CN111372755A - 增材制造图像的卷积神经网络评估以及以其为基础的增材制造系统 - Google Patents

增材制造图像的卷积神经网络评估以及以其为基础的增材制造系统 Download PDF

Info

Publication number
CN111372755A
CN111372755A CN201880075731.9A CN201880075731A CN111372755A CN 111372755 A CN111372755 A CN 111372755A CN 201880075731 A CN201880075731 A CN 201880075731A CN 111372755 A CN111372755 A CN 111372755A
Authority
CN
China
Prior art keywords
build
additive manufacturing
artificial intelligence
neural network
intelligence module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880075731.9A
Other languages
English (en)
Other versions
CN111372755B (zh
Inventor
保罗·格里尔
乔治·巴格斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moog Inc
Original Assignee
Moog Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moog Inc filed Critical Moog Inc
Publication of CN111372755A publication Critical patent/CN111372755A/zh
Application granted granted Critical
Publication of CN111372755B publication Critical patent/CN111372755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/03Controlling for feed-back
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49007Making, forming 3-D object, model, surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/490233-D printing, layer of powder, add drops of binder in layer, new powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Human Computer Interaction (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种增材制造系统,该增材制造系统使用受过训练的人工智能模块作为闭回路控制结构的一部分,以用于在过程中调节初始构建参数集来改善部件质量。闭回路控制结构包括考虑过程中构建层图像的慢速控制回路,并且可包括考虑熔体池监测数据的快速控制回路。使用来自多个卷积神经网络(CNN)的输出训练人工智能模块,该多个卷积神经网络负责评估过程中捕获的构建层图像和过程后捕获的成品部件的图像。该过程后图像可包括分段成品部件的二维图像和成品部件的三维CAT扫描图像。

Description

增材制造图像的卷积神经网络评估以及以其为基础的增材制 造系统
技术领域
本发明涉及增材制造(AM)领域。
背景技术
AM机可用于根据逐层构建过程构建成品部件。例如,激光粉末床熔融AM机使用激光或电子束中的任一者来熔化和熔融粉末材料。粉末床熔融过程涉及使用辊或刀片将粉末材料薄层铺展在先前的层上,并且根据部件的所需几何形状以受控方式在粉末层上扫描激光或电子束以形成层。部件的几何计算机模型被转换为AM构建参数文件,其中AM机的各种控制参数被定义用于控制每个构建层的扫描和熔融操作。
虽然AM对于制造通过传统减材制造难以制造和/或耗时的部件以及对于在存在AM机的远程位置“按需”制造部件显示出良好的前景,但是对由AM制造的部件质量的担忧减缓了其在关键行业中的广泛采用。例如,由AM制造的部件有时表现出孔隙率、空隙和差的表面光洁度,因此妨碍AM在安全关键应用(诸如航空航天和医疗应用)中的接受度。这对成品AM部件的质量控制检查造成了额外的负担,特别是对于旨在用于安全关键应用的部件,诸如医疗设备和飞行器部件。
在各种出版物中已提出,可将人工智能应用于AM以改善成品部件的质量。然而,这些出版物缺乏关于如何将人工智能应用于AM以改善成品部件的质量的任何有用的细节或实际描述。
发明内容
本公开提供了根据AM构建过程用于在AM机中逐层构建部件的AM系统,其中该系统包括用于在过程中调节初始构建参数集的闭回路控制结构。如本文所用,术语“过程中”是指部件处于正在AM机中被构建的过程中的时间段。术语“过程中”与术语“过程后”不同,“过程后”在本文中用来指部件在AM机中已被构建之后的时间段。
本公开的闭回路控制结构包括具有受过训练的人工智能模块的慢速控制回路,并且还可包括具有状态机的快速控制回路。如本文所用,“慢速控制回路”意指具有整秒级的控制器增益更新周期的控制回路,并且“快速控制回路”意指具有微秒级的控制器增益更新周期的控制回路。受过训练的人工智能模块可以是具有循环人工神经网络的深度学习模块。
在一个实施方案中,AM系统包括:熔体池监测系统,该熔体池监测系统被布置成采集表示在过程中由能量源形成的熔体池的实时熔体池数据;以及构建层图像传感器,该构建层图像传感器被布置成在过程中采集部件层的层图像。初始构建参数集、对应于构建过程的基于时间顺序的经调节构建参数、层图像以及熔体池数据作为输入被传输到慢速控制回路的受过训练的人工智能模块。熔体池数据可作为输入被传输到快速控制回路的状态机。
根据本公开,可使用来自第一卷积神经网络(CNN)和至少一个第二CNN的评估数据来训练受过训练的人工智能模块,该第一卷积神经网络被配置为评估过程中采集的层图像,该至少一个第二CNN被配置为评估过程后采集的成品零件的图像。例如,CNN可被配置成评估过程后采集的分段成品部件的二维图像,并且另一个CNN可被配置成评估过程后通过成品部件的计算机断层摄影(CT)扫描采集的部件的三维图像。
附图说明
本发明的实质和操作模式现在将结合附图在本发明的以下具体实施方式中更全面地描述,其中:
图1为根据本发明的实施方案形成的AM系统的示意图;
图2为图1所示AM系统的AM机的示意图;
图3为根据本发明的一个方面的基本闭回路AM控制系统的框图,其中层图像由卷积神经网络(CNN)评估以提供反馈;
图4为根据本发明的一个方面的增强数据收集架构的框图,其中成品部件的过程后图像数据与AM机在过程中收集的数据相对应地收集;
图5为根据本发明的一个方面的可用于训练人工智能模块的训练架构的框图;并且
图6为表示循环神经网络(RNN)可如何接合到有限状态机(FSM)的简化示例的框图。
具体实施方式
图1中示出了根据本发明的实施方案形成的AM系统10。AM系统10包括AM机20,在图2中更详细地示出。AM机20可以是包括粉末贮存器22、粉末床24以及粉末刮刀26的类型的激光粉末床机的形式,部件P在该粉末床中构建,该粉末刮刀用于将新的粉末层从粉末贮存器22转移到粉末床24中。粉末贮存器的高度使用粉末递送致动器23调节,并且粉末床24的高度使用制造致动器25调节。AM机20还包括激光器28形式的能量源,以及扫描器系统30,该扫描器系统用于以受控方式在粉末床24中的每个新的粉末层上方从能量源28重新定向并扫描光束32以形成部件P。应当理解,光束30与粉末床24中的粉末层相互作用并形成后熔体池33,该后熔体池固化并与部件P熔融在一起以构建该部件。上述类型的AM机购自英国的雷尼绍公司(Renishaw plc of the United Kingdom)。
AM机20可配备有熔体池监测系统35,该熔体池监测系统具有一个或多个熔体池传感器37,这些熔体池传感器被布置成采集表示过程中的熔体池33的实时熔体池数据39。AM机20还配备有构建层图像传感器38,该构建层图像传感器被布置成采集过程中的部件层的层图像。另外,空间频率调制成像(SPIFI)可用于直接通过光束32收集关于熔体池33的状态的信息;参见例如Young、Michael D.等人的“具有来自空间光调制器的振幅或相位光栅的空间频率调制成像(Spatial Frequency Modulated Imaging(SPIFI)with amplitude orphase grating from a spatial light modulator)”,SPIE会议记录,第10069卷,id.100692P 8pp.(2017)。AM机20的各种组件连接到被配置为控制构建过程的基于微处理器的控制器21。
AM系统10可包括构建参数配置模块40,该构建参数配置模块被编程为生成用于在AM机20中构建部件P的初始构建参数集。初始构建参数集可作为构建参数配置文件41存储在存储器中,该存储器可由AM机20的处理和控制电子器件访问。初始构建参数集41可至少部分地基于输入到构建参数配置模块40的部件P的几何模型。作为非限制性示例,该几何模型可被提供为描述部件P的一个或多个数字CAD/CAM文件,并且构建参数配置模块40可以是被编程为读取CAD/CAM模型信息并生成激光控制设置、扫描器运动控制命令、层厚度设置和用于操作AM机20以构建部件P的其他控制参数的计算机模块。构建参数配置模块40可以是AM机20的一部分,或者可以独立于AM机20并与其通信。用于根据CAD/CAM文件生成AM构建参数的可商购获得的软件的示例为购自比利时的Materialise N.V.公司(MaterialiseN.V.of Belgium)的
Figure BDA0002503880240000031
MagicsTM数据制作软件。
AM系统10包括用于在过程中调节初始构建参数集41的闭回路控制结构42。在图3所示的基本实施方案中,闭回路控制结构42包括CNN 46形式的受过训练的人工智能(AI)模块,该CNN被训练并被配置为评估由构建层图像传感器38在过程中采集的部件P的层图像48。在框50中使用由CNN 46提供的评估结果(该结果可指示每个捕获的层图像48与该层的预期或期望外观相对应的程度)来计算过程中AM机20的经调节构建参数,以在框52中继续构建过程时影响后续层的构建。评估结果可以是将每个构建层图像48分配到预先确定的类别(例如,非常好、良好、一般、差等)中的分类的形式。
在对应于图1的另一个实施方案中,闭回路控制结构42包括慢速控制回路54和快速控制回路58,该慢速控制回路具有深度学习循环AI模块56形式的受过训练的AI模块,该快速控制回路具有状态机60。
在慢速控制回路54中,由构建参数配置模块40生成的初始AM构建参数41被输入到深度学习循环AI模块56。对受过训练的AI模块56的其他输入可包括表示随时间推移的AM过程变量和参数的基于时间顺序的数据62(例如,氩气流量、温度、声音/振动换能器水平、电压、电流等),由构建层图像传感器38在过程中采集的构建层图像48,以及由熔体池监测系统35在过程中采集的熔体池数据39。熔体池数据39可在输入到深度学习循环AI模块56之前由预处理器64预处理。例如,预处理器64可被编程为在每个构建层或一组构建层上累积并平均熔体池数据39。预处理可为可调节的以具有较短或较长的帧速率。
深度学习AI模块56可具有与一个或多个CNN组合以形成神经网络集成的循环神经网络(RNN)组件。该RNN组件可被实现为例如长短期记忆(LSTM)以克服所谓的“消失或爆炸梯度问题”,或门控循环单元(GRU),其将允许使用大量堆叠的循环网络,这些循环网络增加了过程状态和长期记忆能力以学习快速过程中更新数据与慢速过程输出数据之间的复杂、嘈杂以及非线性关系,并且预测构建良好质量部件所需的正确AM构建参数。GRU在例如Chung等人2014年12月11日的序列建模上的门控循环神经网络的经验评估(EmpiricalEvaluation of Gated Recurrent Neural Networks on Sequence Modeling),arXiv:1412,3555v1[cs.NE]中有所描述。受过训练的深度学习AI模块56可用于关闭对部件质量的慢速逐层评估,以增强慢速过程反馈控制。AI模块56可被配置为运行AI智能软件的计算机或计算机网络。例如,该软件可使用例如TensorFlow(谷歌的开源人工神经网络(ANN)软件库,https://www.tensorflow.org)、Theano(蒙特利尔大学的深度学习小组的开源ANN软件库,http://deeplearning.net/software/theano/index.html)或CNTK(微软认知工具包,https://www.microsoft.com/en-us/cognitive-toolkit/),以Python软件基金会支持的PythonTM编程语言进行编程来实际实施人工神经网络AI。另选地或除此之外,可使用更传统的编程语言诸如C和C++。就硬件而言,因为AI模块56可作为仅推断AI运行,所以受过训练的神经网络可使用定点数学或甚至更低的位计数(例如BNN或位神经网络;参见例如,Kim、Smaragdis的2016年1月22日的位神经网络(Bitwise Neural Networks),arXiv:1601.06071v1[cs.LG](https://arxiv.org/pdf/1601.06071.pdf))在专用计算平台上运行,并且这可显著改善AI模块的处理吞吐量。
在快速控制回路58中,可将熔体池数据39连同来自深度学习AI模块56的输出一起输入到状态机60。来自深度学习AI模块56的状态机输出可用作快速控制回路58的一部分,该快速控制回路可被配置为快速过程控制增益更新上的单独的状态可变内部控制回路。例如,可将来自上述LSTM的状态机输出输入到状态机60并用于促进熔体池控制的快速回路闭合。
在图6中,状态机60的简单示例被示出为具有如由Mealy FSM表示的三种不同状态,其中来自每种状态的输出取决于当前状态和对FSM的输入。这三种状态是“保持”,其中保持控制方案;“较低能量密度”(较低ED),其中控制方案有利于降低通过光束32输入到粉末床24的比能量密度(ED);以及“较高能量密度”(较高ED),其中控制方案有利于升高通过光束32输入到粉末床24的比能量密度。同样在该示例中,对FSM的输入是来自受过训练的RNN 56的输出,该输出预测熔体池33的状态。该预测是基于图5由图4的增强数据赋予RNN56的训练。
图6示例中的每种状态表示不同或改变的控制方案。这些控制方案可被实现为简单的增益控制反馈回路或被实现为复杂的随机最佳控制器。本领域的技术人员将认识到,这仅仅是用于控制快速回路58的状态机60可如何与来自RNN 56的输出进行接合的简化示例,并且许多其他的和更复杂的配置是可能的,包括不同的控制方案状态,以及这些控制方案状态改变底层控制器的许多可能的具体实施的方式。
如在图1中可见,来自受过训练的深度学习AI模块56的慢速回路反馈和来自状态机60的快速回路反馈可用于计算框50中的经调节AM构建参数,以用于以改善部件质量的方式操作AM机20。
现在参考图4和图5描述根据本发明的实施方案的训练深度学习AI模块56的方法。用于训练深度学习AI模块56的教师数据可通过操作AM机20收集以按图4所示的数据增强模式来构建部件。应当理解,负责评估过程中的构建层图像48的基本CNN 46可由一个或多个另外的CNN 72和82增强,该一个或多个另外的CNN被配置为评估在过程后采集的成品部件的图像,如框70和框80分别所示。实际图像48也可在构建层图像数据库49中收集。
在框70中,由AM机20构建的部件P在过程后被分段,例如通过切割该部件并以已知的层深度抛光暴露的截面,然后使用成像相机捕获暴露表面的二维(2D)图像74。然后可由CNN 72评估和分类过程后捕获的2D图像74。例如,可能的分类76可包括熔化不足、恰好合适和熔化过度。在给定层深度处的过程后2D图像可与过程中采集的层的相关联图像48直接相关。该关系可由软件应用程序控制,该软件应用程序被编程为同步图4中的数据增强以允许根据实际数据在重建的虚拟部件构建上训练RNN 56。虚拟部件构建的数量将仅受到多少可用数据用于收集的限制。
软件应用程序的虚拟部件构建方面可允许模拟受过训练的RNN 56将如何使用实际数据来起作用,并且可允许改进和/或验证集成计算材料工程(ICME)模型。另外,可使用虚拟构建数据来构建更好的预测模型,以将高级控制方案诸如模型预测控制(MPC)实施到图6所示的快速58回路控制方案中。
在框80中,例如使用计算机辅助断层摄影(CAT)设备在过程后扫描由AM机20构建的部件P,以捕获整个部件的三维(3D)图像84。然后可由CNN 82评估和分类过程后捕获的3D图像84。例如,分类86可指示成品部件的孔隙度的程度和/或成品部件中存在空隙的程度。
如上所述,可在构建层图像数据库49中收集过程中构建层图像48。还可收集其他的过程中数据以用于训练深度学习AI模块56。例如,由熔体池监测系统35在过程中采集的快速过程熔体池数据39可存储在二进制数据库67中,并且在层正在制造时由AM机20生成的基于时间顺序的数据62可存储在基于时间顺序的参数数据库68中。
如图5所示,如结合图4所述收集的数据可用作输入以训练深度学习AI模块56。表征构建层图像48的CNN 46的输出可充当一个教师输入在训练操作模式下提供给深度学习AI模块56。类似地,分别表征过程后图像72和82的来自CNN 72和CNN 82的输出可充当另外的教师输入在训练操作模式期间提供给深度学习AI模块56。快速过程熔体池数据39可由预处理器64预处理,并且在训练操作模式期间输入到深度学习AI模块56。存储在基于时间顺序的参数数据库68中的基于时间顺序的数据62也可作为输入在训练操作模式期间提供给深度学习AI模块56。初始AM构建参数41可作为另外的输入在训练操作模式期间提供给深度学习AI模块56。
深度学习AI模块56的各种输入应正确同步以进行训练,并且必须有足够的可用数据以使训练有效。来自深度学习AI模块56的LSTM组件的输出可在训练操作模式期间提供给状态机60,以稍后在AM系统10以常规生产模式操作时促进熔体池控制的快速回路闭合。对状态机60的输入提供记录,该记录可允许针对控制模拟来评估改变的控制方案状态(例如,在图6中),以帮助评估受过训练的RNN 56对快速控制回路58的影响。
使用如上所述的过程中信息和过程后信息训练AI模块56将使得能够根据与良好生产实践相关联的若干视角可靠地确定AM部件和对应的AM过程是否良好。用于部件构建的整个数据集将被捕获以用于生产记录。首先,可展示和认证用于制造部件的AM配置数据文件的完整性(即“数据完整性”)。第二,可展示和认证用于构建该部件的AM过程的完整性(即“过程完整性”)。第三,可展示和认证过程性能生成了具有高密度、最小孔隙度或无孔隙度以及良好内部晶粒结构的良好部件(即,“性能完整性”)。以类似的方式,所述的AM部件的过程认证可类似于用于提供医疗设备正根据规范正确运行的检验和确认证据的设计质量(DQ)、安装质量(IQ)、操作质量(OQ)和性能质量(PQ)量度。IQ、OQ和PQ分别类似于数据、过程和制造完整性。在这种情况下,正确AM构建文件的安装是IQ。实时验证过程完整性(OQ)正确,并且近乎实时验证制造完整性(PQ)将来自机器学习AI的过程中组件和过程后组件。机器学习AI模块56将使用良好度的量度来确定我们实际具有的良好度的程度(通过习得的过程中测量值和过程后测量值之间非线性关系的循环记忆),然后对该过程进行实时自动校正,使得良好度(通过非线性相关性间接估计)将最大化。DQ等同于与设计/构建文件相关联的AM设计规则检查,其可集成用于金属的ICME或一些其他基于物理的设计协议。
本发明旨在推进通过AM方法制造大型且复杂的组件。本发明将得到在增材制造机上制造的更高质量的部件并减少检查负担。
虽然已结合示例性实施方案描述了本发明,但具体实施方式并不旨在将本发明的范围限制于所述的特定形式。本发明旨在涵盖可包括在权利要求书的范围内的所述实施方案的此类替代形式、修改形式和等同形式。

Claims (8)

1.一种用于根据增材制造构建过程逐层构建部件的增材制造系统,所述增材制造系统包括:
增材制造机,所述增材制造机包括粉末床和能量源,其中相对于所述粉末床中的粉末层扫描来自所述能量源的能量束以通过熔融构建所述部件的每个层;
构建参数配置文件,所述构建参数配置文件存储用于在所述增材制造机中构建所述部件的初始构建参数集,其中所述初始构建参数集至少部分地基于所述部件的几何模型;
闭回路控制结构,所述闭回路控制结构用于在过程中调节所述初始构建参数集,所述闭回路控制结构包括具有受过训练的人工智能模块的慢速控制回路;和
构建层图像传感器,所述构建层图像传感器被布置成在过程中采集所述部件层的层图像;
其中所述初始构建参数集、对应于所述构建过程的基于时间顺序的经调节构建参数以及所述层图像作为输入被传输到所述受过训练的人工智能模块。
2.根据权利要求1所述的增材制造系统,还包括:
快速控制回路,所述快速控制回路具有状态机;和
熔体池监测系统,所述熔体池监测系统被布置成采集表示在过程中由所述能量源形成的熔体池的实时熔体池数据;
其中所述熔体池数据作为输入被传输到所述受过训练的人工智能模块并且作为输入被传输到所述状态机。
3.根据权利要求1所述的增材制造系统,其中使用来自第一卷积神经网络和至少一个第二卷积神经网络的评估数据训练所述受过训练的人工智能模块,所述第一卷积神经网络被配置为评估过程中采集的层图像,所述至少一个第二卷积神经网络被配置为评估过程后采集的成品部件的图像。
4.根据权利要求3所述的增材制造系统,其中所述至少一个第二卷积神经网络包括被配置为评估分段部件的二维图像的卷积神经网络。
5.根据权利要求3所述的增材制造系统,其中所述至少一个第二卷积神经网络包括被配置为评估部件的三维图像的卷积神经网络。
6.根据权利要求1所述的增材制造系统,其中所述受过训练的人工智能模块是具有循环人工神经网络的深度学习模块。
7.一种训练人工智能模块以用于对增材制造机进行闭回路控制的方法,所述增材制造机能够操作以执行增材制造过程来构建部件,所述方法包括:
向所述人工智能模块输入对应于多个部件的增材制造构建参数配置文件;
向所述人工智能模块输入由所述增材制造机在过程中收集的基于时间顺序的参数数据;
向所述人工智能模块输入由卷积神经网络生成的构建层图像分类数据,所述卷积神经网络被配置为评估过程中捕获的构建层图像;
向所述人工智能模块输入由至少一个其他卷积神经网络生成的过程后图像分类数据,所述至少一个其他卷积神经网络被配置为评估过程后捕获的部件的图像;以及
使用所述人工智能模块评估所述增材制造构建参数配置文件、所述基于时间顺序的参数数据、所述构建层图像分类数据和所述过程后图像分类数据。
8.根据权利要求7所述的方法,还包括:
向所述人工智能模块输入由所述增材制造机在过程中收集的熔体池数据;以及
使用所述人工智能模块评估所述熔体池数据。
CN201880075731.9A 2017-12-20 2018-12-15 增材制造图像的卷积神经网络评估以及以其为基础的增材制造系统 Active CN111372755B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762608045P 2017-12-20 2017-12-20
US62/608,045 2017-12-20
PCT/US2018/065880 WO2019125970A1 (en) 2017-12-20 2018-12-15 Convolutional neural network evaluation of additive manufacturing images, and additive manufacturing system based thereon

Publications (2)

Publication Number Publication Date
CN111372755A true CN111372755A (zh) 2020-07-03
CN111372755B CN111372755B (zh) 2022-02-18

Family

ID=66992803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880075731.9A Active CN111372755B (zh) 2017-12-20 2018-12-15 增材制造图像的卷积神经网络评估以及以其为基础的增材制造系统

Country Status (6)

Country Link
US (1) US11112771B2 (zh)
EP (1) EP3727798A4 (zh)
JP (1) JP7128278B2 (zh)
CN (1) CN111372755B (zh)
CA (1) CA3081678C (zh)
WO (1) WO2019125970A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210150313A1 (en) * 2019-11-15 2021-05-20 Samsung Electronics Co., Ltd. Electronic device and method for inference binary and ternary neural networks
CN112916987A (zh) * 2021-02-02 2021-06-08 北京理工大学 一种电弧增材制造在线监测及实时控制方法和系统
CN113000860A (zh) * 2021-02-26 2021-06-22 西安理工大学 一种激光增材制造中的扫描点温度预测控制方法
CN113084193A (zh) * 2021-03-22 2021-07-09 中国人民解放军空军工程大学 一种激光选区熔化技术原位质量综合评价方法
CN114619119A (zh) * 2022-03-29 2022-06-14 北京理工大学 一种电弧增材制造在线监测及实时控制系统

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3850300A2 (en) 2018-10-19 2021-07-21 Inkbit, LLC High-speed metrology
JP2022506523A (ja) 2018-11-02 2022-01-17 インクビット, エルエルシー インテリジェント付加製造方法
US11354466B1 (en) 2018-11-02 2022-06-07 Inkbit, LLC Machine learning for additive manufacturing
CA3118309A1 (en) 2018-11-16 2020-05-22 Inkbit, LLC Inkjet 3d printing of multi-component resins
JP2022522945A (ja) 2019-01-08 2022-04-21 インクビット, エルエルシー 積層製造のための表面の再構築
AU2020206336A1 (en) 2019-01-08 2021-07-15 Inkbit, LLC Depth reconstruction in additive fabrication
US20220281177A1 (en) * 2019-08-27 2022-09-08 The Regents Of The University Of California Ai-powered autonomous 3d printer
JP7320884B2 (ja) 2019-09-10 2023-08-04 ナノトロニクス イメージング インコーポレイテッド 製造プロセスのためのシステム、方法、および媒体
CN114450135A (zh) * 2019-09-10 2022-05-06 纳米电子成像有限公司 用于制造过程的系统、方法和介质
US11712837B2 (en) 2019-11-01 2023-08-01 Inkbit, LLC Optical scanning for industrial metrology
US10994477B1 (en) 2019-11-01 2021-05-04 Inkbit, LLC Optical scanning for industrial metrology
DE102020102863A1 (de) * 2020-02-05 2021-08-05 Festo Se & Co. Kg Parametrierung einer Komponente in der Automatisierungsanlage
US10926473B1 (en) 2020-02-20 2021-02-23 Inkbit, LLC Multi-material scanning for additive fabrication
CN116235192A (zh) * 2020-06-10 2023-06-06 戴弗根特技术有限公司 适应性生产系统
US10994490B1 (en) 2020-07-31 2021-05-04 Inkbit, LLC Calibration for additive manufacturing by compensating for geometric misalignments and distortions between components of a 3D printer
US20220134647A1 (en) * 2020-11-02 2022-05-05 General Electric Company In-process optical based monitoring and control of additive manufacturing processes
WO2022214161A1 (en) 2021-04-06 2022-10-13 Abb Schweiz Ag Method of producing three-dimensional object, control system and additive manufacturing device
US20230122304A1 (en) * 2021-10-15 2023-04-20 Liveline Technologies Inc. Manufacturing equipment control via predictive sequence to sequence models
CN114226757B (zh) * 2021-12-14 2023-04-11 上海交通大学 一种融合温度和图像信息的激光ded制造控制系统和方法
EP4272932A1 (en) * 2022-05-06 2023-11-08 United Grinding Group Management AG Manufacturing assistance system for an additive manufacturing system
CN116408462B (zh) * 2023-04-12 2023-10-27 四川大学 一种激光金属增材沉积内部孔隙状态实时预测方法
CN116559196B (zh) * 2023-05-06 2024-03-12 哈尔滨工业大学 一种电弧增材制造缺陷检测系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140271964A1 (en) * 2013-03-15 2014-09-18 Matterrise, Inc. Three-Dimensional Printing and Scanning System and Method
WO2017039444A1 (en) * 2015-08-31 2017-03-09 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and apparatus for layerwise production of a tangible object.
CN107097407A (zh) * 2017-06-29 2017-08-29 上海大学 智能监控3d打印的喷头工作状态的方法、应用和装置
CN107402217A (zh) * 2017-07-27 2017-11-28 哈尔滨工业大学(威海) 基于视觉传感的激光增材制造缺陷的在线诊断方法
CN107457996A (zh) * 2016-06-03 2017-12-12 波音公司 用于直接写入系统的实时检查和校正技术

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771417B2 (en) * 2005-02-24 2010-08-10 Iridex Corporation Laser system with short pulse characteristics and its methods of use
US9604406B2 (en) 2011-04-27 2017-03-28 Grow Software Limited Three-dimensional design and manufacturing systems
US20130015596A1 (en) 2011-06-23 2013-01-17 Irobot Corporation Robotic fabricator
US9855698B2 (en) * 2013-08-07 2018-01-02 Massachusetts Institute Of Technology Automatic process control of additive manufacturing device
ZA201505683B (en) * 2014-08-15 2017-11-29 Central Univ Of Technology Free State Additive manufacturing system and method
US20170002467A1 (en) * 2015-07-02 2017-01-05 Fei Company Adaptive control for charged particle beam processing
EP3325192A4 (en) * 2015-07-18 2019-05-08 Vulcanforms Inc. FUSION ADDITIVE MANUFACTURING OF SPATIALLY CONTROLLED MATERIAL
US11079745B2 (en) 2015-11-25 2021-08-03 Lawrence Livermore National Security, Llc Rapid closed-loop control based on machine learning
JP2019514748A (ja) * 2016-05-12 2019-06-06 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 積層造形中の各層間の熱寄与の管理
US10414149B2 (en) * 2016-10-21 2019-09-17 Microsoft Technology Licensing, Llc Material estimate for fabrication of three-dimensional object
US10234848B2 (en) * 2017-05-24 2019-03-19 Relativity Space, Inc. Real-time adaptive control of additive manufacturing processes using machine learning
US11511373B2 (en) * 2017-08-25 2022-11-29 Massachusetts Institute Of Technology Sensing and control of additive manufacturing processes
US11027362B2 (en) * 2017-12-19 2021-06-08 Lincoln Global, Inc. Systems and methods providing location feedback for additive manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140271964A1 (en) * 2013-03-15 2014-09-18 Matterrise, Inc. Three-Dimensional Printing and Scanning System and Method
WO2017039444A1 (en) * 2015-08-31 2017-03-09 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and apparatus for layerwise production of a tangible object.
CN107457996A (zh) * 2016-06-03 2017-12-12 波音公司 用于直接写入系统的实时检查和校正技术
CN107097407A (zh) * 2017-06-29 2017-08-29 上海大学 智能监控3d打印的喷头工作状态的方法、应用和装置
CN107402217A (zh) * 2017-07-27 2017-11-28 哈尔滨工业大学(威海) 基于视觉传感的激光增材制造缺陷的在线诊断方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAN PETRICH: "《MACHINE LEARNING FOR DEFECT DETECTION FOR PBFAM USING HIGH RESOLUTION LAYERWISE IMAGING COUPLED WITH POST-BUILD CT SCANS》", 《SOLID FREEFORM FABRICATION 2017:AN ADDITIVE MANUFACTURING CONFERENCE》 *
VOLKER RENKEN: "《Development of an adaptive,self-learning control concept for an additive manufacturing process》", 《CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210150313A1 (en) * 2019-11-15 2021-05-20 Samsung Electronics Co., Ltd. Electronic device and method for inference binary and ternary neural networks
CN112916987A (zh) * 2021-02-02 2021-06-08 北京理工大学 一种电弧增材制造在线监测及实时控制方法和系统
CN112916987B (zh) * 2021-02-02 2022-02-15 北京理工大学 一种电弧增材制造在线监测及实时控制方法和系统
CN113000860A (zh) * 2021-02-26 2021-06-22 西安理工大学 一种激光增材制造中的扫描点温度预测控制方法
CN113084193A (zh) * 2021-03-22 2021-07-09 中国人民解放军空军工程大学 一种激光选区熔化技术原位质量综合评价方法
CN113084193B (zh) * 2021-03-22 2022-10-21 中国人民解放军空军工程大学 一种激光选区熔化技术原位质量综合评价方法
CN114619119A (zh) * 2022-03-29 2022-06-14 北京理工大学 一种电弧增材制造在线监测及实时控制系统
CN114619119B (zh) * 2022-03-29 2023-01-13 北京理工大学 一种电弧增材制造在线监测及实时控制系统

Also Published As

Publication number Publication date
CA3081678A1 (en) 2019-06-27
EP3727798A1 (en) 2020-10-28
CA3081678C (en) 2022-08-16
US11112771B2 (en) 2021-09-07
CN111372755B (zh) 2022-02-18
JP7128278B2 (ja) 2022-08-30
EP3727798A4 (en) 2021-10-27
US20210089003A1 (en) 2021-03-25
JP2021504197A (ja) 2021-02-15
WO2019125970A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
CN111372755B (zh) 增材制造图像的卷积神经网络评估以及以其为基础的增材制造系统
CN109203479B (zh) 用于先进增材制造的系统和方法
JP7174108B2 (ja) 付加的に製造された部品の微細構造を制御するための付加製造付加製造システム及び方法
US10500675B2 (en) Additive manufacturing systems including an imaging device and methods of operating such systems
US10725459B2 (en) Identifying and distributing optimal machine parameters within a fleet of additive manufacturing machines
EP3878583A1 (en) Systems and methods for compression, management, and analysis of downbeam camera data for an additive manufacturing machine
US11597156B2 (en) Monitoring additive manufacturing
US10520919B2 (en) Systems and methods for receiving sensor data for an operating additive manufacturing machine and mapping the sensor data with process data which controls the operation of the machine
US10635085B2 (en) Systems and methods for receiving sensor data for an operating additive manufacturing machine and adaptively compressing the sensor data based on process data which controls the operation of the machine
Cannizzaro et al. In-situ defect detection of metal additive manufacturing: an integrated framework
JP2021513158A (ja) 熱及び歪みモデリングを用いて付加製造スキャンパスを生成する方法及び装置
WO2020176283A1 (en) Transfer learning/dictionary generation and usage for tailored part parameter generation from coupon builds
Wegener et al. A conceptual vision for a bio-intelligent manufacturing cell for Selective Laser Melting
JP6758532B1 (ja) 数値制御装置および付加製造装置の制御方法
Guo et al. A deep-learning-based surrogate model for thermal signature prediction in laser metal deposition
JP2021088736A (ja) 品質予測システム
US20220152936A1 (en) Generating thermal images
Yang Model-based predictive analytics for additive and smart manufacturing
EP4249153A1 (en) Tool for scan path visualization and defect distribution prediction
US20220291661A1 (en) Additive manufacturing simulations
Chaturvedi et al. Data-Driven Models in Machine Learning: An Enabler of Smart Manufacturing
US11858042B2 (en) Open loop parameter optimization for additive manufacturing
US20230288910A1 (en) Thermal image determination
Kumar et al. Applications of Artificial Intelligence and Machine Learning Using Additive Manufacturing Techniques
Liao-McPherson et al. Layer-to-Layer Melt Pool Control in Laser Power Bed Fusion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant