CN111363834B - SNP molecular marker related to resistance of white spot syndrome of procambarus clarkii - Google Patents

SNP molecular marker related to resistance of white spot syndrome of procambarus clarkii Download PDF

Info

Publication number
CN111363834B
CN111363834B CN202010361927.3A CN202010361927A CN111363834B CN 111363834 B CN111363834 B CN 111363834B CN 202010361927 A CN202010361927 A CN 202010361927A CN 111363834 B CN111363834 B CN 111363834B
Authority
CN
China
Prior art keywords
snp
resistance
wssv
white spot
procambarus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010361927.3A
Other languages
Chinese (zh)
Other versions
CN111363834A (en
Inventor
张龙
李艳和
石瑞雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202010361927.3A priority Critical patent/CN111363834B/en
Publication of CN111363834A publication Critical patent/CN111363834A/en
Application granted granted Critical
Publication of CN111363834B publication Critical patent/CN111363834B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/124Animal traits, i.e. production traits, including athletic performance or the like
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses an SNP molecular marker related to resistance of white spot syndrome of procambarus clarkia, and the SNP site is positioned inproPOThe 4 th intron region of the gene has obvious correlation with the property of procambarus clarkia to resist White Spot Syndrome Virus (WSSV), has good polymorphism, and the SNP molecular marker is used for detecting the resistance to WSSV of the procambarus clarkia, thereby being beneficial to improving the disease-resistant breeding efficiency of the procambarus clarkia and accelerating the breeding of new varieties of the procambarus clarkia to resist WSSV.

Description

SNP molecular marker related to resistance of white spot syndrome of procambarus clarkii
Technical Field
The invention belongs to the technical field of aquatic animal genetic breeding, and particularly relates to an SNP molecular marker related to resistance of white spot syndrome of procambarus clarkii.
Background
Procambarus clarkii (Procambarus clarkii) belonging to Crustacea, Depodales, Cratadaceae, Procambarus, native to North Mexico and south America (Deng swamp 2010). Because of rich nutrition and unique taste, the feed has become an important economic culture object in China. According to the report of the development report of the industry of the Chinese crayfish 2019, the yield of the crayfish in China in 2018 reaches 1638700 tons, the total culture area reaches 1680 mu of a thousand, and the total yield reaches 3690 hundred million yuan. White Spot Syndrome Virus (WSSV) is one of important factors influencing the development of the healthy breeding industry of the procambarus clarkii, and certain economic loss is caused to the yield of the procambarus clarkii.
WSSV is a double-stranded DNA virus with a membrane vesicle, and can infect almost all crustaceans such as shrimps and crabs (Ding 2015). After the shrimps are infected with WSSV, the swimming speed becomes obviously slow, the food intake is reduced, the actions are slow, the cephalothorax and the abdominal joints are separated, the hemolymph becomes thin and is not easy to coagulate, and finally the sick shrimps die in a large scale. The whole disease process generally lasts for 3-10 days, and the death rate can reach more than 90% (Yan winter spring 2007). The research on the WSSV carried by the procambarus clarkii shows that the wild procambarus clarkii cultured in the pond and in the river has higher toxicity carrying rate (Hongcheng 2012). In the Hubei area with the highest Procambrus clarkii yield, the WSSV carrying condition of 7 areas mainly breeding the Procambrus clarkii is investigated, and the WSSV carrying proportion of the Procambrus clarkii is between 40 and 70 percent (Li Qingbin 2018).
WSSV propagates mainly by three ways, horizontal propagation, vertical propagation and interspecies retransmission (Chou 1998). At present, many chemical and physical methods are reported for preventing and treating the disease, such as oral administration of viral proteins, injection of inactivated WSSV in vivo (Du et al 2006, Zhu et al 2009), hyperthermia, etc., and although these methods have certain feasibility, they still have certain difficulty in being widely applied to the culture of procambarus clarkii.
In recent years, with the development of molecular biotechnology, people can analyze their genetic bases and estimate their genetic parts through complex surface phenomena, and DNA recombination technology, transgenic technology, molecular marker technology, etc. are gradually applied in the breeding field. The molecular marker technology has the advantages of high polymorphism, simple detection means, low development cost and the like, and is widely applied to aspects of genetic breeding, genome mapping, gene positioning, species genetic relationship identification and the like. At present, disease-resistant molecular markers have been developed in aquatic animals such as Chinese prawns (Jianjinfei 2013), cynoglossus semilaevis (Shigella fly 2015), grass carp (Wangweishi 2014) and Litopenaeus vannamei (Liu et al 2014), but the research on the disease-resistant SNP molecular markers of Procambrus clarkii is still blank, and a disease-resistant key gene of the Procambrus clarkii needs to be excavated by a molecular breeding technology to provide a basis for breeding disease-resistant varieties of the Procambrus clarkii.
Most crustaceans lack adaptive immunity and rely on innate immunity, which is divided into humoral and cellular immunity,they are the first line of defense against pathogens (Loker et al 2004; Cerenius and)
Figure BDA0002476885030000021
2004). The coagulation system, the synthesis of antibiotic proteins and the prophenoloxidase (proPO) activation system, form a humoral immunity in invertebrates (Iwanaga and Lee 2004; Cerenius et al 2008). Among them, prophenoloxidase (proPO) activating system is considered to be the most important immune system in crustaceans (Zheng 2019), and the prophenoloxidase activating system can generate toxic reaction intermediates and melanin to resist pathogens under the catalysis of Serine Protease (SP) (Jiang and Kanost 2000). Current studies have shown that proPO plays a crucial role in physiological processes such as nodule formation, hemolymph attraction, etc. (Cerenius et al 2008; Nappi and Christensen 2005). The proPO system can be activated by pathogens, body injuries and microbial products (Amparyup et al 2013; Cerenius and
Figure BDA0002476885030000022
2004). During the past decades, proPOs have been extensively studied in various organisms and have shown their important role in invertebrate immunization (Amparyup et al 2013; Gu et al 2019; Dziedziech et al 2019).
Disclosure of Invention
The invention aims to provide an SNP molecular marker related to procambarus clarkia White Spot Syndrome Virus (WSSV), wherein the polymorphic site of the SNP molecular marker is positioned in the 4 th intron of procambarus clarkia phenol oxidase (proPO), has obvious correlation with the property of procambarus clarkia in resisting WSSV and good polymorphism, and the WSSV resistance detection of procambarus clarkia by utilizing the SNP molecular marker is beneficial to improving the disease-resistant breeding efficiency of procambarus clarkia and accelerating the breeding of new varieties of procambarus clarkia in resisting WSSV.
In order to achieve the purpose, the technical scheme provided by the invention is as follows:
the invention carries out virus attack treatment and genome DNA extraction on procambarus clarkii WSSV, primer design, PCR amplification, direct sequencing of PCR products, screening and analysis of SNP molecular markers, uses SPSS 22.0 software to carry out data processing, chi-square test for significant difference of genotype and disease resistance character, finds 1 SNP locus g.7081T/C which is significantly related to the anti-WSSV character of procambarus clarkii in the 4 th intron region of a proPO gene, and the SNP molecular markers comprise the following components: 2, and has an allelic mutation at the 451bp position of the sequence, and the genotype is T or C.
The application of the SNP molecular marker in the auxiliary breeding of the white spot syndrome virus resistant variety of the procambarus clarkii comprises the following specific steps: amplifying a fragment containing the SNP locus, and typing the genotype of the SNP locus by a direct sequencing method, wherein the TT genotype is a favorable marker for resistance of the white spot syndrome of the procambarus clarkii.
Further, the primer sequences for amplifying SNP molecular markers are shown as SEQ ID NO.4 and SEQ ID NO. 5.
Drawings
FIG. 1: sequencing peak diagrams of different genotypes of g.7081T/C sites in the 4 th intron of the Procambrus clarkii ProPO gene.
Detailed Description
Examples
1.1 test animals
The procambarus clarkii required by the experiment comes from an aquaculture base of university of agriculture in Huazhong, is temporarily cultured in a polyethylene plastic culture box for 1 week before the experiment, and healthy and active 189 shrimps are selected for carrying out the experiment. The water temperature of indoor cultivation is 24-26 ℃, commercial feed is fed for 1 time every day in the experimental period, and the water is changed for 2 times every week. 189 healthy procambarus clarkii were injected with 0.1mL WSSV (10)9Copy), injection site is the second abdominal segment. As the virus spreads in the body, the first 50 morbidly dead procambarus clarkii serve as a sensitive population. After 15 days, 50 surviving procambarus clarkii were used as the resistant group.
1.2 test methods
1.2.1 extraction of genomic DNA of Procambarus clarkii
Two groups of procambarus clarkii tail muscles are taken and stored in a 2mL centrifuge tube filled with absolute ethyl alcohol, and the DNA of the procambarus clarkii is extracted according to the following steps:
(1) before the experiment, the temperature of a water bath kettle is set to be 55 ℃, protease K is unfrozen on ice, muscle tissue is taken and placed on filter paper, and liquid attached to the muscle is sucked dry; putting the muscle into a 2mL centrifuge tube containing 600 mu L of lysate, shearing the muscle tissue with scissors, and adding 9 mu L of proteinase K;
(2) putting the centrifuge tube filled with the muscle tissue into a water bath kettle to completely digest the muscle tissue;
(3) opening a freezing centrifuge in advance, rapidly cooling to 4 ℃, taking out the muscle tissue after the muscle tissue is completely digested, cooling, adding 200 mu L of ammonium acetate into a centrifuge tube (the step and the subsequent operations are carried out on ice), and shaking forcefully and fully and uniformly mixing;
(4) after centrifugation, the supernatant was slowly aspirated with a 1000 μ L gun and added to a 1.5mL centrifuge tube (approximately 500 μ L); adding equal volume of precooled isopropanol (generated by filaments when gently shaken), centrifuging (4 deg.C, 12000r/min, 10-15min), slowly pouring out supernatant, and leaving white spots;
(5) adding 1mL of 75% ethanol for washing, and centrifuging (4 ℃, 12000r/min, 5 min); pouring out the supernatant, leaving white precipitate or white spot, repeating the steps, and washing with 100% ethanol once (centrifuging at 4 deg.C and 12000r/min for 2-5 min);
(6) drying (about 30min), adding appropriate amount of sterilized double distilled water, oscillating, centrifuging at low speed, and storing the obtained DNA sample at-20 deg.C.
1.2.2 primer design
According to the DNA sequence (SEQ ID NO:1) of the procambarus clarkia proPO gene cloned according to the invention, the SNP site located in the proPO gene is designed and amplified, and primers are designed by using Primer Premier 6.0 software (the Primer sequences are shown in Table 1)
TABLE 1 primer sequences designed according to the invention
Figure BDA0002476885030000041
1.2.3 PCR amplification
The DNA of the resistant group and the sensitive group of procambarus clarkii is taken as a template, the primers shown in the table 1 are used for carrying out PCR amplification, and the amplification system is shown in the table 2.
TABLE 2 composition of PCR amplification System
Figure BDA0002476885030000042
Figure BDA0002476885030000051
The PCR amplification procedure was: pre-denaturation at 95 ℃ for 5min, 40 amplification cycles (95 ℃, 30 s; 55 ℃, 45 s; 72 ℃, 1min), extension at 72 ℃ for 10 min.
1.2.4 Small population Gene pool construction and SNP screening
Respectively randomly selecting 10 individuals from the resistance group and the sensitive group, equivalently mixing DNA of each individual to form a resistance group gene pool and a sensitive group gene pool, carrying out PCR amplification on the DNA of the resistance group and the sensitive group by using designed primers, taking 2 mu L of amplification products, carrying out electrophoresis detection on the amplification products by 1.2% agarose gel, and selecting PCR products with clear and bright electrophoresis bands to send to Wuhan Pongke biology Limited company for sequencing. Sequencing results the nucleotide sequences were analyzed by DNAstar software and sequencing peak maps were aligned for single individual validation of sites that differed significantly in the small population resistance and sensitivity groups for the remaining 80 individuals.
1.2.5 data analysis
Calculating the allele frequency, the genotype frequency, the polymorphic information content, the group observation heterozygosity, the expected heterozygosity, the effective allele factor and the Hardy-Weinberg balance test of the SNP by PopGene 32 software. The SNP genotypes and the disease resistance traits were subjected to chi-square test with SPSS 22.0.
1.2.6 analysis of results
1.2.6.1 Procambarus clarkii ProPO gene SNP small population screening
Carrying out amplification sequencing on the procambarus clarkia proPO gene fragment 1-5, and comparing to find no SNP (single nucleotide polymorphism) site in the fragment 1-3; 2 SNP sites with significant difference between the resistance group and the sensitivity group are found in the fragment 4, and the 2 sites are positioned in the 3 rd intron of the proPO gene through comparison; 1 SNP site with significant difference between the resistant group and the sensitive group was found in fragment 5(SEQ ID NO: 2), and was located in intron 4 of the proPO gene by alignment.
1.2.6.1 Procambarus clarkii ProPO gene large-population SNP screening and polymorphism analysis
Using the primer proPO-F4/R4And proPO-F5/R5The remaining 80 procambarus clarkii individuals were amplified for the pro gene fragment 4 and the fragment 5, and after sequencing comparison, the polymorphic information of the 3 sites was analyzed by PopGene 32, and the results are shown in Table 3.
TABLE 3 polymorphic parameter analysis of ProPO gene SNP site of Procambarus clarkii
Figure BDA0002476885030000061
Note: SNP: single nucleotide polymorphism; ho: heterozygosity; he: a degree of expected heterozygosity; HWE: testing Hardy Winberg balance; PIC: polymorphic information content: ne: a useful allele.
Table 3 illustrates: heterozygosity of 3 SNPs is 0.24 to 0.33, expected heterozygosity is 0.270 to 0.367, and effective allele factor is 1.368 to 1.613. Analysis of polymorphism parameters showed that all 3 SNP sites followed Hard-Weinberg. All 3 SNPs showed moderate polymorphisms (0.25< PIC < 0.5).
1.2.6.2 correlation analysis of SNP locus of procambarus clarkii proPO gene and anti-WSSV character
And respectively counting the allele frequencies and the genotype frequencies of the 3 SNP loci in the resistance group and the sensitivity group, carrying out significance difference test on the allele frequencies and the genotype frequencies of the 3 SNP loci in the resistance group and the sensitivity group by using Chi's test in SPSS 22.0 software, and considering that the significance difference exists when P <0.05, otherwise, not existing.
TABLE 4 correlation analysis of SNP site of ProPO gene of Procambarus clarkii and anti-WSSV
Figure BDA0002476885030000062
Note: the bold numbers indicate significant differences (P < 0.05).
Table 4 illustrates: in g.5057T/C, g.7081T/C and g.5061T/C, the proportion of TT genotype procambarus clarkia in the resistant group is higher than that in the sensitive group. The chi-square test on the genotype frequency and the allele frequency of 3 SNPs in the resistance group and the sensitive group shows that the genotype frequency and the allele frequency of the g.7081T/C locus have significant difference in the resistance group and the sensitive group (P < 0.05). These results indicate that g.7081T/C has significant correlation with the anti-WSSV trait, and TT genotype is the dominant genotype in the WSSV resistance group, so that anti-WSSV breeding can be performed by selecting Procambarus clarkii with the proPO gene g.7081T/C locus being TT genotype.
Reference to the literature
1. Dune. discussion of the economic value of the market for crayfish. modern commercial and trade industry, 2010, 13: 155
2. Hongcpeng White Spot Syndrome Virus (WSSV) carryover survey in commercial Procambrus clarkii Jiangxi aquatic science, 2012: 13-15
3. Yinjiaofei, yellow sea No. 2, chinese prawn high-throughput SNP screening and association analysis with anti-WSSV traits [ master academic thesis ]. shanghai: shanghai ocean university, 2013
4. Liqingbin, Procambrus clarkii white spot syndrome Virus in vivo and epidemiological investigation.4 [ Master thesis ]. Wuhan: university of agriculture in Huazhong, 2018
5. Wangwen-calm-grass carp 3 Toll-like receptor gene cloning and expression and bacterial sepsis correlation analysis. Shanghai ocean university, 2014.
6. Shish the screening of the disease-resistant related SNP markers of cynoglossus semilaevis and the cloning and preliminary analysis of two immune-related genes [ master thesis ]. shanghai: shanghai ocean university, 2015
7. Yan winter spring prawn White Spot Syndrome Virus (WSSV) host research progress ocean lake marsh advisory, 2007, (01): 136-140
8.Amparyup P,Charoensapsri W,Tassanakajon A.Prophenoloxidase system and its role in shrimp immune responses against major pathogens.Fish Shellfish Immunol,2013,34:990–1001
9.Chou HY,Huang CY,Lo CF,Kou GH.Studies on transmission of white spot syndrome associated baculovims(WSBV)in Penaeus monodon and P.japonicus via waterbome contact and oral ingestion.Aquaculture,1998,164:263-276
10.Cerenius L,Lee BL,
Figure BDA0002476885030000071
K.The proPO-system:pros and cons for its role in invertebrate immunity.Trends Immunol,2008,29:263–271.
11.Cerenius L,
Figure BDA0002476885030000072
K.The prophenoloxidase-activating system in invertebrates.Immunol.Rev,2004,77:116–126
12.Dziedziech A,Schmid M,Arefin B,Kienzle T,Krautz R,Theopold U.Data on Drosophila clots and hemocyte morphologies using GFP-tagged secretory proteins:Prophenoloxidase and transglutaminase.Date in Brief,2019,25:104229
13.Du H,Xu Z,Wu X,Li W,Dai W.Increased resistance to white spot syndrome virus in Procambarus clarkii by injection of envelope protein VP28 expressed using recombinant baculovirus.Aquaculture,2006,260:39-43
14.Ding ZF,Yao YF,Zhang FX,Wan JJ,Sun ML,Liu HY,Zhou G,Tang JQ,Pan JL,Xue H,Zhao ZM.The first detection of white spot syndrome Virus in naturally infected cultured Chinese mitten crabs,Eriocheir sinensis in china.J.Virol.Methods,2015,220:49-54
15.Gu QJ,Zhou SM,Zhou YN,Huang JH,Shi M,Chen XX.A trypsin inhibitor-like protein secreted by Cotesia vestalis teratocytes inhibits hemolymph prophenoloxidase activation of Plutella xylostella.J.Insect Physiol,2019,116:41-48
16.Iwanaga S,Lee BL.Recent advances in the innate immunity of invertebrate animals.J.Biochem.Mol.Biol,2005,38:128–150
17.Jiang H,Kanost MR.The clip-domain family of serine proteinases in arthropods.Insect Biochem.Mol.Biol,2000,30:95–105
18.Loker ES,Adema CM,Zhang SM,Kepler T.Invertebrate immune systems-nothomogeneous,not simple,not well understood.Immunol.Rev,2004,198:10–24
19.Liu JW,Yu Y,Li FH,Zhang XJ,Xiang JH.A new anti-lipopolysaccharide factor(ALF)gene with its SNP polymorphisms related to WSSV-resistance of Litopenaeus vannamei.Fish Shellfish Immunol,2014,39:24-33
20.Nappi AJ,Christensen BM.Melanogenesis and associated cytotoxic reactions:applications to insect innate immunity.Insect Biochem.Mol.Biol,2005,35:443–459
21.Zheng XC,Chi C,Xu CY,Liu JD,Zhang CY,Zhang L,Huang YY,He CF,He C,Jia XY,Liu WB.Effects of dietary supplementation with icariin on growth performance,antioxidant capacity and non-specific immunity of Chinese mitten crab(Eriocheir sinensis).Fish Shellfish Immunol,2019,90:264-273
22.Zhu F;Du H;Miao Z;Quan H;Xu Z.Protection of Procambarus clarkii against white spot syndrome virus using inactivated WSSV.Fish Shellfish Immunol,2009,26,685-690
Sequence listing
<110> university of agriculture in Huazhong
<120> SNP molecular marker associated with resistance to white spot syndrome of procambarus clarkia
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 9085
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
atgcaggtga cccagaagtt gccgagaaga gagacgcaaa gatgcaggtg acccagaagt 60
tgccgagaag agagacgcaa agatggctaa cgttcaggcg caaatgctta aactgttcga 120
gcggccgtac gaccctatga acttgcggcg aagtgatgtt cccacaggat cagcagacac 180
agtaagcacc agggccggca cgagccccgg gaacaccgtg acggtccgct cacgtccaga 240
gatcaacaag aacagtctgg gactgacaac ctccgtgcct cgaggggtgg ttttctgtta 300
cttcctcaag tcacaccgcc aggccgccag gtgtctctgt gatatcttca tgagagctcg 360
aacttccacc gacctgatgg agttggcact caatgtgagg gaccaagtca acgagtccct 420
ctttatttac gcgctctcct tcaccattct tcggaagcag gaattgcgaa gtgttcgtct 480
gccgccaatc gtggaagtct ttccccagaa gttcattcca acagaagatc tgacaaagat 540
gcaggttgag atgaacagga ctcccgctag tcagacaaca ccgatggtga ttgaatacgg 600
agcggacttt gccaacacca ccctgaagcc agagcaccga gtgtcatact ggagggagga 660
ctacggcatc aactcccacc actggcactg gcaccttgtt taccccattg acatgaatgt 720
taactgggac cgtaaaggag aacttttcta ttatatgcat cagcagatga tagccaggta 780
cgacatggag cggctcagcg ttaacctcaa acgtgtggag aagctggaga actggcggga 840
gcccatccca gatggttact tctccaagct tactgttaac aactccggtc ggccctgggg 900
cacccgccag gataataccc tactcaagga tttgagacgt aatgagttcg ggctggatgt 960
tacagacatt agtgatatgg agctctggcg gtcccgactg atggacgcca tccaccaagg 1020
atatatgcta aatcggaatg gtgagcgcat cccactctct gataacgtca cgacaggaaa 1080
gcgagggatt gacatctcag cagacgcatt tgaggcagat ggtcagctga gcccaaattt 1140
cctcttctat ggcgaccttc acaacatagg ccacctgatg ctggcattct gccatgacag 1200
cgacaacgca catatggaag agatgggagt ggtgggagac aatacgactg ccatgagaga 1260
cccagtcttc taccgctggc acaagtttgt ggacgacgtc ttccaggagt acaagctgac 1320
gcagccgccc tacaccatgg aggacctgac tctgccgggc gtggtgcttg acaaggtggg 1380
tgttgtgagg gacaaccagc tcaacaccct cacaactggc tggaacgtgc gggagtttga 1440
ggcttccaga gggtcggact tcaactctac caaccccgta atgctgcgca tcacccatct 1500
cgaccatgct cccttcgatt atcatctcca ggtatgaatt cttctgagtt ttatatattt 1560
ctagtatagc cagtaagtgt aatggctctt tccacgtttt tgtcgcttta ttcgtatgcc 1620
ggaaaaacaa tctggtgttg aaatccatta tactgtgtaa gagatttatc ggtatttata 1680
aaacaaatcg gcaaatgatt gtagatataa aatactaaag ttacgaattt gcctgagagt 1740
aaatctttct tctaaagttt cattgttaaa taaaatagct gctttagcgg actgatacat 1800
gaataatgtt ccctaaaacg ttgacgctat acgtctggaa cggtgcttac gttaaccaat 1860
aacacgacat caaaagtaaa ttgagatatg acccacgatg tcattcacga aggagggacg 1920
catgctaatg agactgaaca aattatcgta ttccttccta tacagagaat atcaaggcat 1980
acataattaa atgcacactt attgctgagg tcccataagg ttgcctgtgc caggtcacca 2040
gacagcttta aaagtgctgt attatgttgc gtggtgagct gtggtgttgt ttgatgttgt 2100
actgggtact gtcacctgtt gtgtggtgag gtgttgatgt ggtgcactct gtttagtatg 2160
ctgtggtgtg tgctgtgttg catattgtgc ggtgggttgt tggctgtgtc tactaggaca 2220
ccaaacagct ttcctatatt gtgttgtggt atattgtgtt gcgtagtgag ctgttgtgtt 2280
gtttgatgat gtactgtgta ctgtcacttg tagtgtgttg tgtggtgagc tgttgatgtg 2340
gtgcactgtg tagtgtgaca tggtgtgcac tgtgtttagt atgctgtggt gtgtgttgtg 2400
ttgcatattg tgtggtgggt tgttagctgt ggcattacag tactttatgt acatggaact 2460
tgcaattcaa agtgaggtgc aaatcatacc gtatcaacaa gaaacatggt ttgtcctact 2520
tgaaaggtca catgtagcta cgtttaacat gtgtaggtat taaaaaccta cgacataact 2580
ttatcgtatt aaaagagcga gattcatagc aaaacaatag tttaagatgc aggcgatgag 2640
tcacaataac atggctgaag tatgttgacc agactacaca ctaaaaggtg aagggacgac 2700
gacgtttcgg tccgtcctga tccctcaagt cgattgtgag acgattgaac gtcgtcgtcc 2760
cttcaccttc tagtgtatgg tctggtcaac aatagtttaa gattatattt ttactcctgg 2820
cgatgagcac gccttcgtta acacgctaca cgacgcataa gaaaatgcct atatgatttg 2880
aatagcaaag ccacctatca taatttagcc tagtgcaaag gaatgagcgt taagttggac 2940
tccattgaaa agagataatg ttgcctggcg ttgtttccca aaggtagaat cctatgtatg 3000
ctttagatac tagaaaatag gtatcattat ggtagtctgg tgggtcagtg cattgtgtcg 3060
gtgtgtcctt ttaagtaatc gttaatgcag tggatgtcgt ctgtaagtaa gaaaacaaaa 3120
gaaaatgcga agcccgggag actatttagc accttctgtg tcacagaata atcaaaaggg 3180
cttaaatatc gtccaataag atagcaaaaa gatttcagac gagctatgtt aatgctatct 3240
cactcttgtc aaggggcaaa tgacacttaa ataatccttg acttactata gcatatataa 3300
tatgtactat attagacctc agacagcgtg tattaggcct aggatggtta ggttaggttt 3360
ggttaagttt tctttgcaac atcagtacaa aaacgtttgt tttgtgcaaa ttcagtagtt 3420
ctgatttcta cttcctaatt tatttttacg tcaatatatg taccatggtc ctcatcgtta 3480
ctataagtac tatctaaaca ggaggttggg ctcgttttac ggtttatact aaaagaaacc 3540
aatcgctatt ctgaaagact actcaccagt gatgtgtgct gatgcgattc tgtcagccgt 3600
tgcccaaaaa ccctcaaatg cgacaagttc aagctactgt gaaactggtg cgaaacctga 3660
actattgctg aaatatttta tctttgctta aaatactgcc agttgtcaca aaagatgaat 3720
tgctataatt tttagtaagt tcacaggaat taaaaatttt aatttgcttt taaaatagct 3780
ttatcattct tgtaagtcaa tacctcgatt aaaactgcca atttctttgc aagacgaaat 3840
tcatatggtg aattaaaatg aatttgtgtg ttgcagataa caaacaacac aggaaagtcc 3900
aagccagcga cagtgaggat cttcatggct cctaaacaca acgagcgtgg cctggagatg 3960
ggcttcatgg agcagcggct cctctgggct gagatggaca agttcactga gaactgtaag 4020
tcacgccaca cactctcatt attatatatt gttccttcag taatatatat tactgtaagt 4080
cacgtcacac actctcatta ttatatattg ttccttcagt aatatgtatt actgtaaatc 4140
acgtcacact ctcattatta tatattactc cttcagtaat atatatgaca tatttagcac 4200
ctgtcagttt ggctttcgcc ctcaaaagag taccaacgat tttattaata gtctgctgta 4260
tataatctac tcagcccttg acaaaaatga gtttccgatt ggactcttca ttgacctgaa 4320
aggcctttga tactgttaac cataacttcc tcttacttaa actctaccat tatggaatcc 4380
gaggccttgc cctgaactat atccgatcct atcttagtgt cggacaccat tatgtatcca 4440
tcaattatat aacctctccc attctacaat taaccgtagg ggtgccacag tgcagcatcc 4500
ttacttatta ggtgataagt tgagtttgag atccatgaag tatgaagact gctgccttaa 4560
tgacactggc agtcgatgtg acttcaattt tgtatgattc taacaaaaaa tatttattct 4620
cagcactgct gtaattactg tcgaatgaca tgactgttgt tactatttag attaattaac 4680
atatagataa atatgatttg ctgatgacaa atgtaaacac tggccttgtc taaatgatcc 4740
catatttgtt atgtacaata tactgacgtg ttcacgtaag ctatatggac taccagaact 4800
aatgcactag ttaacagtga agcctgggaa gaaccagatt gtgcgtcctt ccagcgaatc 4860
ttccatcacc acctccagcg agttcacctt caggagcctg gaggctgtca accccgctat 4920
gccaggtaag ggagaagtag agggcattga actagaaagg gtgaacataa atacagtata 4980
attgtctata ctgtgattgg acaagtcgct cttacttcaa gccgagtcca ttaatatata 5040
tgttacttac tggcgattac cagttagaga ccggacctac tcattgacga tcaacccgtc 5100
ctcttaaaaa agaacgtcaa ttttggcccg tatgcgcact atggccaaat ttggacgtaa 5160
tttgaaatga aatcgactca caaaagtgac gttctgttcc gttttctatt gagtcgtctg 5220
gcgtacgcgc agaggttata agaggacact ttaaattaac gtttttcata acgttttgaa 5280
actttatgag aatttcctgc ccacctaacc tatcagagga cccttaactt actgttgttg 5340
aaaaaaaaat cccacattta ttttcatttt ttttttcaat ttcaaattac gtccaaattc 5400
ggtcatacgg gtaaacggcc aaaagcgacg ttctttttaa gaggacaggt tgcaactgac 5460
cggatctact tactggtgat caccagttcg agcccggccc atgctctttg taatgtgata 5520
gagaatatga ccaaaaaggt tagagtaata attctagcat gaatcttttc tatagttctc 5580
atattcttta cttaggaagt gatttcttca atttactctt cagtgataag tgtcgctaaa 5640
ggacgcgttt cactttatcg tccttagagg tagaagaaag tgattacaga ttatcagagg 5700
tgacagtata catgtctttg aggatgaggt gaggtgctgc ccaaccaagg cactgggtac 5760
tcatgtcttt cattgtcatt ggtcgattgg ttgaataggt gaggtgtgtt ctggcagtac 5820
taaagggttt tatgagtgta tttgagttgg aggagctgcc tcgtatgggc caataggcct 5880
tctgcagtca cctttgttct tatgttattt catgtgtagc acttcggcta tgtctaatat 5940
agacataatt ttcattgtca cggacataaa gactttactc aggcttgtat tgaggtccgg 6000
atagctcgac ttactgcttc ttcaccagga tgcaacccac aacagttgcc taatgcctaa 6060
ctctaggggg gctatttact gctgggtgaa tagaggtatc agatgaaagg aaacatgcca 6120
aactatttct gcctacgtgg ttaacaaacc cgggatcccc gagtcgaaaa cgtagaccgg 6180
cgtactataa gacccgagct tgagcaaaaa gtcacctggg ctttcaagaa agacataacc 6240
ggagtcacaa ccctggaaac acaaaccgaa actgtctcta ttttccgctt attaaaactt 6300
gtaataaagt tgttacatct tggcttaacg tgtttatgac gtattagaac gttcttacaa 6360
cttgctatat tggttgttat aactggttag gtggtgttaa aacttgttcc aacgttgtac 6420
caacgtcgta gtttcggtgt gtgtttggcg ggaacacatc agacattcat ctaactataa 6480
atagacagct tagtcctgca aaattacaag cattagtctc ccatttaaaa gtagcaatac 6540
ctagcttatg atgccgcatg cgactggagt aatgtggcaa taggacacta ccaaaatgtt 6600
cctactaact gaaataatca ccttcacctc aggagcacca caaaatactg aagccaactt 6660
ctgtgggtgt gggtggcctg accacctgct gctgccccga agtaaaccag aaggcatgac 6720
ttaccagctc ttcttcatgc tcaccgacct ggacaaggat aaggtgcagt caccattttt 6780
gtcctcacca tttttgtcac agctcttcaa cacacaatga aacttctcat tttttcatga 6840
gtcgttggaa ttgactgttg tattatatta gtttaaattt gtatgttaat taacaatacg 6900
atttattact attaatatca gtatcttctg cgaaatttcc acgtttcctt tttatcataa 6960
tataatcgaa actgagttca ctgagactat atgttcactg agtgtacgta atctgttttg 7020
acgtgcaaga agaggaacct taaatgttgg tgttacaact tgttcaaact ttattattat 7080
cattagtgtt atttcatggg attaatttgt cagtgaactt cctggggctg ggaatgagtg 7140
aagacaataa acagatagtg accaactccg gcccctgaca ggtgatcagc cagcagtacg 7200
cagatgtgcc gacgctgtgt ccttctgcgg gatcctggac gccaagttcc ctgacaaacg 7260
tcctatgggc ttccccttcg accgccgccc tccgcctagc ctgcaagatg ctgaggtcac 7320
ctccgctgct gactacgcta gactgggcaa cataactatt caagatatta ccatcacttt 7380
cctcaacaac aaccttcaga agtcgaacaa ttaagaaaag tatgtgctaa gccactaggt 7440
tatatagagc tgtttgtgtt gtccagaata ttcaagaatt tctagctatc gttcaggatg 7500
gtcgtaagat gatccatgtc aaaaggggtc agattcatat atcaattacc ttgatatatg 7560
tagcgtaata gaacagtggg tggaaacaaa caatttacaa atcaggacat gcaattagga 7620
gaaaagagga agactgcaat tgacaataag gttcagtggg gccggattca cgaaagcact 7680
tatgcaaata cttacgaacg tgtacatctt tcctcaatct ttgacggctt tggttacatt 7740
tattaaacag tttacatgca tgaaaacttc ccaatcaact gttgttattg ttaaaaacag 7800
cctccttttg cttcggagct cattaactgt ttaataattg gaaacaaagc cgccaaagat 7860
tgagaaaaga tgtacaggtt cgtaagtgct tgtgtaagta ctttcgtgaa tctggcccca 7920
ggtctcttac attgtaacac cagcgtctta accttgtagt tgatacctta ccttgtagtt 7980
gatacctaac cttgccatta acgttcccaa ctttatagtt tttaatcttt ctcggtgata 8040
ggaagccgaa gcgaatatgt ctgacggtag tagtagtagt agtagtatta ggcttctatc 8100
aatcacagga gactatggag ttacgctctg gttgtccatc cctttgacgc aatttgttat 8160
ttgtaatagc tgagctatct ttgtaacgaa tgacaatcgg actctgaata acatagtgga 8220
tatgatagtg gtatttactc actgccaata ttgtcttaaa caaatcaaga tgaagaatac 8280
aaaataataa atttcagggc cattcgaata attattcgtc tcaatatgaa accagttaat 8340
tattttttgg tatatatgaa aatactgata catgggggcg gggcttttta atataccttg 8400
tgatgatatc ggggctcagc gtccccgcgg cccaggcctc ctaaataaac atagtaattt 8460
attttatgtg aatgaataca tgcggtgata tgttttataa agatataaac atttgattat 8520
atacttgact aaaaggatta ccaggctttg cccagggctg tctgcctgcc ttccatccat 8580
ttcatctatc tatcaatcta tcctcctcct ccttcccttt atctcaaaaa atacattaag 8640
aagcactgaa acaactttat aggactaata aattatatta ttatggaatt tattcatatg 8700
ctaaatttct aacctgacta taaaaatgcc ttaggggtgt tttaattgtt aatatttact 8760
aaagcattta ccttaggcct actccgacca gcctatgtcc gtcccgtacc caagaccagt 8820
caccctgata atttggatga ggctaacctc aagcgtttgg gctccacctt tggacaaata 8880
tatgttcttt catgtactaa agatgatctg gatctgatcc tgcatttgat aatggatttt 8940
tatctggatt tgttattgca ttttagtatg ctatacgaga tattattgtt acatccatgt 9000
ctgtcgactc gtacaagaat tgtaatttta ttgtattatg catgatttaa tcactaataa 9060
aatcaactaa aaaaaaaaaa aaaaa 9085
<210> 2
<211> 1020
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
aggagcacca caaaatactg aagccaactt ctgtgggtgt gggtggcctg accacctgct 60
gctgccccga agtaaaccag aaggcatgac ttaccagctc ttcttcatgc tcaccgacct 120
ggacaaggat aaggtgcagt caccattttt gtcctcacca tttttgtcac agctcttcaa 180
cacacaatga aacttctcat tttttcatga gtcgttggaa ttgactgttg tattatatta 240
gtttaaattt gtatgttaat taacaatacg atttattact attaatatca gtatcttctg 300
cgaaatttcc acgtttcctt tttatcataa tataatcgaa actgagttca ctgagactat 360
atgttcactg agtgtacgta atctgttttg acgtgcaaga agaggaacct taaatgttgg 420
tgttacaact tgttcaaact ttattattat cattagtgtt atttcatggg attaatttgt 480
cagtgaactt cctggggctg ggaatgagtg aagacaataa acagatagtg accaactccg 540
gcccctgaca ggtgatcagc cagcagtacg cagatgtgcc gacgctgtgt ccttctgcgg 600
gatcctggac gccaagttcc ctgacaaacg tcctatgggc ttccccttcg accgccgccc 660
tccgcctagc ctgcaagatg ctgaggtcac ctccgctgct gactacgcta gactgggcaa 720
cataactatt caagatatta ccatcacttt cctcaacaac aaccttcaga agtcgaacaa 780
ttaagaaaag tatgtgctaa gccactaggt tatatagagc tgtttgtgtt gtccagaata 840
ttcaagaatt tctagctatc gttcaggatg gtcgtaagat gatccatgtc aaaaggggtc 900
agattcatat atcaattacc ttgatatatg tagcgtaata gaacagtggg tggaaacaaa 960
caatttacaa atcaggacat gcaattagga gaaaagagga agactgcaat tgacaataag 1020
<210> 3
<211> 1020
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
aggagcacca caaaatactg aagccaactt ctgtgggtgt gggtggcctg accacctgct 60
gctgccccga agtaaaccag aaggcatgac ttaccagctc ttcttcatgc tcaccgacct 120
ggacaaggat aaggtgcagt caccattttt gtcctcacca tttttgtcac agctcttcaa 180
cacacaatga aacttctcat tttttcatga gtcgttggaa ttgactgttg tattatatta 240
gtttaaattt gtatgttaat taacaatacg atttattact attaatatca gtatcttctg 300
cgaaatttcc acgtttcctt tttatcataa tataatcgaa actgagttca ctgagactat 360
atgttcactg agtgtacgta atctgttttg acgtgcaaga agaggaacct taaatgttgg 420
tgttacaact tgttcaaact ttattattat tattagtgtt atttcatggg attaatttgt 480
cagtgaactt cctggggctg ggaatgagtg aagacaataa acagatagtg accaactccg 540
gcccctgaca ggtgatcagc cagcagtacg cagatgtgcc gacgctgtgt ccttctgcgg 600
gatcctggac gccaagttcc ctgacaaacg tcctatgggc ttccccttcg accgccgccc 660
tccgcctagc ctgcaagatg ctgaggtcac ctccgctgct gactacgcta gactgggcaa 720
cataactatt caagatatta ccatcacttt cctcaacaac aaccttcaga agtcgaacaa 780
ttaagaaaag tatgtgctaa gccactaggt tatatagagc tgtttgtgtt gtccagaata 840
ttcaagaatt tctagctatc gttcaggatg gtcgtaagat gatccatgtc aaaaggggtc 900
agattcatat atcaattacc ttgatatatg tagcgtaata gaacagtggg tggaaacaaa 960
caatttacaa atcaggacat gcaattagga gaaaagagga agactgcaat tgacaataag 1020
<210> 4
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
aggagcacca caaaatactg aagc 24
<210> 5
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
cttattgtca attgcagtct tcctc 25

Claims (2)

  1. The application of SNP molecular marker in breeding of procambarus clarkia variety resistant to white spot syndrome virus is characterized in that the molecular marker is nucleotide sequence shown in SEQ ID NO. 2 and 3, the 451 th base is T or C, and TT genotype is favorable marker of resistance of procambarus clarkia white spot syndrome virus.
  2. 2. The use according to claim 1, wherein the primer sequences for amplifying the SNP molecular marker of claim 1 are shown as SEQ ID NO.4 and SEQ ID NO. 5.
CN202010361927.3A 2020-04-30 2020-04-30 SNP molecular marker related to resistance of white spot syndrome of procambarus clarkii Active CN111363834B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010361927.3A CN111363834B (en) 2020-04-30 2020-04-30 SNP molecular marker related to resistance of white spot syndrome of procambarus clarkii

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010361927.3A CN111363834B (en) 2020-04-30 2020-04-30 SNP molecular marker related to resistance of white spot syndrome of procambarus clarkii

Publications (2)

Publication Number Publication Date
CN111363834A CN111363834A (en) 2020-07-03
CN111363834B true CN111363834B (en) 2021-08-03

Family

ID=71205707

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010361927.3A Active CN111363834B (en) 2020-04-30 2020-04-30 SNP molecular marker related to resistance of white spot syndrome of procambarus clarkii

Country Status (1)

Country Link
CN (1) CN111363834B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502337B (en) * 2021-07-13 2022-03-22 华中农业大学 SNP molecular marker for improving disease resistance of procambarus clarkii and application
CN114959056B (en) * 2022-05-13 2024-05-17 华中农业大学 SSR (simple sequence repeat) marker for identifying female procambarus clarkia and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000900A1 (en) * 2001-06-22 2003-01-03 Akzo Nobel N.V. White spot syndrome virus vaccine
CN106011252A (en) * 2016-06-06 2016-10-12 中国科学院海洋研究所 Application of anti-WSSV candidate molecular marker of nLvALF1 gene of Litopenaeus vannamei to genetic breeding of Litopenaeus vannamei
CN108179200A (en) * 2018-03-06 2018-06-19 中国水产科学研究院淡水渔业研究中心 A kind of microsatellite marker and application with the Procambius clarkii prolificacy linkage of characters
CN109439774A (en) * 2018-12-27 2019-03-08 江苏省淡水水产研究所 One kind SNP site relevant to Procambius clarkii weight and its specific primer and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3047121A1 (en) * 2016-12-16 2018-06-21 Two Blades Foundation Late blight resistance genes and methods of use
CN107383181B (en) * 2017-07-28 2020-08-25 中国水产科学研究院南海水产研究所 Prawn disease-resistant Toll9 protein and coding cDNA and application thereof
CN107988246A (en) * 2018-01-05 2018-05-04 汕头大学医学院 A kind of gene knockout carrier and its zebra fish Glioma Model

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000900A1 (en) * 2001-06-22 2003-01-03 Akzo Nobel N.V. White spot syndrome virus vaccine
CN106011252A (en) * 2016-06-06 2016-10-12 中国科学院海洋研究所 Application of anti-WSSV candidate molecular marker of nLvALF1 gene of Litopenaeus vannamei to genetic breeding of Litopenaeus vannamei
CN108179200A (en) * 2018-03-06 2018-06-19 中国水产科学研究院淡水渔业研究中心 A kind of microsatellite marker and application with the Procambius clarkii prolificacy linkage of characters
CN109439774A (en) * 2018-12-27 2019-03-08 江苏省淡水水产研究所 One kind SNP site relevant to Procambius clarkii weight and its specific primer and application

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Cloning and Sequence Analysis of Prophenoloxidase from Haemocytes of the Red Swamp Crayfish, Procambarus clarkii";Li Yan-he等;《Agricultural Sciences in China》;20090331;第8卷(第3期);表1,图4 *
"Genetic diversity and phenotypic variation of the red swamp crayfish, Procambarus clarkii (Girard,1852) (Decapoda: Astacidea: Astacidae), in China";Shaokui Yi等;《Journal of Crustacean Biology》;20200817;第1-10页 *
"The SNP polymorphisms associated with WSSV-resistance of prophenoloxidase in red swamp crayfish (Procambarus clarkii) and its immune response against white spot syndrome virus (WSSV)";Long Zhang等;《Aquaculture》;20200731;第530卷;第1-10页 *
"湖北省不同克氏原螯虾群体携带白斑综合征病毒情况调查";李青彬等;《中国农学通报》;20190423;第35卷(第12期);第157-164页 *
Li Yan-he等."Cloning and Sequence Analysis of Prophenoloxidase from Haemocytes of the Red Swamp Crayfish, Procambarus clarkii".《Agricultural Sciences in China》.2009,第8卷(第3期), *

Also Published As

Publication number Publication date
CN111363834A (en) 2020-07-03

Similar Documents

Publication Publication Date Title
CN109576275B (en) Cynoglossus semilaevis antibacterial disease related gene and application method thereof
CN111850133B (en) Low-temperature-resistant associated SNP molecular marker of litopenaeus vannamei, detection primer and application of detection primer
CN111363834B (en) SNP molecular marker related to resistance of white spot syndrome of procambarus clarkii
CN110791571B (en) SNP marker for distinguishing Vibrio harveyi infection resistance of litopenaeus vannamei, and detection method and application thereof
CN112048014B (en) Penaeus monodon PmGLUT2 gene and application thereof
CN110684776B (en) Penaeus monodon Na+/K+/2Cl-Cotransporter NKCC gene and application thereof
Dai et al. Molecular cloning and expression analysis of two type II crustin genes in the oriental river prawn, Macrobrachium nipponense
CN106256904B (en) Genetic marker related to immune traits of grass carp hemorrhagic disease
CN113430277A (en) Primer group for identifying sex-linked dwarf gene and application thereof
CN111073983B (en) SNP marker related to identification of northern subspecies and Florida subspecies of largemouth bass and application thereof
CN110250108B (en) RPRM gene knockout mouse model and construction method and application thereof
CN108456735B (en) Mytilus edulis microsatellite loci and application thereof in hybrid progeny identification
CN113502337B (en) SNP molecular marker for improving disease resistance of procambarus clarkii and application
CN113718043B (en) Specific molecular marker and primer for identifying genetic sex of Chaptera multiflora and method and application thereof
CN113604587B (en) Molecular marker T5198 for rapidly identifying low-temperature tolerant variety of penaeus japonicus and application thereof
Smith et al. Low genetic diversity in the Antarctic toothfish (Dissostichus mawsoni) observed with mitochondrial and intron DNA markers
CN108624703B (en) method and kit for predicting growth traits and meat quality indexes of cattle
CN111748639A (en) Molecular marker for identifying sex of haliotis discus hannai and application thereof
FERGUSON et al. Evolution of the fish genome
CN110669769A (en) Tridacna immunity-related SAA gene and application thereof in preparation of tridacna pathological detection reagent
CN113897442B (en) Disease-resistant gene in procambarus clarkia and application of disease-resistant excellent haplotype marker of disease-resistant gene
CN116622717B (en) Male sex differentiation control gene EcIAG and guide RNA of palaemon carinicauda and application
Wang et al. Verify the function of a potential growth-regulating gene in marine bivalve using a candidate model organism Mulinia lateralis
CN112725459B (en) Core sequence of SNP (single nucleotide polymorphism) marker related to high pH resistance of Chinese prawn, primer and application
CN112029875B (en) SNP (Single nucleotide polymorphism) marker related to growth of palaemon carinicauda, detection primer and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant