH2充当配位点,控制IrO2纳米颗粒的成核和生长,抑制其聚集,使其高分散度在SL-NiFe LDHs表面,此外,还原性环境使SL-NiFe-LDHs纳米片表面形成氧空位。因此IrO2@SL-NiFe LDHs的制备实现了IrO2与SL-NiFe LDHs的有效复合,SL-NiFe LDHs表面氧空位的形成有利于提高电子迁移速率,降低OER能垒,进一步提高OER催化性能。
凡本技术领域的技术人员依据本发明在现有的技术基础上通过逻辑分析、推理得到的技术方案,均应该在本权利要求书所保护的范围之内。

Claims (2)

1.一种IrO2负载的含有氧空位的单层NiFe LDHs电解水析氧催化剂的制备方法,其特征在于:包括如下步骤:
(1)、通过阴离子交换逐层剥离的方式将多层NiFe LDHs剥离成SL-NiFe LDHs的甲酰胺胶体液,配置其浓度为0.5mg·L-1
(2)、将30mM的H2IrCl6添加到上述的SL-NiFe LDHs甲酰胺胶体溶液中,30~110℃温度下磁力搅拌5min;
(3)、将乙二醇加入上述混合溶液中继续反应;
(4)、将上述反应后液体离心,分别用去离子水和乙醇洗涤,60℃下真空干燥,得到IrO2@SL-NiFe LDHs粉末;
(5)、最后将得到的IrO2@SL-NiFe LDHs粉末配制成2mg·mL-1的甲酰胺胶体状溶液。
2.根据权利要求1所述的一种IrO2负载的含有氧空位的单层NiFe LDHs电解水析氧催化剂的制备方法,其特征在于:步骤(2)中,H2IrCl6的体积为10~60μL,SL-NiFe LDHs甲酰胺胶体溶液体积为20mL;步骤(3)中,乙二醇用量为20~80mL,反应时间为3~9h。
CN202010346692.0A 2020-04-28 2020-04-28 一种IrO2负载的含有氧空位的单层NiFe LDHs电解水析氧催化剂的制备方法 Active CN111375425B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010346692.0A CN111375425B (zh) 2020-04-28 2020-04-28 一种IrO2负载的含有氧空位的单层NiFe LDHs电解水析氧催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010346692.0A CN111375425B (zh) 2020-04-28 2020-04-28 一种IrO2负载的含有氧空位的单层NiFe LDHs电解水析氧催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN111375425A true CN111375425A (zh) 2020-07-07
CN111375425B CN111375425B (zh) 2022-08-23

Family

ID=71214265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010346692.0A Active CN111375425B (zh) 2020-04-28 2020-04-28 一种IrO2负载的含有氧空位的单层NiFe LDHs电解水析氧催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN111375425B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112090432A (zh) * 2020-09-29 2020-12-18 湖北大学 一种铁掺杂硫化碲镍电催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100178582A1 (en) * 2009-01-12 2010-07-15 Gm Global Technology Operations, Inc. Ionic layer with oxygen evolution reaction catalyst for electrode protection
CN105879876A (zh) * 2016-05-09 2016-08-24 太原理工大学 用于甲烷和二氧化碳重整制合成气的镍基催化剂的制备方法
CN106457201A (zh) * 2014-03-11 2017-02-22 乌第有限合伙公司 多孔碳膜
CN109371420A (zh) * 2018-12-19 2019-02-22 中国科学院理化技术研究所 一种单层多孔镍铁水滑石基电催化析氧电极以及其制备方法和应用
CN110230072A (zh) * 2019-05-06 2019-09-13 湖北大学 一种在泡沫镍上的N-NiZnCu LDH/rGO纳米片阵列材料的制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100178582A1 (en) * 2009-01-12 2010-07-15 Gm Global Technology Operations, Inc. Ionic layer with oxygen evolution reaction catalyst for electrode protection
CN106457201A (zh) * 2014-03-11 2017-02-22 乌第有限合伙公司 多孔碳膜
CN105879876A (zh) * 2016-05-09 2016-08-24 太原理工大学 用于甲烷和二氧化碳重整制合成气的镍基催化剂的制备方法
CN109371420A (zh) * 2018-12-19 2019-02-22 中国科学院理化技术研究所 一种单层多孔镍铁水滑石基电催化析氧电极以及其制备方法和应用
CN110230072A (zh) * 2019-05-06 2019-09-13 湖北大学 一种在泡沫镍上的N-NiZnCu LDH/rGO纳米片阵列材料的制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YI-TING CHEN ET AL: ""An excellent anode renders protic ionic liquids sustainable in metal electrodeposition"", 《ROYAL SOCIETY OF CHEMISTRY》 *
王华平: ""几种金属氢氧化物/氧化物的制备及其电催化析氧反应应用研究"", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112090432A (zh) * 2020-09-29 2020-12-18 湖北大学 一种铁掺杂硫化碲镍电催化剂及其制备方法
CN112090432B (zh) * 2020-09-29 2022-11-22 湖北大学 一种铁掺杂硫化碲镍电催化剂及其制备方法

Also Published As

Publication number Publication date
CN111375425B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
Du et al. Core–shell FeCo Prussian blue analogue/Ni (OH) 2 derived porous ternary transition metal phosphides connected by graphene for effectively electrocatalytic water splitting
Yang et al. Molybdenum selenide nanosheets surrounding nickel selenides sub-microislands on nickel foam as high-performance bifunctional electrocatalysts for water splitting
Li et al. Synergistic effect of ultrafine nano-Ru decorated cobalt carbonate hydroxides nanowires for accelerated alkaline hydrogen evolution reaction
Yu et al. Suppressing the surface passivation of Pt-Mo nanowires via constructing Mo-Se coordination for boosting HER performance
Moazzami et al. Enhanced methanol electrooxidation by electroactivated Pd/Ni (OH) 2/N-rGO catalyst
Gebreslase et al. Transformation of CoFe2O4 spinel structure into active and robust CoFe alloy/N-doped carbon electrocatalyst for oxygen evolution reaction
Wang et al. Synergistically engineering ultralow Pt doped FeNi alloy/FeNi phosphide nanoparticles for advanced hydrogen evolution reaction
Zhou et al. Synergistic coupling of NiFeZn-OH nanosheet network arrays on a hierarchical porous NiZn/Ni heterostructure for highly efficient water splitting
Wu et al. Self-supported hollow Co (OH) 2/NiCo sulfide hybrid nanotube arrays as efficient electrocatalysts for overall water splitting
Jia et al. Poly (triazine imide)(PTI) and graphene hybrids supported PtSn catalysts for enhanced electrocatalytic oxidation of ethanol
Jingyu et al. Hydrothermal synthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol
Yang et al. Enhancement of oxygen evolution reaction performance of FeCoNiCrMn high entropy alloy thin film electrodes through in-situ reconstruction
CN113398923B (zh) 一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用
Nguyen et al. Controlled synthesis of trimetallic nitrogen-incorporated CoNiFe layered double hydroxide electrocatalysts for boosting the oxygen evolution reaction
Jiang et al. Preparation of high active Pt/C cathode electrocatalyst for direct methanol fuel cell by citrate-stabilized method
Liu et al. Engineering Ir and Ni3N heterogeneous interfaces for promoted overall water splitting
Qin et al. Ru/Ir‐based electrocatalysts for oxygen evolution reaction in acidic conditions: From mechanisms, optimizations to challenges
Yu et al. Oxygen-deficient MoO x/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction
CN111375425B (zh) 一种IrO2负载的含有氧空位的单层NiFe LDHs电解水析氧催化剂的制备方法
Yao et al. Coupling SnS 2 and rGO aerogel to CuS for enhanced light-assisted OER electrocatalysis
Yi et al. N-Doped carbon-coated Co 2 P-supported Au nanocomposite as the anode catalyst for borohydride electrooxidation
Chu et al. Ultra-thin nanohoneycomb porous CoMoO4 with excellent catalytic performance for water splitting at large current densities
Udayakumar et al. Recent developments in noble metal–based hybrid electrocatalysts for overall water splitting
Guo et al. Self-supporting NiFe LDHs@ Co-OH-CO 3 nanorod array electrode for alkaline anion exchange membrane water electrolyzer
Chen et al. Hierarchical-hollow architecture NiSe2 nanosheets for overall water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant