CN111365812A - New fan and air purification method - Google Patents

New fan and air purification method Download PDF

Info

Publication number
CN111365812A
CN111365812A CN202010112164.9A CN202010112164A CN111365812A CN 111365812 A CN111365812 A CN 111365812A CN 202010112164 A CN202010112164 A CN 202010112164A CN 111365812 A CN111365812 A CN 111365812A
Authority
CN
China
Prior art keywords
air
fan
electrode
air inlet
electrode column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010112164.9A
Other languages
Chinese (zh)
Inventor
王野
王贫清
陈卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202010112164.9A priority Critical patent/CN111365812A/en
Publication of CN111365812A publication Critical patent/CN111365812A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrostatic Separation (AREA)

Abstract

The embodiment of the invention provides a new fan and an air purification method, wherein the new fan comprises: the device comprises a shell, an electronic filter, a high-voltage generator, a first fan, an electrostatic absorber and a second fan; the electronic filter includes: the device comprises a cylinder electrode and an ion generator positioned in the cylinder electrode; the high voltage generator is electrically connected with the ion generator; the shell is provided with an outdoor air inlet, an indoor air outlet and a first indoor air inlet; the outdoor air inlet is provided with a first air valve, and the first indoor air inlet is provided with a second air valve; in the embodiment of the invention, the air is purified by discharging through the ion generator, so that the accumulated filtering capacity of the fresh air machine is improved, and secondary pollution is avoided; simultaneously, the discharge purified air can be applied to indoor and outdoor air exchange and indoor air circulation scenes by controlling the opening and closing of the first air valve and the second air valve, and the air purification effect of the fresh air fan is improved.

Description

New fan and air purification method
Technical Field
The embodiment of the invention relates to the technical field of air purification, in particular to a new fan and an air purification method.
Background
The new air blower on the market currently adopts a physical filtering method, and referring to fig. 1, an existing new air blower is shown, arrows in the figure are used for indicating indoor air flow direction, and the existing new air blower only comprises a heat exchanger and a simple filtering component, for example: a primary filtration module, a High efficiency particulate air Filter (HEPA) and activated carbon filtration. The existing fresh air fan needs to replace a filter medium regularly, and the accumulated filtering capability is poor, so that secondary pollution is easily caused.
Disclosure of Invention
The embodiment of the invention provides a new fan and an air purification method, and solves the problems that the existing new fan is poor in accumulative filtering capacity and easy to cause secondary pollution.
In a first aspect, an embodiment of the present invention provides a new fan, including: the device comprises a shell, an electronic filter, a high-voltage generator, a first fan, an electrostatic absorber and a second fan, wherein the electronic filter, the high-voltage generator, the first fan, the electrostatic absorber and the second fan are positioned in the shell;
the electronic filter includes: the device comprises a cylinder electrode and an ion generator positioned inside the cylinder electrode;
the high voltage generator is electrically connected with the ion generator;
the shell is provided with an outdoor air inlet, an indoor air outlet and a first indoor air inlet;
the outdoor air inlet and the first indoor air inlet are communicated with the electronic filter through a first air channel;
the air outlet of the electronic filter is communicated with the air inlet of the first fan;
the air outlet of the first fan is communicated with the air inlet of the electrostatic adsorber through a second air duct;
the air outlet of the electrostatic adsorber is communicated with the air inlet of the second fan;
the air inlet of the second fan is communicated with the indoor air outlet through a third air duct;
the first fan and the second fan are used for driving air to flow in from the outdoor air inlet or the first indoor air inlet and flow out from the indoor air outlet;
the outdoor air inlet is provided with a first air valve, and the first indoor air inlet is provided with a second air valve;
the air flows into the electronic filter from the outdoor air inlet or the first indoor air inlet, and the high-voltage generator supplies power to the ion generator to discharge the ion generator so as to purify the air.
Optionally, the fresh air machine further comprises: a heat exchanger and a third fan;
the heat exchanger is provided with a first air inlet, a first air outlet, a second air inlet and a second air outlet;
the shell is also provided with a second indoor air inlet and an outdoor air outlet;
the first air inlet is communicated with the outdoor air inlet and the first indoor air inlet through the first air duct;
the first air outlet is communicated with the air inlet of the electronic filter;
the second air inlet is communicated with the second indoor air inlet;
the second air outlet is communicated with the air inlet of the third fan through a fourth air duct;
the air outlet of the third fan is communicated with the outdoor air outlet;
and the third fan is used for driving air to flow in from the second indoor air inlet and flow out from the outdoor air outlet.
Optionally, the first air duct, the second air duct, the third air duct and the fourth air duct are integrally formed polypropylene plastic EPP air ducts;
the electronic filter, the high-voltage generator, the first fan, the electrostatic absorber, the second fan and the heat exchanger are all loaded on the EPP air channel.
Optionally, the ionizer includes: the device comprises a hollow electrode column, a ground electrode column, a supporting structure, a first electrode belt and a second electrode belt;
the ground electrode column is fixed at the position of the middle shaft of the hollow electrode column through the supporting structure;
the first electrode belts are distributed on the outer wall of the hollow electrode column, and the second electrode belts are distributed on the inner wall of the hollow electrode column;
the first electrode belt comprises a plurality of first tip electrodes pointing to the outer side of the hollow electrode column, and the second electrode belt comprises a plurality of second tip electrodes pointing to the inner side of the hollow electrode column;
the high-voltage generator is electrically connected with the hollow electrode column;
wherein, after the air flows into the electronic filter, the hollow electrode column is supplied with power, the first tip electrode is discharged to purify the air flowing through the outer wall of the hollow electrode column, and the second tip electrode is discharged to purify the air flowing through the inner wall of the hollow electrode column.
Optionally, the ionizer includes: the device comprises a hollow electrode column, a ground electrode column and a supporting structure;
the hollow electrode column is formed by curling a parallelogram conductive plate;
the ground electrode column is fixed at the position of the middle shaft of the hollow electrode column through the supporting structure;
a plurality of electrode areas which are parallel to each other are arranged on the side wall of the hollow electrode column;
the electrode area comprises a plurality of first tip electrodes and a plurality of second tip electrodes which are integrally formed with the hollow electrode column;
the first tip electrode is bent towards the outer wall of the hollow electrode column, and the second tip electrode is bent towards the inner wall of the hollow electrode column;
the high-voltage generator is electrically connected with the hollow electrode column;
wherein, after the air flows into the electronic filter, the hollow electrode column is supplied with power, the first tip electrode is discharged to purify the air flowing through the outer wall of the hollow electrode column, and the second tip electrode is discharged to purify the air flowing through the inner wall of the hollow electrode column.
Optionally, the first electrode strips are distributed on the outer wall of the hollow electrode column along the spiral direction, and the second electrode strips are distributed on the inner wall of the hollow electrode column along the spiral direction;
the spiral direction of the first electrode belt is the same as that of the second electrode belt.
Optionally, a connecting line of adjacent first tip electrodes is a spiral line, and a first inclination angle is formed between the connecting line and the horizontal plane, and the first inclination angle is any angle from 3 ° to 45 °;
and the connecting line of the adjacent second tip electrode is a spiral line, and a second inclination angle is formed between the connecting line and the horizontal plane, and the second inclination angle is any angle from 3 degrees to 45 degrees.
Optionally, the electrode region has an oblique angle with the horizontal plane.
Optionally, the inclination angle is any angle of 3 ° to 45 °.
Optionally, the tip shapes of the first tip electrode and the second tip electrode are both triangular, and the apex angle is not greater than 45 °.
In a second aspect, an embodiment of the present invention provides an air purification method, which is applied to the fresh air machine according to the first aspect, and the method includes:
starting a first fan and a second fan, and detecting the indoor air quality;
under the condition that the concentration of indoor gas pollutants is detected to reach a first preset value, a first air valve is opened, a second air valve is closed, and a high-voltage generator is controlled to supply power to an ion generator in an electronic filter;
and under the condition that the concentration of the indoor solid pollutants reaches a second preset value, opening the second air valve, closing the first air valve, and controlling the high-voltage generator to supply power to the ion generator in the electronic filter.
Optionally, in the case that the first air valve is opened and the second air valve is closed, the method further includes:
and starting the third fan, and exchanging heat between the air flowing in from the outdoor air inlet and the air flowing in from the second indoor air inlet through the heat exchanger.
In the embodiment of the invention, the air is purified by discharging through the ion generator, so that the accumulated filtering capacity of the fresh air machine is improved, and secondary pollution is avoided; simultaneously, the discharge purified air can be applied to indoor and outdoor air exchange and indoor air circulation scenes by controlling the opening and closing of the first air valve and the second air valve, and the air purification effect of the fresh air fan is improved.
Drawings
In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings used in the description of the embodiments of the present invention will be briefly introduced below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art that other drawings can be obtained based on these drawings without creative efforts.
Fig. 1 is a schematic structural diagram of a fresh air machine according to an embodiment of the present invention;
fig. 2 is a second schematic structural diagram of a fresh air machine according to an embodiment of the present invention;
fig. 3 is a third schematic structural diagram of a fresh air machine according to an embodiment of the present invention;
FIG. 4a is a schematic structural diagram of an ionizer according to an embodiment of the present invention;
FIG. 4b is a schematic top view of an ionizer according to an embodiment of the present invention;
fig. 5a is a second schematic structural diagram of an ionizer according to the embodiment of the present invention;
FIG. 5b is an expanded view of a hollow electrode column according to an embodiment of the present invention;
FIG. 5c is a schematic diagram of a cutting tip electrode in an electrode region provided by an embodiment of the present invention;
FIG. 5d is a schematic top view of a tip electrode according to an embodiment of the present invention after bending;
FIG. 5e is a schematic side view of a hollow electrode column according to an embodiment of the present invention;
FIG. 6a is a schematic diagram of an electric field distribution of a tip electrode according to an embodiment of the present invention;
FIG. 6b is a schematic diagram of the energy distribution of the tip electrode according to an embodiment of the present invention;
fig. 7 is a schematic flow chart of an air purification method according to an embodiment of the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are some, not all, embodiments of the present invention. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
In the embodiments of the present invention, words such as "exemplary" or "for example" are used to mean serving as examples, illustrations or descriptions. Any embodiment or design described as "exemplary" or "e.g.," an embodiment of the present invention is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the word "exemplary" or "such as" is intended to present concepts related in a concrete fashion.
Herein, relational terms such as "first" and "second", and the like, are used solely to distinguish one from another of like names, and do not imply a relationship or order between the names.
Referring to fig. 1 to 3, an embodiment of the present invention provides a new fan, including:
the device comprises a shell 1, an electronic filter 2, a high-voltage generator 3, a first fan 4, an electrostatic absorber 5 and a second fan 6, wherein the electronic filter, the high-voltage generator, the first fan 4, the electrostatic absorber and the second fan are positioned in the shell;
the electronic filter 2 includes: a cylindrical electrode 21 and an ionizer 22 located inside the cylindrical electrode 21, it should be noted that, since the ionizer 22 is located inside the cylindrical electrode 21, only the cylindrical electrode 21 is labeled in fig. 1, and the specific structure of the ionizer 22 is described later with reference to fig. 4a to 5 e;
the high voltage generator 3 is electrically connected with the ion generator 22, high voltage electricity is provided for the ion generator 22 through the high voltage generator 3, further the ion generator 22 discharges electricity, air is ionized through the discharge, and substances such as plasma, negative ions, ozone and the like are generated to purify the air;
the shell 1 is provided with an outdoor air inlet 11, an indoor air outlet 12 and a first indoor air inlet 13;
specifically, referring to fig. 1, the outdoor intake vent 11 and the first indoor intake vent 13 are communicated with the electronic filter 2 through the first air duct 101, such that outdoor air can flow into the electronic filter 2 from the outdoor intake vent 11 for purification and indoor air can flow into the electronic filter 2 from the first indoor intake vent 13 for purification;
the air outlet of the electronic filter 2 is communicated with the air inlet of the first fan 4, so that the air purified by the electronic filter 2 can continuously flow backwards along the air path under the action of the first fan 4;
the air outlet of the first fan 4 is communicated with the air inlet of the electrostatic adsorber 5 through the second air duct 102, so that particles in the air can be charged in the purification process of the electronic filter 2, and when the charged particles flow through the electrostatic adsorber 5 along with the air, the charged particles can be adsorbed by static electricity, and the effect of further purifying the air is achieved;
the air outlet of the electrostatic adsorber 5 is communicated with the air inlet of the second fan 6, so that the air adsorbed by the electrostatic adsorber 5 can continuously flow backwards along the air path under the action of the second fan 6;
the air inlet of the second fan 6 is communicated with the indoor air outlet 12 through the third air duct 103, so that the air purified by the electronic filter 2 and adsorbed by the electrostatic adsorber 5 flows into the room through the indoor air outlet 12, and the air entering the room is clean; alternatively, as shown in fig. 1 to 3, a charcoal bag 7 may be disposed in the third air duct 103, and a last adsorption treatment may be performed before the air flows into the room, and furthermore, substances for sterilization such as ozone may be generated by ionization of the air in the electronic filter 2, and the charcoal bag 7 may absorb the generated substances such as ozone to prevent the generated substances from flowing into the room.
The first fan 4 and the second fan 6 are used for driving air to flow in from the outdoor air inlet 11 or the first indoor air inlet 13 and flow out from the indoor air outlet 12;
the outdoor air inlet 11 is provided with a first air valve 110, the first indoor air inlet 13 is provided with a second air valve 130, and indoor or outdoor air flows into the fresh air machine and is purified by controlling the opening and closing of the first air valve 110 and the second air valve 130, so that air purification can be performed in indoor and outdoor air exchange and indoor air circulation scenes; optionally, referring to fig. 1 to 3, a control module 100 is disposed in the fresh air machine, and the control module 100 controls the start, the shut-off, and the operation of each component.
Wherein, air flows into the electronic filter 2 from the outdoor air inlet 11 or the first indoor air inlet 13, and the high voltage generator 3 supplies power to the ion generator 22, so that the ion generator 22 discharges to purify the air.
In the embodiment of the invention, the air is purified by discharging through the ion generator, so that the accumulated filtering capacity of the fresh air machine is improved, and secondary pollution is avoided; simultaneously, the discharge purified air can be applied to indoor and outdoor air exchange and indoor air circulation scenes by controlling the opening and closing of the first air valve and the second air valve, and the air purification effect of the fresh air fan is improved.
With continued reference to fig. 1-3, in some embodiments, the fresh air machine further comprises: a heat exchanger 8 and a third fan 9;
the heat exchanger 8 is provided with a first air inlet, a first air outlet, a second air inlet and a second air outlet;
the shell 1 is also provided with a second indoor air inlet 14 and an outdoor air outlet 15;
specifically, the first air inlet is communicated with the outdoor air inlet 11 and the first indoor air inlet 13 through the first air duct 101;
the first air outlet is communicated with the air inlet of the electronic filter 2;
the second air inlet is communicated with a second indoor air inlet 14;
the second air outlet is communicated with an air inlet of the third fan 9 through a fourth air duct 104;
the air outlet of the third fan 9 is communicated with the outdoor air outlet 15;
the third fan 9 is used for driving air to flow in from the second indoor air inlet 14 and flow out from the outdoor air outlet 15.
In the embodiment of the present invention, the outdoor air flows in from the outdoor air inlet 11, passes through the heat exchanger 8, and enters the electronic filter 2, and meanwhile, the outdoor air flows in from the second indoor air inlet 14, passes through the heat exchanger 8, enters the fourth air duct 104, and flows out from the outdoor air outlet 15. In this way, in the indoor/outdoor air exchange scenario, the air flowing from the outdoor into the indoor exchanges heat with the air flowing from the indoor into the outdoor in the heat exchanger 8, and the temperature of the air entering the indoor is made appropriate.
The heat exchanger 8 may be an existing heat exchanger, and it can be understood that two air flows for heat exchange in the heat exchanger respectively flow in different channels, that is, in the heat exchange process, only heat is exchanged between the air flows of different air paths without air mixing, thereby preventing mutual pollution of indoor air and outdoor air.
Further, as shown in fig. 1, the first air inlet and the second air outlet of the heat exchanger 8 may be provided with a filter screen 81 for filtering the air.
The heat exchanger 8 is used in an indoor/outdoor air exchange scenario in which the first damper 110 is opened and the second damper 130 is closed.
In some embodiments, the first air channel 101, the second air channel 102, the third air channel 130, and the fourth air channel 104 are integrally molded polypropylene (EPP) air channels 105;
the electronic filter 2, the high-voltage generator 3, the first fan 4, the electrostatic adsorber 5, the second fan 6 and the heat exchanger 8 are all carried on the EPP air duct 105.
In the embodiment of the invention, the EPP air duct 105 is adopted to divide each air duct inside the fresh air fan, and meanwhile, the characteristics of excellent shock resistance and energy absorption performance, high recovery rate after deformation, good heat resistance, chemical resistance, oil resistance, heat insulation, light weight and the like of the EPP product are utilized to bear all parts inside the fresh air fan on the EPP air duct, so that stable assembly is realized.
Optionally, as shown in fig. 3, the casing 1 may be divided into a detachable upper casing and a detachable lower casing, and correspondingly, the EPP air duct 105 may also be divided into a detachable upper casing and a detachable lower casing, which is convenient for the new blower to be detached and installed and is beneficial to regular maintenance and repair; on the other hand, the mode of clamping the two parts up and down is adopted, so that the equipment stability of the fresh air machine is facilitated.
Referring to fig. 4a and 4b, there is shown a structure of an ionizer 22, the ionizer 22 including: a hollow electrode column 221, a ground electrode column 222, a support structure 223, a first electrode strip 224 and a second electrode strip 225;
the ground electrode column 222 is fixed at the central axis position of the hollow electrode column 221 through a support structure 223;
the first electrode strips 224 are distributed on the outer wall of the hollow electrode column 221, and the second electrode strips 225 are distributed on the inner wall of the hollow electrode column 221;
the first electrode strip 224 comprises a plurality of first tip electrodes 2241 directed to the outside of the hollow electrode column 221, and the second electrode strip 225 comprises a plurality of second tip electrodes 2251 directed to the inside of the hollow electrode column 221;
the high voltage generator 3 is electrically connected with the hollow electrode column 221;
wherein, after the air flows into the air cleaner, power is supplied to the hollow electrode column, the first tip electrode 2241 is discharged to purify the air flowing through the outer wall of the hollow electrode column 221, and the second tip electrode 2251 is discharged to purify the air flowing through the inner wall of the hollow electrode column 221.
The material of the first tip electrode 2241 and the second tip electrode 2251 is a material having good conductivity, for example: copper, aluminum, nickel, etc., when the hollow electrode column 221 is energized, the first and second tip electrodes 2241 and 2251 can discharge, thereby generating negative ions, plasma, ozone, etc., to purify the air.
The ground electrode column 222 functions to generate a large voltage difference between the second tip electrode 2251 and the ground electrode column 222, thereby performing a discharge. It can be understood that, in a practical application scenario, when the ionizer is installed inside the air purifier, a grounded cylinder electrode is disposed outside the ionizer, so that a large voltage difference is generated between first tip electrode 2241 and the cylinder electrode, thereby achieving discharge.
As shown in fig. 4a, the supporting structure 223 is a cross-shaped supporting frame, the number of the supporting structures 223 can be 2, and the supporting structures 223 are respectively arranged at the upper end and the lower end of the hollow electrode column 221 to fixedly connect the electrode column 222; the number of the supporting structures 223 may also be 3 or more, and the supporting structures are respectively disposed at the upper and lower ends and the middle portion of the hollow electrode column 221 to ensure that the ground electrode column 222 is fixed and stable.
It should be noted that the material of the supporting structure 223 should be non-conductive material to avoid short circuit between the ground electrode column 222 and the hollow electrode column 221.
In the embodiment of the present invention, when air flows through the ionizer 22, it simultaneously flows through the outer and inner walls of the hollow electrode column 221, and power is supplied to the hollow electrode column 221, so that the first and second tip electrodes 2241 and 2251 discharge to simultaneously purify the air flowing through the outer and inner walls of the hollow electrode column 221. Because all set up the pointed end electrode at hollow electrode post 221 outer wall and inner wall and discharged the purification, can make the air purification efficiency of the ion purifier of unit length promote to original about 2 times, promoted ion generator's air purification efficiency under the unit size greatly, like this under the condition that purification efficiency satisfies the demand, can reduce ion generator's size, and then reduce air purifier's overall dimension, avoid air purifier to occupy more interior space.
In some embodiments, the first electrode strips 224 are distributed on the outer wall of the hollow electrode column 221 along a spiral direction, and the second electrode strips 225 are distributed on the inner wall of the hollow electrode column 221 along a spiral direction;
the first electrode belt 224 is spiraled in the same direction as the second electrode belt 225.
Furthermore, the connecting line of the adjacent first tip electrode 2241 is a spiral line, and a first inclination angle is formed between the connecting line and the horizontal plane; the line connecting adjacent second tip electrodes 2251 is a spiral line and has a second inclination angle with respect to the horizontal plane.
It can be understood that the electrode strips are distributed on the hollow electrode column 221 along the spiral direction, so that the tip electrodes only need to be arranged along the electrode strips to realize that the connecting line of the adjacent tip electrodes is a spiral line. When air flows through the tip electrode, the air is guided according to the spiral arrangement of the tip electrode, so that the air flows on the outer wall and the inner wall of the hollow electrode column 221 in a vortex mode, turbulence formed by mutual disturbance of the air is reduced, and wind noise of the air purifier is reduced; simultaneously, the vortex air current flows stably and is favorable to the purification to the air, further improves air purifier's air purification efficiency.
Specifically, the first inclination angle is any angle from 3 ° to 45 °, and the second inclination angle is any angle from 3 ° to 45 °, so that the air purifier can obtain a good wind noise reduction effect and air purification efficiency. It is understood that the first and second tilt angles may be the same and may be different.
It should be noted that when the spiral direction of the electrode strips is set, the environmental factors applied to the air purifier are considered, specifically, the local turning force direction is considered, and the turning force influences the swirling flow of the fluid, so that when the gas is guided, the guiding direction needs to be matched with the turning force direction.
Specifically, when the use area of the air purifier is northern hemisphere, along the gas flow direction, the spiral direction of the electrode belt is counterclockwise; when the use area of the air purifier is the southern hemisphere, the spiral direction of the electrode belt is clockwise along the gas flowing direction. Therefore, the influence of the deflection force on the flow of the air flow can be avoided, and the smooth flow of the air is ensured.
Referring to fig. 5a to 5e, there is shown a structure of an ionizer 22 including: hollow electrode column 31, ground electrode column 32, support structure 33;
the hollow electrode column 31 is formed by curling a parallelogram-shaped conductive plate;
the ground electrode column 32 is fixed at the middle shaft position of the hollow electrode column 31 through a supporting structure 33;
a plurality of electrode areas 310 which are parallel to each other are arranged on the side wall of the hollow electrode column 31;
the electrode area 310 includes a plurality of first tip electrodes 311 and a plurality of second tip electrodes 312 integrally formed with the hollow electrode column 31;
the first tip electrode 311 bends towards the outer wall of the hollow electrode column 31, and the second tip electrode 312 bends towards the inner wall of the hollow electrode column 31;
the high voltage generator 3 is electrically connected with the hollow electrode column 31;
after the air flows into the air purifier, power is supplied to the hollow electrode column, so that the first tip electrode 311 discharges to purify the air flowing through the outer wall of the hollow electrode column, and the second tip electrode 312 discharges to purify the air flowing through the inner wall of the hollow electrode column.
The hollow electrode column 31 is formed by winding a conductive plate made of a material having good conductivity, such as: copper, aluminum, nickel, and the like, since the first tip electrode 311 and the second tip electrode 312 are integrally formed with the hollow electrode column 31, the first tip electrode 311 and the second tip electrode 312 are also materials having good electrical conductivity, and when the hollow electrode column 31 is energized, the first tip electrode 311 and the second tip electrode 312 can discharge electricity, thereby generating negative ions, plasma, ozone, and/or other substances to purify the air.
The ground electrode column 32 functions to generate a large voltage difference between the second tip electrode 312 and the ground electrode column 32, thereby performing a discharge. It can be understood that, in a practical application scenario, when the ionizer is installed inside the air purifier, a grounded cylinder electrode is disposed outside the ionizer, so that a large voltage difference is generated between the first tip electrode 311 and the cylinder electrode, thereby achieving discharging.
As shown in fig. 5a, the supporting structure 33 is a cross-shaped supporting frame, the number of the supporting structures 33 can be 2, and the supporting structures 33 are respectively arranged at the upper end and the lower end of the hollow electrode column 31 to fixedly connect the electrode column 32; it should be noted that the material of the supporting structure 33 should be non-conductive material to avoid short circuit between the ground electrode column 32 and the hollow electrode column 31.
In the embodiment of the present invention, when passing through the ionizer, it simultaneously passes through the outer wall and the inner wall of the hollow electrode column 31, and at this time, power is supplied to the hollow electrode column 31, so that the first tip electrode 311 and the second tip electrode 312 are discharged to simultaneously purify the air passing through the outer wall and the inner wall of the hollow electrode column 31. Because all set up sharp-end electrode at hollow electrode post 31 outer wall and inner wall and discharged and purify, can make the air purification efficiency of the ion purifier of unit length promote to original about 2 times, promoted ion generator's air purification efficiency under the unit size greatly, like this under the condition that purification efficiency satisfies the demand, can reduce ion generator's size, and then reduce air purifier's overall dimension, avoid air purifier to occupy more interior space.
In the embodiment of the invention, the ion generator adopts the hollow electrode column, and the hollow electrode column is provided with the first tip electrode and the second tip electrode which are integrally formed with the hollow electrode column, wherein the first tip electrode is bent towards the outer wall of the hollow electrode column, and the second tip electrode is bent towards the inner wall of the hollow electrode column, so that the air flowing through the outer wall and the inner wall of the hollow electrode column is purified by discharging through the first tip electrode and the second tip electrode, the air purification efficiency of the ion generator under the unit size is improved, and the size and the purification effect of the ion generator can be considered.
In fig. 5b to 5d, when the hollow electrode shaft 31 is machined, a plurality of electrode regions 310 parallel to each other are first defined on the conductive plate, and the electrode regions 310 shown in fig. 5b are rectangular. After the electrode area 310 is determined, a first tip electrode 311 and a second tip electrode 312 are machined in the determined electrode area 310.
Referring to fig. 5c, the conductive plate is cut in the electrode area 310, thereby forming tip electrodes alternately opposing in the electrode area 310.
It should be noted that the cutting shapes of the first tip electrode 311 and the second tip electrode 312 shown in fig. 5c are only schematic, and in the actual processing process, a person skilled in the art can adjust the cutting shapes according to the actual product requirements.
After the cutting of the first tip electrode 311 and the second tip electrode 312 is completed, the first tip electrode 311 is bent toward the outer wall of the conductive plate (the outer wall refers to the outer wall after the conductive plate is curled into the hollow electrode post 31), and the second tip electrode 312 is bent toward the inner wall of the conductive plate (the inner wall refers to the inner wall after the conductive plate is curled into the hollow electrode post 31). As shown in fig. 5d, for the single electrode region 310, the first tip electrode 311 and the second tip electrode 312 are respectively directed to both sides of the conductive plate from a top view.
After the bending of all the first and second tip electrodes 311 and 312 is completed, the conductive plate is curled, thereby obtaining the hollow electrode column 31.
It is understood that, as shown in fig. 5e, there is a joint 313 formed by connecting two ends of the conductive plate on the side of the curled hollow electrode column 31, and the joint 113 may be fixed by a bolt or by welding, and the fixing manner of the joint 113 is not particularly limited in the embodiment of the present invention.
In some embodiments, the electrode region 310 is inclined from the horizontal plane.
In the embodiment of the present invention, since the electrode area 310 has an inclined angle with the horizontal plane, the first tip electrode 311 and the second tip electrode 312 processed in the electrode area 310 also have an inclined angle with the horizontal plane, and the tip electrodes with the inclined angles can generate a flow guiding effect on air in addition to discharging and purifying air. Thus, when air flows through the outer wall and the inner wall of the hollow electrode column 31, the air is guided by the first tip electrode 311 and the second tip electrode 312, so that the air flows in a vortex mode on the outer wall and the inner wall of the hollow electrode column 31, turbulence formed by mutual disturbance of the air is reduced, and wind noise of the air purifier is reduced; simultaneously, the vortex air current flows stably and is favorable to the purification to the air, further improves air purifier's air purification efficiency.
Further, the inclination angle may be any angle of 3 ° to 45 °. Referring to fig. 5b and 5e, after the conductive plate is curled, the lower side of each electrode region 110 can be connected with the upper side of the next electrode region 310 by using a proper inclination angle, so that the sidewall of the curled hollow electrode column 31 forms a spiral winding structure to guide the air flowing through, thereby forming a vortex air flow.
It should be noted that when the inclination direction of the electrode region 310 is set, an environmental factor applied to the air purifier is considered, specifically, the environmental factor is a local turning force direction, and the turning force affects the swirling flow of the fluid, so that when the gas is guided, the guiding direction needs to be matched with the turning force direction.
Specifically, when the use area of the air purifier is northern hemisphere, along the gas flowing direction, the sidewall of the curled hollow electrode column 31 should form a spiral winding structure with the spiral direction being counterclockwise; when the air purifier is used in the southern hemisphere, the sidewall of the curled hollow electrode column 31 should form a spiral winding structure with a clockwise spiral direction along the air flowing direction. Therefore, the influence of the deflection force on the flow of the air flow can be avoided, and the smooth flow of the air is ensured.
In some embodiments, in the ionizer shown in fig. 4a and 4b described above or the ionizer shown in fig. 5a to 5e described above, the tip shapes of the first tip electrode and the second tip electrode are both triangular, and the apex angle is not more than 45 °.
The tip electrode with the parameter range can obtain better discharge effect and improve the efficiency of air purification.
Referring to fig. 6a and 6b, fig. 6a is an electric field profile of the tip electrode and fig. 6b is an energy profile of the tip electrode. As can be seen from fig. 6a, in any tip model, the electric field is concentrated on the surface of the conductor and is significantly concentrated at the tip than at other positions. The electric field intensity of the arc tip model (i.e. the model on the right side in fig. 4 a) at the tip is larger than that of the triangle tip model (i.e. the model on the left side in fig. 6 a), but the electric field of the triangle tip model is more concentrated at the tip, and it can be seen from fig. 4b that the energy is concentrated and distributed only near the tip of the conductor, and the energy of the arc tip model (i.e. the model on the right side in fig. 6 b) at the tip is larger than that of the triangle tip model (i.e. the model on the left side in fig. 6 b), but the range of the triangle tip model is wider.
Therefore, the sharper the position on the surface of the conductor, the higher the charge density of the tip of the conductor, the stronger the field intensity nearby, and the concentrated energy distribution near the tip.
Referring to fig. 7, an embodiment of the present invention provides an air purification method applied to the fresh air machine shown in fig. 1 to 3, and the method includes the following specific steps:
step 701: starting a first fan and a second fan, detecting indoor air quality, and then executing step 702 or step 703;
in an embodiment of the present invention, after a user turns on a fresh air machine, the first fan and the second fan are started, and indoor air quality is detected simultaneously, where the air quality detection may include detection of indoor gas pollutant concentration and/or indoor solid pollutant concentration, and the gas pollutants may include: carbon dioxide, nitrogen oxides, hydrogen sulfides, and the like, and the solid contaminants may include: dust, particulate matter, such as PM2.5, and the like. The air quality detection can be realized by the existing air detection sensor.
According to the detection result of the indoor air quality, the new fan can work in different modes.
Step 702: under the condition that the concentration of indoor gas pollutants is detected to reach a first preset value, a first air valve is opened, a second air valve is closed, and a high-voltage generator is controlled to supply power to an ion generator in an electronic filter;
in the embodiment of the present invention, when the concentration of the gas pollutants in the indoor air is high, indoor and outdoor air exchange needs to be performed, and at this time, the fresh air fan operates in a fresh air mode, specifically, the first air valve is controlled to be opened, the second air valve is controlled to be closed, and the high-pressure generator is controlled to supply power to the ion generator in the electronic filter, so that the outdoor air flows in from the outdoor air inlet, is purified by the inside of the fresh air fan, and then flows out from the indoor air outlet, and the specific purification process can be referred to the description of the foregoing device part, and is not described herein again.
Further, under the condition that the first air valve is opened and the second air valve is closed, the third fan is started, and the heat exchanger exchanges heat between the air flowing in from the outdoor air inlet and the air flowing in from the second indoor air inlet. In this way, the air flowing from the outdoor to the indoor exchanges heat with the air flowing from the indoor to the outdoor in the heat exchanger, and the temperature of the air flowing into the indoor is made appropriate.
Step 703: under the condition that the concentration of the indoor solid pollutants is detected to reach a second preset value, a second air valve is opened, a first air valve is closed, and a high-voltage generator is controlled to supply power to an ion generator in the electronic filter;
in the embodiment of the invention, when the concentration of solid pollutants in the indoor air is high, indoor air purification needs to be performed, and at this time, the fresh air fan works in a purification mode, specifically, the first air valve is controlled to be closed, the second air valve is controlled to be opened, and the high-voltage generator is controlled to supply power to the ion generator in the electronic filter, so that the indoor air flows in from the first indoor air inlet, is purified by the fresh air fan, and then flows out from the indoor air outlet, so that indoor air circulation purification is realized, and a specific purification process can be referred to the description of the aforementioned device part, and is not described herein again.
In the embodiment of the invention, the air is purified by discharging through the ion generator, so that the accumulated filtering capacity of the fresh air machine is improved, and secondary pollution is avoided; simultaneously, the discharge purified air can be applied to indoor and outdoor air exchange and indoor air circulation scenes by controlling the opening and closing of the first air valve and the second air valve, and the air purification effect of the fresh air fan is improved.
The above description is only an embodiment of the present application, but the scope of the present application is not limited thereto, and any changes or substitutions within the technical scope of the present disclosure should be covered by the scope of the present application. Therefore, the protection scope of the present application shall be subject to the protection scope of the claims.

Claims (12)

1. A new fan, comprising: the device comprises a shell, an electronic filter, a high-voltage generator, a first fan, an electrostatic absorber and a second fan, wherein the electronic filter, the high-voltage generator, the first fan, the electrostatic absorber and the second fan are positioned in the shell;
the electronic filter includes: the device comprises a cylinder electrode and an ion generator positioned inside the cylinder electrode;
the high voltage generator is electrically connected with the ion generator;
the shell is provided with an outdoor air inlet, an indoor air outlet and a first indoor air inlet;
the outdoor air inlet and the first indoor air inlet are communicated with the electronic filter through a first air channel;
the air outlet of the electronic filter is communicated with the air inlet of the first fan;
the air outlet of the first fan is communicated with the air inlet of the electrostatic adsorber through a second air duct;
the air outlet of the electrostatic adsorber is communicated with the air inlet of the second fan;
the air inlet of the second fan is communicated with the indoor air outlet through a third air duct;
the first fan and the second fan are used for driving air to flow in from the outdoor air inlet or the first indoor air inlet and flow out from the indoor air outlet;
the outdoor air inlet is provided with a first air valve, and the first indoor air inlet is provided with a second air valve;
the air flows into the electronic filter from the outdoor air inlet or the first indoor air inlet, and the high-voltage generator supplies power to the ion generator to discharge the ion generator so as to purify the air.
2. The new fan in accordance with claim 1, wherein the new fan further comprises: a heat exchanger and a third fan;
the heat exchanger is provided with a first air inlet, a first air outlet, a second air inlet and a second air outlet;
the shell is also provided with a second indoor air inlet and an outdoor air outlet;
the first air inlet is communicated with the outdoor air inlet and the first indoor air inlet through the first air duct;
the first air outlet is communicated with the air inlet of the electronic filter;
the second air inlet is communicated with the second indoor air inlet;
the second air outlet is communicated with the air inlet of the third fan through a fourth air duct;
the air outlet of the third fan is communicated with the outdoor air outlet;
and the third fan is used for driving air to flow in from the second indoor air inlet and flow out from the outdoor air outlet.
3. The new fan in accordance with claim 2,
the first air duct, the second air duct, the third air duct and the fourth air duct are integrally formed polypropylene plastic EPP air ducts;
the electronic filter, the high-voltage generator, the first fan, the electrostatic absorber, the second fan and the heat exchanger are all loaded on the EPP air channel.
4. The new blower of claim 1, wherein the ionizer comprises: the device comprises a hollow electrode column, a ground electrode column, a supporting structure, a first electrode belt and a second electrode belt;
the ground electrode column is fixed at the position of the middle shaft of the hollow electrode column through the supporting structure;
the first electrode belts are distributed on the outer wall of the hollow electrode column, and the second electrode belts are distributed on the inner wall of the hollow electrode column;
the first electrode belt comprises a plurality of first tip electrodes pointing to the outer side of the hollow electrode column, and the second electrode belt comprises a plurality of second tip electrodes pointing to the inner side of the hollow electrode column;
the high-voltage generator is electrically connected with the hollow electrode column;
wherein, after the air flows into the electronic filter, the hollow electrode column is supplied with power, the first tip electrode is discharged to purify the air flowing through the outer wall of the hollow electrode column, and the second tip electrode is discharged to purify the air flowing through the inner wall of the hollow electrode column.
5. The new blower of claim 1, wherein the ionizer comprises: the device comprises a hollow electrode column, a ground electrode column and a supporting structure;
the hollow electrode column is formed by curling a parallelogram conductive plate;
the ground electrode column is fixed at the position of the middle shaft of the hollow electrode column through the supporting structure;
a plurality of electrode areas which are parallel to each other are arranged on the side wall of the hollow electrode column;
the electrode area comprises a plurality of first tip electrodes and a plurality of second tip electrodes which are integrally formed with the hollow electrode column;
the first tip electrode is bent towards the outer wall of the hollow electrode column, and the second tip electrode is bent towards the inner wall of the hollow electrode column;
the high-voltage generator is electrically connected with the hollow electrode column;
wherein, after the air flows into the electronic filter, the hollow electrode column is supplied with power, the first tip electrode is discharged to purify the air flowing through the outer wall of the hollow electrode column, and the second tip electrode is discharged to purify the air flowing through the inner wall of the hollow electrode column.
6. The fresh air machine as claimed in claim 4, wherein the first electrode strips are distributed on the outer wall of the hollow electrode column along a spiral direction, and the second electrode strips are distributed on the inner wall of the hollow electrode column along a spiral direction; the spiral direction of the first electrode belt is the same as that of the second electrode belt.
7. The new fan in accordance with claim 6,
the connecting line of the adjacent first tip electrodes is a spiral line, a first inclination angle is formed between the connecting line and the horizontal plane, and the first inclination angle is any angle from 3 degrees to 45 degrees;
and the connecting line of the adjacent second tip electrode is a spiral line, and a second inclination angle is formed between the connecting line and the horizontal plane, and the second inclination angle is any angle from 3 degrees to 45 degrees.
8. The fresh air machine of claim 5 wherein the electrode area is at an oblique angle to the horizontal.
9. The fresh air machine of claim 8 wherein the angle of inclination is any of 3 ° to 45 °.
10. The fresh air machine of claim 4 or 5 wherein the tip shapes of the first and second tip electrodes are both triangular and have a vertex angle of no more than 45 °.
11. A method for purifying air, applied to a new fan according to any one of claims 1 to 10, characterized in that the method comprises:
starting a first fan and a second fan, and detecting the indoor air quality;
under the condition that the concentration of indoor gas pollutants is detected to reach a first preset value, a first air valve is opened, a second air valve is closed, and a high-voltage generator is controlled to supply power to an ion generator in an electronic filter;
and under the condition that the concentration of the indoor solid pollutants reaches a second preset value, opening the second air valve, closing the first air valve, and controlling the high-voltage generator to supply power to the ion generator in the electronic filter.
12. The method of claim 11, wherein with the first damper open and the second damper closed, the method further comprises:
and starting the third fan, and exchanging heat between the air flowing in from the outdoor air inlet and the air flowing in from the second indoor air inlet through the heat exchanger.
CN202010112164.9A 2020-02-24 2020-02-24 New fan and air purification method Pending CN111365812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010112164.9A CN111365812A (en) 2020-02-24 2020-02-24 New fan and air purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010112164.9A CN111365812A (en) 2020-02-24 2020-02-24 New fan and air purification method

Publications (1)

Publication Number Publication Date
CN111365812A true CN111365812A (en) 2020-07-03

Family

ID=71204388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010112164.9A Pending CN111365812A (en) 2020-02-24 2020-02-24 New fan and air purification method

Country Status (1)

Country Link
CN (1) CN111365812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944505A (en) * 2021-03-09 2021-06-11 社会企业有限公司 Filter without filter screen, air disinfection device and central air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944505A (en) * 2021-03-09 2021-06-11 社会企业有限公司 Filter without filter screen, air disinfection device and central air conditioner

Similar Documents

Publication Publication Date Title
EP1852659B1 (en) Air conditioner
JP2007007589A (en) Electric dust collection device and air cleaning apparatus incorporating the same
CN101886828A (en) Static lampblack purification device
CN108072079B (en) Electrostatic oil fume purifying device and range hood using same
CN213178711U (en) Air cabinet combined air purifying and sterilizing device
CN111365812A (en) New fan and air purification method
JP2019069407A (en) Air treatment apparatus
CN105091104A (en) Air conditioner
CN211551970U (en) New fan
CN113908651A (en) Steel structure workshop welding smoke dust collecting and purifying system and method
CN112594855A (en) Electronic dust collector and air purification device
CN113124528A (en) Air purification device, control method thereof and air conditioner
CN211953079U (en) Air purifier
CN211060274U (en) Little accumulated electricity heat accumulation formula heat transfer purification module
CN211216109U (en) Air purifier
CN211060273U (en) Conduction type heat exchange purification module with micro accumulated electricity
CN210536010U (en) Ion generator for air purifier and air purifier
CN207050034U (en) A kind of static lampblack purification device and application have the range hood of the device
CN207515145U (en) A kind of novel natural ventilation purifier
CN2141528Y (en) Electric air purifier
CN216114576U (en) Ion wind device and air treatment equipment
CN206531177U (en) A kind of air cleaning unit
CN215832128U (en) Discharge device and air purification equipment
CN204933695U (en) Air-conditioner
CN220425610U (en) Low-altitude oil smoke purifier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination