CN111366598A - A 3D printing mixed powder ratio measurement method - Google Patents
A 3D printing mixed powder ratio measurement method Download PDFInfo
- Publication number
- CN111366598A CN111366598A CN202010280789.6A CN202010280789A CN111366598A CN 111366598 A CN111366598 A CN 111366598A CN 202010280789 A CN202010280789 A CN 202010280789A CN 111366598 A CN111366598 A CN 111366598A
- Authority
- CN
- China
- Prior art keywords
- powder
- photo
- energy spectrum
- color
- mixed powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011812 mixed powder Substances 0.000 title claims abstract description 60
- 238000010146 3D printing Methods 0.000 title claims abstract description 30
- 238000000691 measurement method Methods 0.000 title claims 7
- 239000000843 powder Substances 0.000 claims abstract description 130
- 238000001228 spectrum Methods 0.000 claims abstract description 70
- 239000002245 particle Substances 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 238000004040 coloring Methods 0.000 claims abstract description 15
- 238000005259 measurement Methods 0.000 claims abstract description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 23
- 238000005070 sampling Methods 0.000 claims description 17
- 239000003086 colorant Substances 0.000 claims description 15
- 239000003292 glue Substances 0.000 claims description 9
- 239000010410 layer Substances 0.000 claims description 7
- 239000012790 adhesive layer Substances 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 230000002452 interceptive effect Effects 0.000 claims description 5
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 239000000428 dust Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 230000003595 spectral effect Effects 0.000 claims 3
- 238000012360 testing method Methods 0.000 abstract description 5
- 230000008676 import Effects 0.000 abstract description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000003822 epoxy resin Substances 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/25—Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/34—Process control of powder characteristics, e.g. density, oxidation or flowability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/401—Imaging image processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/418—Imaging electron microscope
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Quality & Reliability (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
Abstract
本发明公开了一种3D打印混合粉末配比实测方法,包括以下步骤:混合粉末收集与制样;确定粉末A和B成分差异最大的主元素;在同一视场下,对两种主元素进行着色,分别拍摄能谱图照片和实物彩照;导入图像处理软件,用“色彩范围”功能拾取主元素着色像素点;用“记录测量”功能获取着色像素总面积,据此计算确定混合粉末配比。本发明能有效解决颜色相同、松装密度相近、颗粒大小相似的3D打印混合粉末配比测试的难题,相比传统的粉末颗粒逐一测量法,本发明所述的方法速度快、效率高、误差小,操作简单,易于实施。
The invention discloses a method for measuring the proportion of mixed powders for 3D printing, comprising the following steps: collecting and preparing samples of the mixed powders; determining the main element with the largest difference in the composition of powders A and B; under the same field of view, measuring the two main elements For coloring, take the photo of the energy spectrum and the color photo of the real object respectively; import the image processing software, use the "color range" function to pick up the coloring pixels of the main elements; use the "record measurement" function to obtain the total area of the colored pixels, and calculate and determine the mixed powder ratio based on this . The present invention can effectively solve the problem of the proportion test of 3D printing mixed powders with the same color, similar bulk density and similar particle size. Small, simple to operate and easy to implement.
Description
技术领域technical field
本发明涉及3D打印技术领域,具体涉及一种3D打印混合粉末配比实测方法。The invention relates to the technical field of 3D printing, in particular to a method for measuring the proportion of mixed powders for 3D printing.
背景技术Background technique
功能梯度材料是由两种或多种材料复合且成分和结构呈连续梯度变化的一种新型复合材料,其材料组分和宏观性能在空间位置上呈连续、均匀梯度变化的特征,克服了传统复合材料因不同相界面之间引起的应力集中与微裂纹缺陷,可满足航天、能源、生物医学领域结构件的不同部位对材料使用性能的差异化需求。激光沉积(3D打印),通过控制混合粉末质量比以实现材料性能梯度变化,是制备功能梯度材料的重要方法。然而,当采用粉末质量、颗粒直径不同时,混合粉末经送粉管高速喷射后会发生分离,造成材料成分偏差,致使材料使用性能下降,无法满足设计要求。因此,如何快速、精准地测得混合粉末的实际质量配比,是实现粉末分离调控,保障功能梯度材料成分准确的前提与基础。Functionally graded material is a new type of composite material composed of two or more materials with continuous gradient changes in composition and structure. Due to the stress concentration and microcrack defects caused by different phase interfaces, composite materials can meet the differentiated requirements of different parts of the structure in the aerospace, energy, and biomedical fields for the performance of the material. Laser deposition (3D printing), by controlling the mass ratio of mixed powders to achieve gradient changes in material properties, is an important method for preparing functionally graded materials. However, when the powder quality and particle diameter are different, the mixed powder will be separated after being sprayed at a high speed by the powder feeding tube, resulting in deviation of material composition, resulting in a decline in the performance of the material, which cannot meet the design requirements. Therefore, how to quickly and accurately measure the actual mass ratio of mixed powders is the premise and basis for realizing powder separation and regulation and ensuring the accuracy of functionally graded materials.
近年来,工程人员逐渐认识到混合粉末成分配比的精准检测的重要性,广泛开展粉末配比检测方法与装置的研究。公开号为CN105486705B的中国发明专利提供了一种定量分析粉末混合物成分的方法,通过X光衍射谱分析得到粉末分值及吸收系数,进而建立杠杆定律公式测得粉末质量配比;公开号为CN109916941A的中国发明专利提出了一种预混合粉末3D打印分离检测方法,通过图像测量系统Digimizer对能谱彩图中的粉末颗粒直径进行逐一测量,换算体积求和后,计算得到混合粉末质量配比;在此基础上,公开号为CN109746447A的中国发明专利提出一种预混合粉末分离调控方法,实现了对粉末分离的精准调控。上述专利中提出的粉末成分与配比测试方法,需要对粉末颗粒进行逐一测量,测试工作量大,且计算过程过于复杂,对技术人员的数学水平要求较高。In recent years, engineers have gradually realized the importance of accurate detection of the composition ratio of mixed powders, and have carried out extensive research on powder ratio detection methods and devices. The Chinese invention patent with the publication number CN105486705B provides a method for quantitatively analyzing the composition of powder mixtures. The powder score and absorption coefficient are obtained through X-ray diffraction analysis, and then a lever law formula is established to measure the powder mass ratio; the publication number is CN109916941A The Chinese invention patent of the company proposes a pre-mixed powder 3D printing separation and detection method. The image measurement system Digimizer measures the diameter of the powder particles in the energy spectrum color map one by one, and after the conversion volume is summed, the mass ratio of the mixed powder is calculated; On this basis, the Chinese invention patent publication number CN109746447A proposes a premixed powder separation control method, which realizes precise control of powder separation. The powder composition and proportioning test method proposed in the above-mentioned patent requires the powder particles to be measured one by one, the test workload is large, and the calculation process is too complicated, which requires a high level of mathematics for technicians.
随着人工智能技术的快速崛起,研发与工程人员逐渐意识到运用计算机图像识别方法来解决工程问题。公开号为CN110658040A的中国发明专利提出一种金属球形粉末标准样品的制备方法,运用图像统计软件完成粉末颗粒粒度统计;公开号为CN110335257A的中国发明专利提出一种图像色彩检测方法及移动终端,能够识别出图像数据颜色基调信息;公开号为CN107068589B的中国发明专利提出一种基于图像识别的晶粒挑选系统及方法,通过蓝膜,将标准晶粒的图像分解成像素点,并记录每个像素点的灰阶标准值,实现晶粒挑选;公开号为CN110853017A的中国发明专利提出了一种粉末颗粒图像中圆颗粒数量的统计方法,通过提取图像中的联通域,结合中心漂移算法实现对图像中形状不规则、大小不一、重叠情况的粉末颗粒的数量和大小进行统计。然而,上述方法不是需要额外的硬件,就是计算过于复杂,实际操作难度极大。针对颜色相同、松装密度相近,颗粒大小相似的混合粉末,尚缺乏简单、快速、有效的混合粉末配比实测方法。With the rapid rise of artificial intelligence technology, R&D and engineering personnel have gradually realized the use of computer image recognition methods to solve engineering problems. The Chinese invention patent with publication number CN110658040A proposes a method for preparing a standard sample of metal spherical powder, which uses image statistics software to complete powder particle size statistics; the Chinese invention patent with publication number CN110335257A proposes an image color detection method and a mobile terminal, which can The color tone information of the image data is identified; the Chinese invention patent with the publication number CN107068589B proposes a grain selection system and method based on image recognition, through the blue film, the image of the standard grain is decomposed into pixel points, and each pixel is recorded. The grayscale standard value of the point is used to achieve grain selection; the Chinese invention patent publication number CN110853017A proposes a statistical method for the number of circular particles in a powder particle image. The number and size of powder particles with irregular shapes, different sizes and overlapping conditions are counted. However, the above method either requires additional hardware, or the calculation is too complicated and the actual operation is extremely difficult. For mixed powders with the same color, similar bulk density and similar particle size, there is still a lack of a simple, fast and effective method for measuring the proportion of mixed powders.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是提供一种3D打印混合粉末配比实测方法,其能有效解决颜色相同、松装密度相近、颗粒大小相似的3D打印混合粉末配比测试的难题,速度快,效率高。The technical problem to be solved by the present invention is to provide a method for measuring the proportion of 3D printing mixed powder, which can effectively solve the problem of measuring the proportion of 3D printing mixed powder with the same color, similar bulk density and similar particle size, with high speed and efficiency. high.
为了解决上述技术问题,本发明提供了一种3D打印混合粉末配比实测方法,包括以下步骤:In order to solve the above technical problems, the present invention provides a method for measuring the proportion of mixed powders for 3D printing, which includes the following steps:
步骤一、获取具有混合粉末的样品,其中混合粉末包括粉末A和粉末B;
步骤二、选定粉末A和粉末B的化学成分差异最大的元素EA和EB,其中,元素EA为粉末A的主元素,元素EB为粉末B的主元素;
步骤三、通过扫描电子显微镜对样品表面的元素能谱面扫描,在能谱分析仪附带的软件界面,设置元素EA为第一颜色,设置元素EB为第二颜色,所述第一颜色和第二颜色为两种不同颜色的三元色;Step 3: Scan the element energy spectrum on the surface of the sample with a scanning electron microscope. On the software interface attached to the energy spectrum analyzer, set the element E A as the first color, and set the element E B as the second color, and the first color and the second color is a triad of two different colors;
步骤四、获取同一视场下样品中元素EA的能谱照片Fig.A、样品中元素EB的能谱照Fig.B和彩色照片图Fig.C,其中,所述彩色照片图Fig.C同时对元素EA和元素EB着色;Step 4: Obtain the energy spectrum photo of element EA in the sample Fig.A , the energy spectrum photo of element E B in the sample Fig.B and the color photo map Fig.C under the same field of view, wherein the color photo is Fig. C simultaneously colors element E A and element E B ;
步骤五、判断彩色照片图Fig.C中的粉尘颗粒是否完全着色,若是,则进入步骤六;若否,则调整扫描电子显微镜的拍摄位置,选取临近区域重复步骤四,直至Fig.C中的粉末颗粒完全着色;Step 5. Determine whether the dust particles in the color photo in Fig.C are completely colored. If so, go to
步骤六、通过图像处理软件对能谱照片Fig.A进行处理,获取能谱照片Fig.A中元素EA的像素总面积SA,具体包括:Step 6: Process the energy spectrum photo Fig.A by image processing software to obtain the total pixel area S A of the element EA in the energy spectrum photo Fig.A , which specifically includes:
S61、若粉末B中不含有元素EA,则拾取并选中能谱照片Fig.A中着色区域,直至所有非背景色被选中,利用图像处理软件中的“记录测量”功能,获取着色区域的像素总面积SA;S61. If the powder B does not contain the element E A , pick and select the colored area in the energy spectrum photo Fig.A until all non-background colors are selected, and use the "record measurement" function in the image processing software to obtain the coloring area. Total pixel area S A ;
S62、若粉末B中含有元素EA,则拾取并选中能谱照片Fig.A中所有着色区域,之后根据彩色照片图Fig.C中元素EB对应粉末颗粒位置剔除能谱照片Fig.A中干扰像素,利用图像处理软件中的“记录测量”功能,获取剔除干扰像素后的着色区域的像素总面积SA;S62. If the powder B contains element E A , pick and select all the colored areas in the energy spectrum photo Fig.A, and then remove the energy spectrum photo Fig.A according to the position of the powder particle corresponding to the element E B in the color photo image Fig.C Interfering pixels, use the "record measurement" function in the image processing software to obtain the total pixel area S A of the coloring area after eliminating the interference pixels;
步骤七、通过图像处理软件对能谱照片Fig.B进行处理,获取能谱照片Fig.B中元素EB的像素总面积SB,具体包括:Step 7: Process the energy spectrum photo Fig.B by image processing software to obtain the total pixel area S B of the element E B in the energy spectrum photo Fig.B, which specifically includes:
S71、若粉末A中不含有元素EB,则拾取并选中能谱照片Fig.B中着色区域,直至所有非背景色被选中,利用图像处理软件中的“记录测量”功能,获取着色区域的像素总面积SB;S71. If the powder A does not contain the element E B , pick and select the colored area in the energy spectrum photo Fig.B until all non-background colors are selected, and use the "record measurement" function in the image processing software to obtain the coloring area. total pixel area S B ;
S72、若粉末A中含有元素EB,则拾取并选中能谱照片Fig.B中所有着色区域,之后根据彩色照片图Fig.C中元素EA对应粉末颗粒位置剔除能谱照片Fig.B中干扰像素,利用图像处理软件中的“记录测量”功能,获取剔除干扰像素后的着色区域的像素总面积SB;S72. If the powder A contains element E B , pick and select all the colored areas in the energy spectrum photo Fig.B, and then remove the energy spectrum photo Fig.B according to the position of the powder particle corresponding to the element E A in the color photo image Fig.C Interfering pixels, use the "record measurement" function in the image processing software to obtain the total pixel area S B of the coloring area after eliminating the interference pixels;
步骤八、计算获得混合粉末的实测配比η;
其中,ρA为粉末A的松装密度,ρB为粉末B的松装密度,mA为粉末A的总质量,mB为粉末B的总质量,nA为Fig.C中粉末A的颗粒个数,nB为Fig.C中粉末B的颗粒个数,为粉末A的制造厂商提供的粉末颗粒平均直径,为粉末B的制造厂商提供的粉末颗粒平均直径,μ为像素比例尺, Among them, ρ A is the bulk density of powder A, ρ B is the bulk density of powder B, m A is the total mass of powder A, m B is the total mass of powder B, and n A is the total mass of powder A in Fig.C Number of particles, n B is the number of particles of powder B in Fig.C, Average diameter of powder particles provided to the manufacturer of Powder A, The average diameter of powder particles provided by the manufacturer of powder B, μ is the pixel scale,
作为优选的,S61中,运用颜色取样“吸管+”拾取能谱照片Fig.A中着色区域。Preferably, in S61, use the color sampling "Pipe+" to pick up the colored area in the energy spectrum photo Fig.A.
作为优选的,S62中,运用颜色取样“吸管-”拾取剔除能谱照片Fig.A中干扰像素。Preferably, in S62, the color sampling "pipe-" is used to pick out the disturbing pixels in the energy spectrum photo Fig.A.
作为优选的,步骤一具体包括:As preferably, step one specifically includes:
S11、在3D打印机的工作台上固定亚克力板,所述亚克力板的上表面自带离型膜,在所述离型膜上依次设置双面胶层和液态环脂胶层;S11. Fix an acrylic plate on the worktable of the 3D printer, the upper surface of the acrylic plate is provided with a release film, and a double-sided adhesive layer and a liquid cycloaliphatic adhesive layer are arranged on the release film in sequence;
S12、将混合粉末装入3D打印机的送粉料斗,打开所述送粉料斗,保持激光束关闭,3D打印激光喷头朝所述亚克力板喷射粉末,获得覆盖混合粉末层的亚克力板,之后静置冷却直至所述液态环氧树脂胶固化;S12. Load the mixed powder into the powder feeding hopper of the 3D printer, open the powder feeding hopper, keep the laser beam turned off, and spray the powder with the 3D printing laser nozzle to the acrylic plate to obtain an acrylic plate covering the mixed powder layer, and then let it stand cooling until the liquid epoxy resin is cured;
S13、对亚克力板上粘附的混合粉末层取样、清洗与烘干,获得样品。S13, sampling, cleaning and drying the mixed powder layer adhering to the acrylic plate to obtain a sample.
作为优选的,S12中所述3D打印激光喷头为同轴送粉式。Preferably, the 3D printing laser nozzle in S12 is a coaxial powder feeding type.
作为优选的,所述图像处理软件为Photoshop。Preferably, the image processing software is Photoshop.
作为优选的,所述图像处理软件为FlauntR。Preferably, the image processing software is FlauntR.
作为优选的,所述步骤六中的能谱照片Fig.A为png无损压缩格式图片。Preferably, the energy spectrum photo Fig.A in the
作为优选的,所述步骤七中的能谱照片Fig.B为png无损压缩格式图片。Preferably, the energy spectrum photo Fig.B in the
作为优选的,S71中,运用颜色取样“吸管+”拾取能谱照片Fig.B中着色区域;S72中,运用颜色取样“吸管-”拾取剔除能谱照片Fig.B中干扰像素。Preferably, in S71, use the color sampling "Pipe+" to pick up the colored area in the energy spectrum photo Fig.B; in S72, use the color sampling "Pipe-" to pick and remove the interference pixels in the energy spectrum photo Fig.B.
本发明的有益效果:Beneficial effects of the present invention:
1、本发明提供了一种3D打印混合粉末配比实测方法,能有效解决颜色相同、松装密度相近、颗粒大小相似的3D打印混合粉末配比测试的难题,相比传统的粉末颗粒逐一测量法,本发明所述的方法速度快、效率高、误差5%以内。1. The present invention provides a method for measuring the proportion of 3D printing mixed powder, which can effectively solve the problem of measuring the proportion of 3D printing mixed powder with the same color, similar bulk density and similar particle size. Compared with the traditional powder particle measurement one by one The method of the present invention is fast, efficient, and has an error within 5%.
2、本发明对检测人员业务素质要求不高,操作简单,易于实施。2. The present invention does not have high requirements on the professional quality of testing personnel, and is simple to operate and easy to implement.
附图说明Description of drawings
图1为本发明实施例的流程示意图;1 is a schematic flowchart of an embodiment of the present invention;
图2为本发明实施例的粉末收集示意图;Fig. 2 is the powder collection schematic diagram of the embodiment of the present invention;
图3为本发明的混合粉末元素能谱面扫示意图。FIG. 3 is a schematic diagram of the elemental energy spectrum scan of the mixed powder of the present invention.
图中标号说明:1、送粉料斗;2、粉管;3、同轴光内送粉激光头;4、环氧树脂胶;5、双面胶;6、亚克力板;7、送粉轨迹;8、工作台;9、混合粉末;10、粉末B像素集;11、粉末A像素集;12、粉末A的干扰像素;13、元素EA的能谱照片;14、混合粉末实物彩色照片;15、元素EB的能谱照片。Description of the labels in the figure: 1. Powder feeding hopper; 2. Powder tube; 3. Coaxial optical inner powder feeding laser head; 4. Epoxy resin glue; 5. Double-sided tape; 6. Acrylic plate; 7.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below with reference to the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the embodiments are not intended to limit the present invention.
本发明公开了3D打印混合粉末配比实测方法,包括以下步骤:The invention discloses a method for measuring the proportion of 3D printing mixed powder, comprising the following steps:
步骤一、获取具有混合粉末的样品,其中混合粉末包括粉末A和粉末B:
S11、在3D打印机的工作台上固定亚克力板,所述亚克力板的上表面自带离型膜,在所述离型膜上依次设置双面胶层和液态环脂胶层;S11. Fix an acrylic plate on the worktable of the 3D printer, the upper surface of the acrylic plate is provided with a release film, and a double-sided adhesive layer and a liquid cycloaliphatic adhesive layer are arranged on the release film in sequence;
S12、将混合粉末装入3D打印机的送粉料斗,打开所述送粉料斗,保持激光束关闭,3D打印激光喷头朝所述亚克力板喷射粉末,获得覆盖混合粉末层的亚克力板,之后静置冷却直至所述液态环氧树脂胶固化,其中,3D打印激光喷头为同轴送粉式。S12. Load the mixed powder into the powder feeding hopper of the 3D printer, open the powder feeding hopper, keep the laser beam turned off, and spray the powder with the 3D printing laser nozzle to the acrylic plate to obtain an acrylic plate covering the mixed powder layer, and then let it stand Cool until the liquid epoxy resin is solidified, wherein the 3D printing laser nozzle is a coaxial powder feeding type.
S13、对亚克力板上粘附的混合粉末层取样、清洗与烘干,获得样品。S13, sampling, cleaning and drying the mixed powder layer adhering to the acrylic plate to obtain a sample.
步骤二、选定粉末A和粉末B的化学成分差异最大的元素EA和EB,其中,元素EA为粉末A的主元素,元素EB为粉末B的主元素。Step 2: Selecting elements E A and E B with the largest chemical composition difference between powder A and powder B, wherein element E A is the main element of powder A, and element E B is the main element of powder B.
步骤三、通过扫描电子显微镜对样品表面的元素能谱面扫描,在能谱分析仪附带的软件界面,设置元素EA为第一颜色,设置元素EB为第二颜色,所述第一颜色和第二颜色为两种不同颜色的三元色。三元色为RGB三色,如此,方便图像处理软件区分两种元素,也便于提取着色颗粒,便于与背景区域区分。Step 3: Scan the element energy spectrum on the surface of the sample with a scanning electron microscope. On the software interface attached to the energy spectrum analyzer, set the element E A as the first color, and set the element E B as the second color, and the first color and the second color is a triad of two different colors. The three primary colors are RGB three colors. In this way, it is convenient for image processing software to distinguish two elements, and it is also easy to extract colored particles, which is easy to distinguish from the background area.
步骤四、获取同一视场下样品中元素EA的能谱照片Fig.A、样品中元素EB的能谱照Fig.B和彩色照片图Fig.C,其中,所述彩色照片图Fig.C同时对元素EA和元素EB着色。Step 4: Obtain the energy spectrum photo of element EA in the sample Fig.A , the energy spectrum photo of element E B in the sample Fig.B and the color photo map Fig.C under the same field of view, wherein the color photo is Fig. C colors both element E A and element E B.
步骤五、判断彩色照片图Fig.C中的粉尘颗粒是否完全着色,若是,则进入步骤六;若否,则调整扫描电子显微镜的拍摄位置,选取临近区域重复步骤四,直至Fig.C中的粉末颗粒完全着色。Step 5. Determine whether the dust particles in the color photo in Fig.C are completely colored. If so, go to
步骤六、通过图像处理软件对能谱照片Fig.A进行处理,获取能谱照片Fig.A中元素EA的像素总面积SA,具体包括:Step 6: Process the energy spectrum photo Fig.A by image processing software to obtain the total pixel area S A of the element EA in the energy spectrum photo Fig.A , which specifically includes:
S61、若粉末B中不含有元素EA,则拾取并选中能谱照片Fig.A中着色区域,直至所有非背景色被选中,利用图像处理软件中的“记录测量”功能,获取着色区域的像素总面积SA;S61. If the powder B does not contain the element E A , pick and select the colored area in the energy spectrum photo Fig.A until all non-background colors are selected, and use the "record measurement" function in the image processing software to obtain the coloring area. Total pixel area S A ;
S62、若粉末B中含有元素EA,则拾取并选中能谱照片Fig.A中所有着色区域,之后根据彩色照片图Fig.C中元素EB对应粉末颗粒位置剔除能谱照片Fig.A中干扰像素,利用图像处理软件中的“记录测量”功能,获取剔除干扰像素后的着色区域的像素总面积SA。S62. If the powder B contains element E A , pick and select all the colored areas in the energy spectrum photo Fig.A, and then remove the energy spectrum photo Fig.A according to the position of the powder particle corresponding to the element E B in the color photo image Fig.C For interference pixels, use the "record measurement" function in the image processing software to obtain the total pixel area S A of the colored area after eliminating the interference pixels.
步骤七、通过图像处理软件对能谱照片Fig.B进行处理,获取能谱照片Fig.B中元素EB的像素总面积SB,具体包括:Step 7: Process the energy spectrum photo Fig.B by image processing software to obtain the total pixel area S B of the element E B in the energy spectrum photo Fig.B, which specifically includes:
S71、若粉末A中不含有元素EB,则拾取并选中能谱照片Fig.B中着色区域,直至所有非背景色被选中,利用图像处理软件中的“记录测量”功能,获取着色区域的像素总面积SB;S71. If the powder A does not contain the element E B , pick and select the colored area in the energy spectrum photo Fig.B until all non-background colors are selected, and use the "record measurement" function in the image processing software to obtain the coloring area. total pixel area S B ;
S72、若粉末A中含有元素EB,则拾取并选中能谱照片Fig.B中所有着色区域,之后根据彩色照片图Fig.C中元素EA对应粉末颗粒位置剔除能谱照片Fig.B中干扰像素,利用图像处理软件中的“记录测量”功能,获取剔除干扰像素后的着色区域的像素总面积SB。S72. If the powder A contains element E B , pick and select all the colored areas in the energy spectrum photo Fig.B, and then remove the energy spectrum photo Fig.B according to the position of the powder particle corresponding to the element E A in the color photo image Fig.C For interfering pixels, use the "record measurement" function in the image processing software to obtain the total pixel area S B of the colored area after removing the interfering pixels.
步骤八、计算获得混合粉末的实测配比η;
其中,ρA为粉末A的松装密度,ρB为粉末B的松装密度,mA为粉末A的总质量,mB为粉末B的总质量,nA为Fig.C中粉末A的颗粒个数,nB为Fig.C中粉末B的颗粒个数,为粉末A的制造厂商提供的粉末颗粒平均直径,为粉末B的制造厂商提供的粉末颗粒平均直径,μ为像素比例尺, Among them, ρ A is the bulk density of powder A, ρ B is the bulk density of powder B, m A is the total mass of powder A, m B is the total mass of powder B, and n A is the total mass of powder A in Fig.C Number of particles, n B is the number of particles of powder B in Fig.C, Average diameter of powder particles provided to the manufacturer of Powder A, The average diameter of powder particles provided by the manufacturer of powder B, μ is the pixel scale,
S61中,运用颜色取样“吸管+”拾取能谱照片Fig.A中着色区域;S62中,运用颜色取样“吸管-”拾取剔除能谱照片Fig.A中干扰像素。S71中,运用颜色取样“吸管+”拾取能谱照片Fig.B中着色区域;S72中,运用颜色取样“吸管-”拾取剔除能谱照片Fig.B中干扰像素。In S61, use the color sampling "Pipe+" to pick up the colored area in the energy spectrum photo Fig.A; in S62, use the color sampling "Pipe-" to pick out the interference pixels in the energy spectrum photo Fig.A. In S71, use the color sampling "Pipe+" to pick up the colored area in the energy spectrum photo Fig.B; in S72, use the color sampling "Pipe-" to pick out the interference pixels in the energy spectrum photo Fig.B.
图像处理软件为Photoshop或FlauntR。The image processing software is Photoshop or FlauntR.
步骤六中的能谱照片Fig.A为png无损压缩格式图片。The energy spectrum photo in
步骤七中的能谱照片Fig.B为png无损压缩格式图片。The energy spectrum photo in
实施例1Example 1
针对上海电气集团上海汽轮机厂生产的百万千瓦核电汽轮机缸体中分面转子支撑处的Ni-Fe功能梯度材料,采用激光沉积工艺制备,即原材料粉末A为IN625镍粉,粉末B为304L铁粉、按设计质量比1:3称重混合,现需测量3D打印喷射后的实际粉末配比。Aiming at the Ni-Fe functionally graded material at the faceted rotor support in the cylinder block of the million-kilowatt nuclear power steam turbine produced by Shanghai Electric Group Shanghai Steam Turbine Plant, the laser deposition process was used to prepare it, that is, the raw material powder A was IN625 nickel powder, and the powder B was 304L iron. The powder is weighed and mixed according to the designed mass ratio of 1:3. Now it is necessary to measure the actual powder ratio after 3D printing spraying.
应用本发明提供的一种3D打印混合粉末配比实测方法,具体流程如图1所示,操作如下:Applying a method for measuring the proportion of mixed powders for 3D printing provided by the present invention, the specific process is shown in Figure 1, and the operations are as follows:
1)将自带离型膜的亚克力板6固定在3D打印工作台8上,在亚克力板6表面粘贴双面胶5,随后将无色、透明环氧树脂A胶与B胶按2:1的比例倒入240ml透明的一次性塑料杯中(该塑料杯不会与环氧树脂4发生化学反应),用搅拌棒将两种胶混合均匀,撕掉双面胶5表层,用宽度为5mm的扁刷将环氧树脂胶4均匀涂抹在双面胶表面,控制环氧树脂4的厚度不超1mm;1) Fix the
2)对装有同轴光内送粉激光头3的工业机械臂编程,如图2所示,设定移动轨迹7的长度L为0.5m,调整送粉率为8g/min,扫描速度为8mm/s,激光喷头与亚克力板6表面垂直距离(喷射距离)为18.5mm,随后打开氩气与送粉料斗1,保持激光束关闭,按预设轨迹7移动0.5m,混合粉末9经粉管2喷射到粘有环氧树脂胶4的亚克力板6上,再将粘有混合粉末层的亚克力板6放在阴凉处干燥,直至液态环氧树脂胶4完全固化;2) Program the industrial robotic arm equipped with the coaxial optical inner powder feeding
3)针对含有粉末的亚克力板6,用裁剪机配套刀具刻划出1cm*1cm大小,再用刀尖将粉末下方的离型膜从亚克力板6上均匀揭开并撕下,确保在此过程中离型膜不发生褶皱,获取检测样品,随后对其喷金处理,并使用导电胶与铜片固定,放入扫描电子显微镜真空仓。3) For the
表1Table 1
表1为粉末A和粉末B出厂附带的化学元素成分表。根据表1,选定粉末A的主元素EA为Ni,粉末B的主元素EB为Fe,利用扫描电子显微镜(扫描电子显微镜的型号为德国蔡司EVO18或日立JSM-7800F)对样品粉末表面进行元素能谱面扫描,在能谱分析仪附带软件界面,设置元素Ni为蓝色,元素Fe为绿色。在同一个视场下,分别拾取并拍摄混合粉末中元素Ni的能谱照片13,元素Fe的能谱照片15,以及同时存在元素Ni和Fe的实物彩色照片14;Table 1 is the chemical element composition table attached to Powder A and Powder B. According to Table 1, the main element E A of powder A is selected to be Ni, and the main element E B of powder B is Fe. The surface of the sample powder is analyzed by scanning electron microscope (the model of the scanning electron microscope is German Zeiss EVO18 or Hitachi JSM-7800F). Perform element energy spectrum scan, in the software interface attached to the energy spectrum analyzer, set the element Ni as blue and the element Fe as green. Under the same field of view, pick up and take the
4)判断混合粉末实物彩色照片14中的粉末颗粒是否完全着色,此时,所有粉末颗粒已完全着色,故进入下一步骤;4) Judging whether the powder particles in the mixed powder
5)将主元素为Ni的能谱照片13导入图像处理软件Photoshop CS6,调整照片至100%大小,点击主菜单“选择”,开启用图像处理软件“色彩范围”模块,设置颜色容差为100%,用颜色取样吸管,拾取并选中能谱照片中着色颗粒,由于粉末B含有10.1%的镍元素,则运用颜色取样“吸管+”进行多次叠加拾取,直至所有非背景色被选中后,观察彩图14中元素Ni对应粉末颗粒位置,然后再用“吸管-”工具拾取粉末A的干扰像素12对应位置RGB值,排除此类干扰像素;5) Import the
6)利用图像处理软件Photoshop CS6主菜单“图像”模块中的“分析”、“记录测量”功能,获取步骤五的照片13中Ni元素像素总面积SA为6436;6) Utilize "analyze", "record measurement" function in image processing software Photoshop CS6 main menu "image" module to obtain Ni element pixel total area S A in the
7)将主元素为Fe的能谱照片15导入图像处理软件Photoshop CS6,重复步骤5)和步骤6),获取能谱照片15中Fe元素的像素总面积SB为21640;7) the main element is that the
8)根据公式,代入表2所示的粉末A和粉末B的松装密度及平均颗粒直径,计算混合粉末的实测配比η为0.299;8) According to the formula, substitute the bulk density and average particle diameter of powder A and powder B shown in Table 2, and calculate the measured ratio η of the mixed powder to be 0.299;
表2Table 2
为了验证上述测试方法的效果,我们运用图像测量软件Digimizer逐一测量混合粉末实物彩色照片14中的粉末颗粒直径,换算体积求和后,计算得到混合粉末质量配比为0.312,与本实施例中得到的实测配比0.299进行比对,误差仅为4.3%。而显而易见,本发明中的测试方法比使用测量软件Digimizer逐一测量混合粉末实物彩色照片14中的粉末颗粒直径的方式快速便捷多,能够减少人力,提高工作效率。In order to verify the effect of the above test method, we use the image measurement software Digimizer to measure the diameter of the powder particles in the
结果表明,本发明所述的一种3D打印混合粉末配比实测方法有效,结果准确,效率高。The results show that the method for measuring the proportion of mixed powders for 3D printing in the present invention is effective, with accurate results and high efficiency.
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。The above-mentioned embodiments are only preferred embodiments for fully illustrating the present invention, and the protection scope of the present invention is not limited thereto. Equivalent substitutions or transformations made by those skilled in the art on the basis of the present invention are all within the protection scope of the present invention. The protection scope of the present invention is subject to the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010280789.6A CN111366598B (en) | 2020-04-10 | 2020-04-10 | Actual measurement method for ratio of 3D printing mixed powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010280789.6A CN111366598B (en) | 2020-04-10 | 2020-04-10 | Actual measurement method for ratio of 3D printing mixed powder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111366598A true CN111366598A (en) | 2020-07-03 |
CN111366598B CN111366598B (en) | 2022-07-15 |
Family
ID=71209399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010280789.6A Active CN111366598B (en) | 2020-04-10 | 2020-04-10 | Actual measurement method for ratio of 3D printing mixed powder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111366598B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113290255A (en) * | 2021-05-25 | 2021-08-24 | 苏州大学 | Double-powder-barrel real-time powder feeding laser 3D printing proportioning control method |
CN117784721A (en) * | 2023-11-14 | 2024-03-29 | 东莞德芳油墨科技有限公司 | Intelligent control system for producing water-based environment-friendly ink |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102203591A (en) * | 2008-10-27 | 2011-09-28 | 斯奈克玛 | Counting inclusions on alloys by image analysis |
CN103389232A (en) * | 2012-05-07 | 2013-11-13 | 广东韶钢松山股份有限公司 | Powder alloy cast iron X-ray fluorescence spectral analysis sample preparation method |
CN109746447A (en) * | 2019-03-25 | 2019-05-14 | 苏州大学 | A kind of premixed powder 3D printing separation regulation method |
CN109916941A (en) * | 2019-03-25 | 2019-06-21 | 苏州大学 | A premixed powder 3D printing separation detection method |
WO2020051635A1 (en) * | 2018-09-10 | 2020-03-19 | Swinburne University Of Technology | 3d printing powder composition and a method of 3d printing an article |
-
2020
- 2020-04-10 CN CN202010280789.6A patent/CN111366598B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102203591A (en) * | 2008-10-27 | 2011-09-28 | 斯奈克玛 | Counting inclusions on alloys by image analysis |
CN103389232A (en) * | 2012-05-07 | 2013-11-13 | 广东韶钢松山股份有限公司 | Powder alloy cast iron X-ray fluorescence spectral analysis sample preparation method |
WO2020051635A1 (en) * | 2018-09-10 | 2020-03-19 | Swinburne University Of Technology | 3d printing powder composition and a method of 3d printing an article |
CN109746447A (en) * | 2019-03-25 | 2019-05-14 | 苏州大学 | A kind of premixed powder 3D printing separation regulation method |
CN109916941A (en) * | 2019-03-25 | 2019-06-21 | 苏州大学 | A premixed powder 3D printing separation detection method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113290255A (en) * | 2021-05-25 | 2021-08-24 | 苏州大学 | Double-powder-barrel real-time powder feeding laser 3D printing proportioning control method |
CN113290255B (en) * | 2021-05-25 | 2022-08-30 | 苏州大学 | Double-powder-barrel real-time powder feeding laser 3D printing proportioning control method |
CN117784721A (en) * | 2023-11-14 | 2024-03-29 | 东莞德芳油墨科技有限公司 | Intelligent control system for producing water-based environment-friendly ink |
CN117784721B (en) * | 2023-11-14 | 2024-05-28 | 东莞德芳油墨科技有限公司 | Intelligent control system for producing water-based environment-friendly ink |
Also Published As
Publication number | Publication date |
---|---|
CN111366598B (en) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112881467B (en) | Large-size composite material damage imaging and quantitative identification method | |
CN111366598B (en) | Actual measurement method for ratio of 3D printing mixed powder | |
CN103808263B (en) | The high-flux detection method of Grain rice shape parameter | |
CN101713641A (en) | Digital graphic technology-based method and device for analyzing leaf area | |
CN105510362B (en) | Rice tillering character damage-free measuring apparatus and its measurement method based on minitype CT | |
US20220299455A1 (en) | Method for quantitatively characterizing dendrite segregation and dendrite spacing of high-temperature alloy ingot | |
Song et al. | Advances in measuring air-void parameters in hardened concrete using a flatbed scanner | |
CN107941830A (en) | The distributional analysis Image Acquisition and data handling system of Xray fluorescence spectrometer | |
Reedy et al. | Image analysis in quantitative particle studies of archaeological ceramic thin sections | |
CN104267030B (en) | The attrition value detection method of multi-wire saw guide wheel | |
CN107290199A (en) | A kind of method that utilization electron probe quickly characterizes bearing steel segregation | |
CN202974977U (en) | A Portable Eco-hydrological Experiment and Monitoring System | |
CN106596615A (en) | Quantitative analysis method for continuous casting billet dendritic segregation | |
CN103075972A (en) | Method for measuring thickness of dry coating coated on substrate surface | |
CN109916941B (en) | 3D printing separation detection method for premixed powder | |
CN110702716A (en) | Method for analyzing inclusions based on steelmaking process | |
CN100410971C (en) | Analysis method of digital image color analysis system | |
Schmidt et al. | Band positions used for on-line crystallographic orientation determination from electron back scattering patterns | |
CN109746447B (en) | 3D printing separation regulation and control method for premixed powder | |
JP3676878B2 (en) | Pollen automatic collection and analysis system | |
CN108788474A (en) | Crown cap laser-marking device prepares production line and preparation method | |
CN107255450B (en) | Screening method of tungsten carbide alloy powder | |
CN206672891U (en) | A kind of sample stage for the analysis of mineral facies automatic identification | |
CN116718433A (en) | Online ore pulp sampler and sampling method | |
CN212321459U (en) | Automatic image identification equipment of fibre |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |