CN111363903B - 一种提高q&p800钢性能的方法 - Google Patents

一种提高q&p800钢性能的方法 Download PDF

Info

Publication number
CN111363903B
CN111363903B CN202010303959.8A CN202010303959A CN111363903B CN 111363903 B CN111363903 B CN 111363903B CN 202010303959 A CN202010303959 A CN 202010303959A CN 111363903 B CN111363903 B CN 111363903B
Authority
CN
China
Prior art keywords
steel
rolling
temperature
equal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010303959.8A
Other languages
English (en)
Other versions
CN111363903A (zh
Inventor
侯晓英
孙卫华
孙帅
王硕
段磊
任东
曹光明
金光宇
郝亮
殷继丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SD Steel Rizhao Co Ltd
Original Assignee
SD Steel Rizhao Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SD Steel Rizhao Co Ltd filed Critical SD Steel Rizhao Co Ltd
Priority to CN202010303959.8A priority Critical patent/CN111363903B/zh
Publication of CN111363903A publication Critical patent/CN111363903A/zh
Application granted granted Critical
Publication of CN111363903B publication Critical patent/CN111363903B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明涉及一种提高Q&P800钢性能的方法,包括以下步骤:所述热轧初始组织调控工序,控制钢坯均热段温度为1280~1300℃,均热段时间约40min,总在炉时间280‑300min,粗轧出口温度1050~1090℃,精轧终轧温度860℃~890℃,精轧结束后将带钢冷却至650~680℃进行卷取;酸轧工序,通过45~55%的压下率冷轧,并将冷轧后的钢坯采用罩式退火,退火均热温度为680℃,保温时间10~12h;连续退火工序,均热温度为(Ac1+20℃)~(Ac3‑30℃),一步淬火配分工艺温度为360~385℃;带速的大小可根据钢坯厚度进行调节;平整工序,控制轧制力在5300~5800KN之间。

Description

一种提高Q&P800钢性能的方法
技术领域
本发明属于汽车用冷轧先进高强钢材料技术领域,具体涉及一种提高Q&P800钢性能的方法。
背景技术
随着汽车工业的快速发展,其生产的技术和理念也在不断革新,尤其是面临能源、环境、资源的巨大压力,开发出低成本、节约经济型的高强度、高塑性钢已然成为钢铁行业发展的方向和目标。Q&P钢因具有可控的热处理工艺以及良好的强塑性等优势被国内外各大企业研发与生产,然而在“低碳”经济的大背景下,Q&P800钢的量产还存在以下问题:
高成本的合金设计:为获得稳定量的残余奥氏体,以及保证Q&P800钢的强度和塑性性能,其成分设计思路为中锰(≥2.0%)、高Al(≥1.0%)以及添加Cr、Mo、Cu、Nb等微合金元素,钢坯制造成本高。
不适用于钢企连退产线的工艺设计:传统Q&P800钢在热处理工序段时,要求快速在Ms~Mf之间某一温度淬火,然后在该淬火温度或者高于Ms点的某一温度等温,促使碳由过饱和的马氏体向奥氏体扩散,提高奥氏体的碳含量,从而使富碳的奥氏体能够稳定至室温。然而在实际的连续退火生产线上,并不能实现淬火后“再加热”的功能。
性能稳定性较差:对于Q&P800钢,汽车主机及配套厂要求在满足塑性指标的前提下,其抗拉强度≥800MPa,屈服强度为420~580MPa,屈服强度标准差为±80MPa。但随着汽车主机厂生产的技术和理念不断革新,对Q&P800钢的性能要求也在不断提升,要求其性能标准差≤25MPa。
因此,开发出低成本、节约经济型Q&P800钢并提高其扩孔及性能稳定性,对实现汽车轻量化及提高汽车制造安全性具有重要的意义。从当前公开的相关专利来看,并未提供提高Q&P800钢扩孔及性能稳定性的生产方法、加工方法或制造/制备方法。
CN 104630641A提供了一种800MPa级高强度高塑性低碳中锰钢及其制造方法,其成分设计思路为中锰(3.0~7.0%)、高Al(1.5~3.5%)以及添加Cr、Mo、Cu、Nb等微合金元素。
CN 110129673A提供了一种800MPa级高强塑级Q&P钢板及其制备方法,其成分设计思路为高碳(0.38~0.42%)、高Al(2.8~3.2%),C含量达到0.38~0.42%,随着含碳量的增加,带钢的强度和硬度提高,而塑性和韧性降低;另外带钢的焊接性能变差(含碳量大于0.3%的钢材,可焊性显著下降),冷脆性和时效敏感性增大,耐大气锈蚀性下降;Al含量达到2.8~3.2%,需要专用保护渣,极大地增加了炼钢成本;在冶炼、精炼过程中,更易生成大量Al2O3夹杂,导致连铸过程中保护渣变性,易出现表面大纵裂等表面缺陷,以及絮流、漏钢等生产事故;屈服强度标准差±46.8MPa。
发明内容
本发明的目的在于提供一种提高Q&P800钢性能的方法。
本发明解决其技术问题所采用的技术方案是:一种提高Q&P800钢性能的方法,包括以下步骤:热轧初始组织调控工序、酸扎工序、连续退火工序和平整工序;
所述热轧初始组织调控工序,控制钢坯均热段温度为1280~1300℃,均热段时间约40min,总在炉时间280-300min,粗轧出口温度1050~1090℃,精轧终轧温度860℃~890℃,精轧结束后将带钢冷却至650~680℃进行卷取,并将卷取后的钢卷置入保温坑中进行缓冷,缓冷时间为72h;
酸轧工序,通过45~55%的压下率冷轧,并将冷轧后的钢坯采用罩式退火,退火均热温度为680℃,保温时间10~12h,再以≤40%的压下率二次冷轧至目标厚度;
连续退火工序,均热温度为(Ac1+20℃)~(Ac3-30℃),一步淬火配分工艺温度为360~385℃;其中带速的大小可根据钢坯厚度的不同进行调节;
平整工序,控制轧制力在5300~5800KN之间。
具体的是,所述热轧初始组织调控工序中将热轧初始组织调控为(40~55)%铁素体和(45~60)%珠光体组织。
具体的是,所述热轧初始组织调控工序中若钢坯中间坯厚度≤3.0mm,则投用边部加热器,两侧加热温度各70℃。
具体的是,所述钢坯在精轧结束后采取轧后前段层流冷却工艺,头、中、尾三段执行U型冷却,热头热尾各40m,保证中部温度665±15℃,头部和尾部温度695±15℃。
具体的是,所述钢坯的成分按重量百分比包括,C:0.17~0.20%,Si:1.00~1.20%,Mn:1.80~2.00%,Nb:0.02~0.04%,Alt:0.030~0.050%,P≤0.010%,S≤0.005%,N≤0.005%,O≤0.003%,余量为Fe及其他不可避免的杂质。
本发明具有以下有益效果:将热轧初始组织调控为(40~55)%铁素体和(45~60)%珠光体组织后,进行酸轧→罩式退火→二次冷轧→连续退火(一步淬火配分工艺)→平整的一体化工艺控制,获得的Q&P800钢性能稳定性高且具有低成本、良好的扩孔性等优点。
附图说明
图1为图表3中的1-II所生产的Q&P800钢热轧初始组织的典型微观组织图。
图2为图表3中的1-II所生产的Q&P800产品的典型微观扫描组织图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。
本发明所述的一种提高Q&P800钢性能的方法,具体步骤如下:
(1)热轧初始组织调控工序:钢坯均热段温度为1280~1300℃,均热段时间约40min,总在炉时间280-300min;粗轧出口温度1050~1090℃;精轧终轧温度860℃~890℃;精轧结束后将带钢冷却至650~680℃进行卷取,并将卷取后的钢卷迅速置入保温坑中进行72h缓冷;将热轧初始组织调控为(40~55)%铁素体和(45~60)%珠光体组织;若钢坯的中间坯厚度≤3.0mm,投用边部加热器,两侧加热温度各70℃;精轧结束后采取轧后前段层流冷却工艺,头、中、尾三段执行U型冷却,热头热尾各40m,保证中部温度665±15℃,头部和尾部温度695±15℃。
(2)酸轧工序:在酸轧工序以45~55%的压下率冷轧后采用罩式退火,退火均热温度为680℃,保温时间10~12h;再以≤40%的压下率二次冷轧到目标厚度。
(3)连续退火工序:均热温度为(Ac1+20℃)~(Ac3-30℃),一步淬火配分工艺温度为360~385℃;钢坯厚度(0.8~1.2)mm,带速≥80m/min;钢坯厚度(1.3~1.6)mm,带速75~80m/min;钢坯厚度>1.6mm,带速70~75m/min。
(4)平整工序:平整过程实际轧制力控制在5300~5800KN之间。
本发明所述的Q&P800钢坯是利用现有低成本、节约经济型Q&P800的钢坯,其化学成分按重量百分比包括C:0.17~0.20%,Si:1.00~1.20%,Mn:1.80~2.00%,Nb:0.02~0.04%,Alt:0.030~0.050%,并限制P≤0.010%,S≤0.005%,N≤0.005%,O≤0.003%,余量为Fe及其他不可避免的杂质,但不仅限于此钢坯化学成分设计。
实施例1~6:
钢坯的出钢钢水化学成分如表1所示。
表1实施例的实际冶炼成分(质量百分比,%)
实施例 C Si Mn Nb Alt P S N O A<sub>C1</sub> A<sub>C3</sub>
1 0.20 1.20 1.82 0.027 0.039 0.007 0.003 0.004 0.002 780 835
2 0.19 1.18 1.72 0.035 0.030 0.008 0.003 0.003 0.002 784 840
3 0.19 1.00 1.70 0.034 0.045 0.002 0.005 0.005 0.003 770 826
4 0.18 1.09 1.90 0.020 0.060 0.006 0.004 0.003 0.002 766 821
5 0.18 1.15 1.84 0.040 0.042 0.004 0.002 0.005 0.003 785 842
6 0.17 1.20 1.89 0.028 0.053 0.003 0.005 0.002 0.002 775 836
实施例1~6在实际生产中的具体工艺参数如表2所示。
Figure BDA0002455058660000041
表2实施例的主要工艺控制参数
对制备得到的Q&P800钢产品取样进行显微组织分析及力学性能测试,测试与分析结果具体见表3。如图1所示,从分析报告可知,由51%的铁素体组织和49%的珠光体组织组成;如图2所示,基体中存在8.5%的残余奥氏体组织;如图1-2分析可得本发明实施例1~6中制备得到的Q&P800钢产品的显微组织主要由铁素体、马氏体/贝氏体以及残余奥氏体组成,其中残余奥氏体体积分数8.0~12.5%。
表3实施例的力学性能与显微组织体积分数
Figure BDA0002455058660000042
由力学性能测试结果分析可知,本发明实施例1~6中制备得到的Q&P800钢性能稳定性高且具有低成本、良好的扩孔性等优点,其抗拉强度稳定控制在820MPa±20MPa,屈服强度稳定控制在520±20MPa,屈强比稳定控制在0.61~0.65,延伸率≥24.0%,扩孔率λ≥55%。
根据本发明的方法,获得的Q&P800钢性能稳定性高且具有低成本、良好的扩孔性等优点,其抗拉强度稳定控制在820MPa±20MPa,屈服强度稳定控制在520±20MPa,屈强比稳定控制在0.61~0.65,延伸率≥24.0%,扩孔率λ≥55%。
图表4为图表3中的1-II所生产的Q&P800钢热轧初始组织的二相比例统计分析报告。
Figure BDA0002455058660000051
本发明不局限于上述实施方式,任何人应得知在本发明的启示下作出的结构变化,凡是与本发明具有相同或相近的技术方案,均落入本发明的保护范围之内。
本发明未详细描述的技术、形状、构造部分均为公知技术。

Claims (5)

1.一种提高Q&P800钢性能的方法,其特征在于,包括以下步骤:热轧初始组织调控工序、酸扎工序、连续退火工序和平整工序;
所述热轧初始组织调控工序,控制钢坯均热段温度为1280~1300℃,均热段时间40min,总在炉时间280-300min,粗轧出口温度1050~1090℃,精轧终轧温度860℃~890℃,精轧结束后将带钢冷却至650~680℃进行卷取,并将卷取后的钢卷置入保温坑中进行缓冷,缓冷时间为72h;
酸轧工序,通过45~55%的压下率冷轧,并将冷轧后的钢坯采用罩式退火,退火均热温度为680℃,保温时间10~12h,再以≤40%的压下率二次冷轧至目标厚度;
连续退火工序,均热温度为(Ac1+20℃)~(Ac3-30℃),一步淬火配分工艺温度为360~385℃;其中带速的大小根据钢坯厚度的不同进行调节;
平整工序,控制轧制力在5300~5800KN之间。
2.根据权利要求1所述的一种提高Q&P800钢性能的方法,其特征在于,所述热轧初始组织调控工序中将热轧初始组织调控为(40~55)%铁素体和(45~60)%珠光体组织。
3.根据权利要求1所述的一种提高Q&P800钢性能的方法,其特征在于,所述热轧初始组织调控工序中若钢坯中间坯厚度≤3.0mm,则投用边部加热器,两侧加热温度各70℃。
4.根据权利要求1所述的一种提高Q&P800钢性能的方法,其特征在于,所述钢坯在精轧结束后采取轧后前段层流冷却工艺,头、中、尾三段执行U型冷却,热头热尾各40m,保证中部温度665±15℃,头部和尾部温度695±15℃。
5.根据权利要求1所述的一种提高Q&P800钢性能的方法,其特征在于,所述钢坯的成分按重量百分比包括,C:0.17~0.20%,Si:1.00~1.20%,Mn:1.80~2.00%,Nb:0.02~0.04%,Alt:0.030~0.050%,P≤0.010%,S≤0.005%,N≤0.005%,O≤0.003%,余量为Fe及其他不可避免的杂质。
CN202010303959.8A 2020-04-17 2020-04-17 一种提高q&p800钢性能的方法 Active CN111363903B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010303959.8A CN111363903B (zh) 2020-04-17 2020-04-17 一种提高q&p800钢性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010303959.8A CN111363903B (zh) 2020-04-17 2020-04-17 一种提高q&p800钢性能的方法

Publications (2)

Publication Number Publication Date
CN111363903A CN111363903A (zh) 2020-07-03
CN111363903B true CN111363903B (zh) 2022-04-01

Family

ID=71203410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010303959.8A Active CN111363903B (zh) 2020-04-17 2020-04-17 一种提高q&p800钢性能的方法

Country Status (1)

Country Link
CN (1) CN111363903B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112222189A (zh) * 2020-09-11 2021-01-15 山东钢铁集团日照有限公司 一种高表面质量高强if冷轧钢带的生产方法
CN115710668A (zh) * 2022-11-15 2023-02-24 山东建筑大学 一种强塑积48GPa%级中锰钢成分设计及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943169A (zh) * 2012-12-10 2013-02-27 北京科技大学 一种汽车用超高强薄钢板的淬火退火制备方法
CN104032109A (zh) * 2014-06-13 2014-09-10 北京科技大学 一种高强钢通过热轧及在线热处理的制备方法
CN109930068A (zh) * 2019-03-27 2019-06-25 武汉钢铁有限公司 一种800MPa级超薄规格冷轧双相钢及其制备方法
CN109988969A (zh) * 2019-04-01 2019-07-09 山东钢铁集团日照有限公司 一种具有不同屈强比的冷轧q&p1180钢及其生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943169A (zh) * 2012-12-10 2013-02-27 北京科技大学 一种汽车用超高强薄钢板的淬火退火制备方法
CN104032109A (zh) * 2014-06-13 2014-09-10 北京科技大学 一种高强钢通过热轧及在线热处理的制备方法
CN109930068A (zh) * 2019-03-27 2019-06-25 武汉钢铁有限公司 一种800MPa级超薄规格冷轧双相钢及其制备方法
CN109988969A (zh) * 2019-04-01 2019-07-09 山东钢铁集团日照有限公司 一种具有不同屈强比的冷轧q&p1180钢及其生产方法

Also Published As

Publication number Publication date
CN111363903A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
CN107619993B (zh) 屈服强度750MPa级冷轧马氏体钢板及其制造方法
CN100516269C (zh) 一种细晶强化碳素结构钢热轧薄板的制造工艺
CN106319368B (zh) 一种经济型薄链板及其制造方法
CN109112433B (zh) 无表面条纹缺陷590MPa级冷轧双相钢及生产方法
CN101928875A (zh) 具有良好成形性能的高强度冷轧钢板及其制备方法
CN111041382A (zh) 一种具有低高温摩擦系数的1800MPa级无镀层热成形钢及其制备方法
CN106011644A (zh) 高伸长率冷轧高强度钢板及其制备方法
CN102304664A (zh) 一种高强度高塑性含铝中锰trip冷轧钢板及制备方法
CN101376944A (zh) 一种高强度高屈强比冷轧钢板及其制造方法
CN108374118A (zh) 一种具有易于成型特性的热镀锌双相钢板及其制造方法
CN110872641A (zh) 一种奥氏体逆正转变与亚温成形生产汽车安全件的方法
CN111363903B (zh) 一种提高q&p800钢性能的方法
CN109097699A (zh) 一种900MPa级热轧汽车大梁钢及其制造方法
CN111321341A (zh) 一种具有低高温摩擦系数的1500MPa级无镀层热成形钢及其制备方法
CN110578100A (zh) 不同屈服强度级别冷轧cp980钢及其生产方法
CN105543666B (zh) 一种屈服强度960MPa汽车大梁钢及其生产方法
CN110129673A (zh) 一种800MPa级高强塑积Q&amp;P钢板及其制备方法
CN110747405B (zh) 适用于辊压的一千兆帕级冷轧贝氏体钢板及其制备方法
CN102191430A (zh) 屈服强度550MPa易焊接高强韧钢板及其制造方法
CN102899587A (zh) 一种双相不锈钢及其制造方法
CN104911476A (zh) 一种热轧钢及其制备方法和用途
CN115572897B (zh) 一种1500MPa级商用汽车箱体钢板及其制造方法
CN110578094A (zh) 一种1.0GPa级冷轧TRIP-BF钢的制备方法
CN110004362B (zh) 一种提高冷轧dp780钢屈强比和扩孔性能的生产方法
CN105251783B (zh) 一种综合力学性能和氧化铁皮结构控制的柔性化生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant