CN111361760A - 小天体表面移动轨迹抗差优化方法 - Google Patents

小天体表面移动轨迹抗差优化方法 Download PDF

Info

Publication number
CN111361760A
CN111361760A CN202010211748.1A CN202010211748A CN111361760A CN 111361760 A CN111361760 A CN 111361760A CN 202010211748 A CN202010211748 A CN 202010211748A CN 111361760 A CN111361760 A CN 111361760A
Authority
CN
China
Prior art keywords
detector
deviation
index
bounce
initial state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010211748.1A
Other languages
English (en)
Other versions
CN111361760B (zh
Inventor
朱圣英
赵春城
崔平远
徐瑞
梁子璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Publication of CN111361760A publication Critical patent/CN111361760A/zh
Application granted granted Critical
Publication of CN111361760B publication Critical patent/CN111361760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/16Extraterrestrial cars

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明公开的小天体表面移动轨迹抗差优化方法,属于深空探测技术领域。本发明实现方法如下:建立探测器弹跳移动的动力学方程;考虑探测器初始状态偏差和引力加速度偏差,建立探测器弹跳移动距离与探测器在Y轴方向上的位置分量的协方差矩阵;基于建立的协方差矩阵,给出考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J1;同时,给出能耗指标J2;综合指标J1和指标J2,给出综合能耗、考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J3;分别将优化指标J1、指标J2、指标J3得到的探测器起跳角代入动力学方程,得到对应的优化弹跳移动轨迹,实现探测器在小天体表面弹跳移动轨迹的抗差优化,提高探测器弹跳移动的位置精度。

Description

小天体表面移动轨迹抗差优化方法
技术领域
本发明涉及一种小天体表面移动轨迹抗差优化方法,属于深空探测技术领域。
背景技术
近十几年来的深空探测任务中,小天体的探测不断受到世界各国空间探测技术研究机构的关注。目前,小天体的探测方式主要有飞越、绕飞、着陆、采样返回。为了使探测任务获得更高的任务回报,需要获得更多的小天体表面信息及样本,因此,有必要进行小天体表面移动探测的研究。受小天体表面的微重力以及复杂地形影响,传统的轮式探测车已不适用于小天体的表面移动探测。近年来,不断有学者开始研究一种新颖的小天体表面移动探测方式——弹跳探测。相比于传统的轮式探测车,弹跳探测器具有可越过障碍物、能在短时间内实现长距离移动等优点。对于弹跳移动的表面移动方式,较小的起跳初始状态偏差就可能造成较大的移动终点位置偏差。因此,需要研究可靠的移动轨迹优化方法,以实现探测器在小天体表面的精确弹跳移动。
在已发展的小天体表面移动轨迹优化方法中,在先技术[1](参见Shen H,ZhangT,Li Z,Li H.Multiple-Hopping Trajectories Near a Rotating Asteroid[J].Astrophysics and Space Science,2017,362:45.),采用蚁群算法研究了在小天体表面移动的弹跳式探测器的轨迹优化问题。该方法采用精确的动力学模型。但是,其采用优化方法进行推力设计,需要考虑额外的推力作用而产生的燃耗问题。同时,该方法为一种开环方法,受探测器状态偏差和动力学参数的不确定性影响较大。
在先技术[2](参见Yanjie Liu,Shengying Zhu,Pingyuan Cui,Zhengshi Yu,HuaZong.Hopping Trajectory Optimization for Surface Exploration on SmallBodies.Advance in Space Research,2017,60(1):90-102.),基于凸优化方法,考虑推力作用的燃耗最优问题,对探测器在小天体表面弹跳移动的单次弹跳轨迹进行优化设计。但是,该方法没有考虑探测器初始状态偏差以及引力加速度偏差对弹跳移动轨迹的影响。
发明内容
针对现有技术中小天体表面移动的弹跳式探测器的移动轨迹优化方法,没有考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹的影响,导致探测器弹跳移动的终点位置出现偏差。本发明公开的小天体表面移动轨迹抗差优化方法要解决的技术问题是:在轨迹优化过程中通过考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹的影响,优化得到有效抵抗所述偏差影响的弹跳移动轨迹,从而实现小天体表面移动轨迹的抗差优化,提高探测器弹跳移动的位置精度。
本发明是通过下述技术方案实现的。
本发明公开的小天体表面移动轨迹抗差优化方法,实现方法如下:针对探测器的单次弹跳移动问题,建立探测器弹跳移动的动力学方程。考虑探测器初始状态偏差和引力加速度偏差,建立探测器弹跳移动距离与探测器在Y轴方向上的位置分量的协方差矩阵。基于建立的协方差矩阵,给出考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J1;同时,给出能耗指标J2;综合指标J1和指标J2,给出综合能耗、考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J3。分别将优化指标J1、指标J2、指标J3得到的探测器起跳角代入动力学方程,得到对应的优化弹跳移动轨迹。通过优化指标J1或指标J3能够实现探测器在小天体表面弹跳移动轨迹的抗差优化,提高探测器弹跳移动的位置精度。
本发明公开的小天体表面移动轨迹抗差优化方法,包括如下步骤:
步骤1:针对探测器的单次弹跳移动问题,建立探测器弹跳移动的动力学方程。
将探测器的运动过程视为恒定重力作用下的抛物线运动。在三维坐标系下,探测器单次弹跳移动的动力学方程为:
R=vcosθ·t (1)
Figure BDA0002423062490000024
其中:R为探测器单次弹跳移动的距离;Y为探测器在Y轴方向上的位置分量;v为探测器初始速度,即探测器的起跳速度;g为目标小天体的引力加速度;θ为起跳速度与水平面的夹角,即探测器弹跳移动的起跳角;
Figure BDA0002423062490000025
为起跳速度水平分量与X轴的夹角;t为单次弹跳运动时间。
单次弹跳运动时间t表示为:
Figure BDA0002423062490000021
将(3)分别代入(1)(2)得到消除时间t的探测器单次弹跳移动的动力学方程:
Figure BDA0002423062490000022
Figure BDA0002423062490000023
步骤2:考虑探测器初始状态偏差和引力加速度偏差,建立探测器弹跳移动距离与探测器在Y轴方向上的位置分量的协方差矩阵。
探测器弹跳移动距离取标称值R0,考虑初始状态θ、v和引力加速度g的偏差,得到探测器弹跳移动距离R在标称值(v0,θ0,g0)下的偏差:
Figure BDA0002423062490000031
其中:ΔR表示探测器弹跳移动距离的偏差,Δv表示探测器初始速度的偏差,Δθ表示探测器起跳角的偏差,Δg表示引力加速度的偏差。
由(4)得:
Figure BDA0002423062490000032
将(7)代入(6)得:
Figure BDA0002423062490000033
此处Δθ、Δv、Δg为相互独立的变量,则探测器弹跳移动距离R的方差为:
Figure BDA0002423062490000034
其中:D表示方差,E表示数学期望。
考虑初始状态
Figure BDA0002423062490000039
的偏差,得到探测器在Y轴方向上的位置分量Y在标称值
Figure BDA00024230624900000310
下的偏差:
Figure BDA0002423062490000035
其中:ΔY表示探测器在Y轴方向上的位置分量Y的偏差,
Figure BDA00024230624900000311
表示初始状态
Figure BDA00024230624900000312
的偏差。
此处
Figure BDA00024230624900000313
的标称值为0°,即探测器在Y轴方向上的位置分量Y的标称值为0,式(10)简化为:
Figure BDA0002423062490000036
探测器在Y轴方向上的位置分量Y的方差为:
Figure BDA0002423062490000037
得到探测器弹跳移动距离R与探测器在Y轴方向上的位置分量Y的协方差矩阵:
Figure BDA0002423062490000038
Figure BDA0002423062490000041
此处标称值R0和g0都取定值。在探测器初始状态偏差和引力加速度偏差的标准差给定的情况下,将标称值θ0视为变量,考虑探测器弹跳移动距离R的方差随θ0变化来进行优化。另外,此时标称值v0通过标称值θ0唯一确定。
步骤3:基于步骤2建立的探测器弹跳移动距离与探测器在Y轴方向上的位置分量的协方差矩阵,给出考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J1,通过优化指标J1能够得到使该指标取最小值即使探测器在存在初始状态偏差和引力加速度偏差时弹跳移动终点位置偏差最小的探测器起跳角的解析式。给出能耗指标J2,并得到对应能耗最小的起跳角。综合指标J1和指标J2,给出综合能耗、考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J3,并通过优化指标J3得到使其取最小值的探测器起跳角的解析式。
步骤3.1:基于步骤2建立的探测器弹跳移动距离与探测器在Y轴方向的位置分量的协方差矩阵,给出考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标,定义为指标J1
Figure BDA0002423062490000042
其中:trace表示取矩阵的迹。
Figure BDA0002423062490000043
Figure BDA0002423062490000044
得:
Figure BDA0002423062490000045
Figure BDA0002423062490000046
指标J1为考虑探测器初始状态偏差和引力加速度偏差对探测器弹跳移动轨迹影响的指标,式(17)为通过优化指标J1得到的使该指标取最小值即使探测器在存在初始状态偏差和引力加速度偏差时弹跳移动终点位置偏差最小的探测器起跳角的解析式。
步骤3.2:给出能耗指标J2
Figure BDA0002423062490000051
其中:k为权重系数
指标J2为能耗指标。将探测器起跳速度作为能耗指标,当弹跳移动距离确定,起跳角θ0=45°时,对应的起跳速度最小,则能耗最小。
步骤3.3:综合指标J1和指标J2,给出综合能耗、考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J3,并通过优化指标J3得到使其取最小值的探测器起跳角的解析式。
综合指标J1和指标J2,即综合公式(15)(18),给出指标J3
Figure BDA0002423062490000052
Figure BDA0002423062490000053
得:
Figure BDA0002423062490000054
Figure BDA0002423062490000055
指标J3为综合能耗、考虑探测器初始状态偏差和引力加速度偏差对探测器弹跳移动轨迹影响的指标,式(21)为通过优化指标J3得到使其取最小值的探测器起跳角的解析式。
步骤4:在探测器初始状态偏差和引力加速度偏差的标准差给定的情况下,通过优化指标J1得到的探测器起跳角的解析式,得到使探测器在存在初始状态偏差和引力加速度偏差时弹跳移动终点位置偏差最小的探测器起跳角;通过优化指标J3得到的探测器起跳角的解析式,得到综合能耗、考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标取最小值的探测器起跳角;此外,在步骤3中已得到指标J2对应的能耗最小的起跳角。分别将优化指标J1、指标J2、指标J3得到的探测器起跳角代入动力学方程,得到对应的优化弹跳移动轨迹。通过优化指标J1或指标J3能够分别实现探测器在小天体表面弹跳移动轨迹的抗差优化,提高探测器弹跳移动的位置精度。
有益效果:
本发明公开的小天体表面移动轨迹抗差优化方法,建立探测器单次弹跳移动的动力学模型,考虑探测器初始状态偏差和引力加速度偏差,建立探测器弹跳移动距离与探测器在Y轴方向上的位置分量的协方差矩阵。基于建立的协方差矩阵,给出考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J1,通过优化指标J1能够得到探测器存在初始状态偏差和引力加速度偏差时使其弹跳移动终点位置偏差最小的起跳角;给出能耗指标J2,并得到对应能耗最小的起跳角。综合指标J1和指标J2,给出综合能耗、考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J3,并通过优化指标J3得到使其取最小值的探测器起跳角。分别将优化指标J1、指标J2、指标J3得到的探测器起跳角代入动力学方程,得到对应的优化弹跳移动轨迹。通过优化指标J1或指标J3能够分别实现探测器在小天体表面弹跳移动轨迹的抗差优化,提高探测器弹跳移动的位置精度。
附图说明
图1为本发明公开的小天体表面移动轨迹抗差优化方法的流程图。
图2探测器弹跳移动的三维坐标系。
图3三个指标的3σ误差椭圆图。其中图3(a)为指标J1的误差椭圆图,图3(b)为指标J2的误差椭圆图,图3(c)为指标J3的误差椭圆图。
具体实施方式
为了更好的说明本发明的目的和优点,下面结合附图和实例对发明内容做进一步说明。
如图1所示,本实施例公开的小天体表面移动轨迹抗差优化方法,具体实现步骤如下:
步骤1:针对探测器的单次弹跳移动问题,建立探测器弹跳移动的动力学模型。
如图2所示,将探测器的运动过程视为恒定重力作用下的的抛物线运动。在三维坐标系下,探测器单次弹跳移动的动力学方程为:
R=vcosθ·t (22)
Figure BDA0002423062490000061
其中:R为探测器单次弹跳移动的距离;Y为探测器在Y轴方向上的位置分量;v为探测器初始速度,即探测器的起跳速度;g为目标小天体的引力加速度;θ为起跳速度与水平面的夹角,即探测器弹跳移动的起跳角;
Figure BDA0002423062490000062
为起跳速度水平分量与X轴的夹角,t为单次弹跳运动时间。
单次弹跳运动时间t表示为:
Figure BDA0002423062490000071
将(24)分别代入(22)(23)得到消除时间t的探测器单次弹跳移动的动力学方程::
Figure BDA0002423062490000072
Figure BDA0002423062490000073
步骤2:考虑探测器初始状态偏差和引力加速度偏差,建立探测器弹跳移动距离与探测器在Y轴方向上的位置分量的协方差矩阵。
探测器弹跳移动距离取标称值R0,考虑初始状态θ、v和引力加速度g的偏差,得到探测器弹跳移动距离R在标称值(v0,θ0,g0)下的偏差:
Figure BDA0002423062490000074
其中:ΔR表示探测器弹跳移动距离的偏差,Δv表示探测器初始速度的偏差,Δθ表示探测器起跳角的偏差,Δg表示引力加速度的偏差。
由(25)得:
Figure BDA0002423062490000075
将(28)代入(27)可得:
Figure BDA0002423062490000076
此处Δθ、Δv、Δg为相互独立的变量,则探测器弹跳移动距离R的方差为:
Figure BDA0002423062490000077
其中:D表示方差,E表示数学期望。
考虑初始状态
Figure BDA0002423062490000078
的偏差,得到探测器在Y轴方向上的位置分量Y在标称值
Figure BDA0002423062490000079
下偏差:
Figure BDA00024230624900000710
其中:ΔY表示探测器在Y轴方向上的位置分量Y的偏差,
Figure BDA00024230624900000711
表示初始状态
Figure BDA00024230624900000712
的偏差。
此处
Figure BDA00024230624900000713
的标称值为0°,即探测器在Y轴方向上的位置分量Y的标称值为0,式(31)简化为:
Figure BDA0002423062490000081
探测器在Y轴方向上的位置分量Y的方差为:
Figure BDA0002423062490000082
得到探测器弹跳移动距离R与探测器在Y轴方向上的位置分量Y的协方差矩阵:
Figure BDA0002423062490000083
Figure BDA0002423062490000084
此处标称值R0和g0都取定值。在探测器初始状态偏差和引力加速度偏差的标准差给定的情况下,将标称值θ0视为变量,考虑探测器弹跳移动距离R的方差随θ0变化来进行优化。标称值v0通过标称值θ0唯一确定。
步骤3:基于步骤2建立的探测器弹跳移动距离与探测器在Y轴方向上的位置分量的协方差矩阵,给出考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J1,通过优化指标J1能够得到使该指标取最小值即使探测器在存在初始状态偏差和引力加速度偏差时弹跳移动终点位置偏差最小的探测器起跳角的解析式。给出能耗指标J2,并得到对应能耗最小的起跳角。综合指标J1和指标J2,给出综合能耗、考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J3,并通过优化指标J3得到使其取最小值的探测器起跳角的解析式。
步骤3.1:基于步骤2建立的探测器弹跳移动距离与探测器在Y轴方向的位置分量的协方差矩阵,给出考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标,定义为指标J1
Figure BDA0002423062490000085
其中:trace表示取矩阵的迹。
Figure BDA0002423062490000086
Figure BDA0002423062490000087
得:
Figure BDA0002423062490000091
Figure BDA0002423062490000092
指标J1为考虑探测器初始状态偏差和引力加速度偏差对探测器弹跳移动轨迹影响的指标,式(38)为通过优化指标J1得到的使该指标取最小值即使探测器在存在初始状态偏差和引力加速度偏差时弹跳移动终点位置偏差最小的探测器起跳角的解析式。
步骤3.2:给出能耗指标J2
Figure BDA0002423062490000093
其中:k为权重系数
指标J2为能耗指标。将探测器起跳速度作为能耗指标,当弹跳移动距离确定,起跳角θ0=45°时,对应的起跳速度最小,则能耗最小。
步骤3.3:综合指标J1和指标J2,给出综合能耗、考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J3,并通过优化指标J3得到使其取最小值的探测器起跳角的解析式。
综合指标J1和指标J2,即综合公式(36)(39),给出指标J3
Figure BDA0002423062490000094
Figure BDA0002423062490000095
Figure BDA0002423062490000096
得:
Figure BDA0002423062490000097
Figure BDA0002423062490000098
指标J3为综合能耗、考虑探测器初始状态偏差和引力加速度偏差对探测器弹跳移动轨迹影响的指标,式(42)为通过优化指标J3得到使其取最小值的探测器起跳角的解析式。
步骤4:探测器单次弹跳移动距离标称值为R0=50m,探测器在Y轴方向上的位置分量Y的标称值为0m,
Figure BDA0002423062490000101
的标称值取0°,初始状态
Figure BDA0002423062490000102
偏差的标准差取
Figure BDA0002423062490000103
小天体的引力加速度标称值为g0=0.006m/s2,引力加速度偏差的标准差取σg=1×10-6m/s2,起跳角偏差的标准差取σθ=0.05°,初始速度偏差的标准差取σv=0.005m/s,k取1。对于步骤3的指标2和指标3,得到对应的起跳角分别为7.636°(或82.364°)、15.73°(或74.27°)。将起跳角代入动力学方程,得到弹跳移动的抗差优化轨迹。分别将指标1、指标2、指标3得到的探测器起跳角代入动力学方程并进行2000次蒙特卡洛数值仿真,得到各指标的3σ误差椭圆如图3所示。通过数值仿真表明,采用本发明的方法可实现探测器在小天体表面弹跳移动轨迹的抗差优化。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.小天体表面移动轨迹抗差优化方法,其特征在于:包括如下步骤,
步骤1:针对探测器的单次弹跳移动问题,建立探测器弹跳移动的动力学方程;
步骤2:考虑探测器初始状态偏差和引力加速度偏差,建立探测器弹跳移动距离与探测器在Y轴方向上的位置分量的协方差矩阵;
步骤3:基于步骤2建立的探测器弹跳移动距离与探测器在Y轴方向上的位置分量的协方差矩阵,给出考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J1,通过优化指标J1能够得到使该指标取最小值即使探测器在存在初始状态偏差和引力加速度偏差时弹跳移动终点位置偏差最小的探测器起跳角的解析式;给出能耗指标J2,并得到对应能耗最小的起跳角;综合指标J1和指标J2,给出综合能耗、考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J3,并通过优化指标J3得到使其取最小值的探测器起跳角的解析式;
步骤4:在探测器初始状态偏差和引力加速度偏差的标准差给定的情况下,通过优化指标J1得到的探测器起跳角的解析式,得到使探测器在存在初始状态偏差和引力加速度偏差时弹跳移动终点位置偏差最小的探测器起跳角;通过优化指标J3得到的探测器起跳角的解析式,得到综合能耗、考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标取最小值的探测器起跳角;此外,在步骤3中已得到指标J2对应的能耗最小的起跳角;分别将优化指标J1、指标J2、指标J3得到的探测器起跳角代入动力学方程,得到对应的优化弹跳移动轨迹;通过优化指标J1或指标J3能够分别实现探测器在小天体表面弹跳移动轨迹的抗差优化,提高探测器弹跳移动的位置精度。
2.如权利要求1所述的小天体表面移动轨迹抗差优化方法,其特征在于:步骤1实现方法为,
将探测器的运动过程视为恒定重力作用下的抛物线运动;在三维坐标系下,探测器单次弹跳移动的动力学方程为:
R=vcosθ·t (1)
Figure FDA0002423062480000011
其中:R为探测器单次弹跳移动的距离;Y为探测器在Y轴方向上的位置分量;v为探测器初始速度,即探测器的起跳速度;g为目标小天体的引力加速度;θ为起跳速度与水平面的夹角,即探测器弹跳移动的起跳角;
Figure FDA0002423062480000012
为起跳速度水平分量与X轴的夹角;t为单次弹跳运动时间;
单次弹跳运动时间t表示为:
Figure FDA0002423062480000013
将(3)分别代入(1)(2)得到消除时间t的探测器单次弹跳移动的动力学方程:
Figure FDA0002423062480000021
Figure FDA0002423062480000022
3.如权利要求2所述的小天体表面移动轨迹抗差优化方法,其特征在于:步骤2实现方法为,
探测器弹跳移动距离取标称值R0,考虑初始状态θ、v和引力加速度g的偏差,得到探测器弹跳移动距离R在标称值(v0,θ0,g0)下的偏差:
Figure FDA0002423062480000023
其中:ΔR表示探测器弹跳移动距离的偏差,Δv表示探测器初始速度的偏差,Δθ表示探测器起跳角的偏差,Δg表示引力加速度的偏差;
由(4)得:
Figure FDA0002423062480000024
将(7)代入(6)得:
Figure FDA0002423062480000025
此处Δθ、Δv、Δg为相互独立的变量,则探测器弹跳移动距离R的方差为:
Figure FDA0002423062480000026
其中:D表示方差,E表示数学期望;
考虑初始状态
Figure FDA0002423062480000027
的偏差,得到探测器在Y轴方向上的位置分量Y在标称值
Figure FDA0002423062480000028
下的偏差:
Figure FDA0002423062480000029
其中:ΔY表示探测器在Y轴方向上的位置分量Y的偏差,
Figure FDA00024230624800000210
表示初始状态
Figure FDA00024230624800000211
的偏差;
此处
Figure FDA00024230624800000212
的标称值为0°,即探测器在Y轴方向上的位置分量Y的标称值为0,式(10)简化为:
Figure FDA00024230624800000213
探测器在Y轴方向上的位置分量Y的方差为:
Figure FDA0002423062480000031
得到探测器弹跳移动距离R与探测器在Y轴方向上的位置分量Y的协方差矩阵:
Figure FDA0002423062480000032
Figure FDA0002423062480000033
此处标称值R0和g0都取定值;在探测器初始状态偏差和引力加速度偏差的标准差给定的情况下,将标称值θ0视为变量,考虑探测器弹跳移动距离R的方差随θ0变化来进行优化;另外,此时标称值v0通过标称值θ0唯一确定。
4.如权利要求3所述的小天体表面移动轨迹抗差优化方法,其特征在于:步骤3实现方法为,
步骤3.1:基于步骤2建立的探测器弹跳移动距离与探测器在Y轴方向的位置分量的协方差矩阵,给出考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标,定义为指标J1
Figure FDA0002423062480000034
其中:trace表示取矩阵的迹;
Figure FDA0002423062480000035
Figure FDA0002423062480000036
得:
Figure FDA0002423062480000037
Figure FDA0002423062480000038
指标J1为考虑探测器初始状态偏差和引力加速度偏差对探测器弹跳移动轨迹影响的指标,式(17)为通过优化指标J1得到的使该指标取最小值即使探测器在存在初始状态偏差和引力加速度偏差时弹跳移动终点位置偏差最小的探测器起跳角的解析式;
步骤3.2:给出能耗指标J2
Figure FDA0002423062480000041
其中:k为权重系数
指标J2为能耗指标;将探测器起跳速度作为能耗指标,当弹跳移动距离确定,起跳角θ0=45°时,对应的起跳速度最小,则能耗最小;
步骤3.3:综合指标J1和指标J2,给出综合能耗、考虑探测器初始状态偏差和引力加速度偏差对弹跳移动轨迹影响的指标J3,并通过优化指标J3得到使其取最小值的探测器起跳角的解析式;
综合指标J1和指标J2,即综合公式(15)(18),给出指标J3
Figure FDA0002423062480000042
Figure FDA0002423062480000043
Figure FDA0002423062480000044
得:
Figure FDA0002423062480000045
Figure FDA0002423062480000046
指标J3为综合能耗、考虑探测器初始状态偏差和引力加速度偏差对探测器弹跳移动轨迹影响的指标,式(21)为通过优化指标J3得到使其取最小值的探测器起跳角的解析式。
CN202010211748.1A 2020-01-13 2020-03-24 小天体表面移动轨迹抗差优化方法 Active CN111361760B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010029647 2020-01-13
CN2020100296472 2020-01-13

Publications (2)

Publication Number Publication Date
CN111361760A true CN111361760A (zh) 2020-07-03
CN111361760B CN111361760B (zh) 2021-07-02

Family

ID=71202665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010211748.1A Active CN111361760B (zh) 2020-01-13 2020-03-24 小天体表面移动轨迹抗差优化方法

Country Status (1)

Country Link
CN (1) CN111361760B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112896560A (zh) * 2021-01-25 2021-06-04 北京理工大学 小天体表面安全弹跳移动轨迹规划方法
CN113741193A (zh) * 2021-09-06 2021-12-03 北京理工大学 弱引力小天体表面弹跳轨迹修正控制方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445158A (zh) * 2007-11-28 2009-06-03 中国北方车辆研究所 轮式星际探测巡视车辆行走控制方法
CN101954935A (zh) * 2010-09-27 2011-01-26 浙江大学 仿蝗虫活动关节杠杆弹射机理的跳跃机器人
CN102267502A (zh) * 2011-05-05 2011-12-07 西北工业大学 跳跃度可调的仿生弹跳机构
JP2012140029A (ja) * 2010-12-28 2012-07-26 Ihi Corp 探索装置と方法
US20130009013A1 (en) * 2010-04-13 2013-01-10 Eugene Bourakov Parafoil electronic control unit having wireless connectivity
CN103587723A (zh) * 2013-11-07 2014-02-19 北京临近空间飞行器系统工程研究所 一种再入初始段解析式纵向在线轨迹设计及跟踪方法
CN103863579A (zh) * 2014-03-31 2014-06-18 北京控制工程研究所 一种深空探测返回过程的预测校正制导方法
CN105929835A (zh) * 2016-04-19 2016-09-07 北京理工大学 一种小行星附着轨迹抗差优化方法
CN109515756A (zh) * 2018-12-13 2019-03-26 中国人民解放军战略支援部队航天工程大学 跳跃式空间机动飞行器清除异面轨道碎片的方法
CN110254753A (zh) * 2019-06-04 2019-09-20 北京理工大学 一种地球静止轨道卫星电推力器及其布局优化方法
KR102040591B1 (ko) * 2018-02-22 2019-11-06 전북대학교산학협력단 질량중심 가변 메커니즘을 갖는 로버 플랫폼
CN110775300A (zh) * 2019-11-06 2020-02-11 北京理工大学 一种利用姿态机动的不规则小天体表面着陆误差抑制方法
US10773831B2 (en) * 2016-06-28 2020-09-15 University Of Southern California Instrument lander utilizing a CubeSat platform for in situ exploration of asteroids and comets

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445158A (zh) * 2007-11-28 2009-06-03 中国北方车辆研究所 轮式星际探测巡视车辆行走控制方法
US20130009013A1 (en) * 2010-04-13 2013-01-10 Eugene Bourakov Parafoil electronic control unit having wireless connectivity
CN101954935A (zh) * 2010-09-27 2011-01-26 浙江大学 仿蝗虫活动关节杠杆弹射机理的跳跃机器人
JP2012140029A (ja) * 2010-12-28 2012-07-26 Ihi Corp 探索装置と方法
CN102267502A (zh) * 2011-05-05 2011-12-07 西北工业大学 跳跃度可调的仿生弹跳机构
CN103587723A (zh) * 2013-11-07 2014-02-19 北京临近空间飞行器系统工程研究所 一种再入初始段解析式纵向在线轨迹设计及跟踪方法
CN103863579A (zh) * 2014-03-31 2014-06-18 北京控制工程研究所 一种深空探测返回过程的预测校正制导方法
CN105929835A (zh) * 2016-04-19 2016-09-07 北京理工大学 一种小行星附着轨迹抗差优化方法
US10773831B2 (en) * 2016-06-28 2020-09-15 University Of Southern California Instrument lander utilizing a CubeSat platform for in situ exploration of asteroids and comets
KR102040591B1 (ko) * 2018-02-22 2019-11-06 전북대학교산학협력단 질량중심 가변 메커니즘을 갖는 로버 플랫폼
CN109515756A (zh) * 2018-12-13 2019-03-26 中国人民解放军战略支援部队航天工程大学 跳跃式空间机动飞行器清除异面轨道碎片的方法
CN110254753A (zh) * 2019-06-04 2019-09-20 北京理工大学 一种地球静止轨道卫星电推力器及其布局优化方法
CN110775300A (zh) * 2019-11-06 2020-02-11 北京理工大学 一种利用姿态机动的不规则小天体表面着陆误差抑制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
于正湜、朱圣英、崔平远、刘延杰: "小天体表面移动技术研究进展", 《深空探测学报》 *
刘延杰: "小天体附着探测轨迹优化与制导方法研究", 《工程科技II辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112896560A (zh) * 2021-01-25 2021-06-04 北京理工大学 小天体表面安全弹跳移动轨迹规划方法
CN113741193A (zh) * 2021-09-06 2021-12-03 北京理工大学 弱引力小天体表面弹跳轨迹修正控制方法
CN113741193B (zh) * 2021-09-06 2024-02-27 北京理工大学 弱引力小天体表面弹跳轨迹修正控制方法

Also Published As

Publication number Publication date
CN111361760B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN111361760B (zh) 小天体表面移动轨迹抗差优化方法
CN112269390B (zh) 考虑弹跳的小天体表面定点附着轨迹规划方法
CN113467241B (zh) 凸曲率着陆轨迹燃耗优化方法
CN113051743B (zh) 一种基于轨迹在线规划的末制导系统
CN105608251B (zh) 直升机火控系统精度敏感性分析的BNSobol法
CN111846288B (zh) 不确定环境中的小天体软着陆微分博弈控制方法
CN113867143A (zh) 地外天体安全软着陆解析避障制导方法
Li et al. Multiple model tracking for hypersonic gliding vehicles with aerodynamic modeling and analysis
CN114489101B (zh) 一种无人机的末端制导控制方法及系统
CN109917373B (zh) 运动补偿搜索的动平台雷达的动态规划检测前跟踪方法
Wang et al. Short-range reentry guidance with impact angle and impact velocity constraints for hypersonic gliding reentry vehicle
CN116974208B (zh) 基于捷联导引头的旋翼无人机目标打击控制方法及系统
CN112486023B (zh) 一种巡飞弹航迹飞行控制系统仿真设计方法及该控制系统
CN106863297A (zh) 一种空间绳系机器人视觉精确逼近方法
CN112947522A (zh) 一种基于有限时间观测器的硬式空中加油姿态控制方法
CN111896946A (zh) 一种基于航迹拟合的连续时间目标跟踪方法
CN115343949B (zh) 一种固定翼无人机跟踪制导律设计方法及验证平台
CN108398883B (zh) 一种rlv进场着陆轨迹快速推演及确定方法
CN110645843A (zh) 针对高速机动目标的高动态补偿制导控制系统及方法
CN114675673A (zh) 一种空中动目标追踪方法及系统
CN115342815A (zh) 反大气层内或临近空间机动目标视线角速率估计方法
CN114662285A (zh) 一种高速飞行器火力控制模型的智能解算方法
CN102410842B (zh) 基于铅垂陀螺和ccd线阵的姿态可视化测量方法
CN116976093A (zh) 火星大气辅助降轨预测制导方法
Cheng et al. Cross-cycle iterative unmanned aerial vehicle reentry guidance based on reinforcement learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant