CN111360824B - 一种双臂自碰撞检测方法和计算机可读存储介质 - Google Patents
一种双臂自碰撞检测方法和计算机可读存储介质 Download PDFInfo
- Publication number
- CN111360824B CN111360824B CN202010123225.1A CN202010123225A CN111360824B CN 111360824 B CN111360824 B CN 111360824B CN 202010123225 A CN202010123225 A CN 202010123225A CN 111360824 B CN111360824 B CN 111360824B
- Authority
- CN
- China
- Prior art keywords
- arm
- collision detection
- collision
- joint
- left arm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 113
- 238000000034 method Methods 0.000 claims abstract description 33
- 230000008569 process Effects 0.000 claims abstract description 18
- 239000011159 matrix material Substances 0.000 claims description 32
- 230000006870 function Effects 0.000 claims description 15
- 230000009466 transformation Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- 230000001960 triggered effect Effects 0.000 claims description 4
- 230000003321 amplification Effects 0.000 claims description 3
- 238000004590 computer program Methods 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000009977 dual effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000010276 construction Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 241000208199 Buxus sempervirens Species 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/0095—Means or methods for testing manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
本发明提供了一种双臂自碰撞检测方法和计算机可读存储介质。本发明利用包围盒做粗碰撞检测再利用网格做精碰撞检测,对双臂协作机器人,给定任务级运动规划,实时检测双臂在运动规划过程中左臂与左臂、右臂、本体或者右臂与右臂、本体之间碰撞情况,机器人控制器根据碰撞反馈信号及时做出响应。本发明具有碰撞检测更加优化更加准确的有益技术效果。
Description
技术领域
本发明涉及机器人领域,具体涉及一种双臂自碰撞检测方法和计算机可读存储介质。
背景技术
当前对于自碰撞检测的方式主要有两种:一是基于力矩传感器检测。二是基于几何模型的碰撞检测,用基本几何体包围实际模型的碰撞检测。然而,现有的自碰撞检测的方式存在以下不足:1)力矩传感器的检测方法,成本过高,且在机器人设计阶段就需要考虑力矩传感器的安装问题,也就是说,该方法并不一定适用于所有现有的机器人;再者,单纯的力矩检测在机器人调试过程中,会出现很多误判的情况;其三,基于力矩传感器的检测,检出时碰撞已经发生,无法起到预防作用。2)几何模型碰撞检测方法通过基本几何体包络实际模型,不足之处在于其碰撞精度取决于包络后的模型与实际模型的紧密程度。本方法是几何模型碰撞检测方法的一种扩展,更通用的方式。在机器人领域,特别是双臂协作机器人,需要保证双臂在给定的任务规划过程中左臂与左臂、右臂、本体或者右臂与右臂、本体之间不发生碰撞的约束情况,此时就需要一种可以在线且实时的碰撞检测算法来确保机器人运动过程中的安全。一般来说,双臂运动规划过程中的碰撞检测问题,都是基于包围盒思想,即将机械臂(左臂、右臂及基座)用基本几何体(如长方体、圆柱等)进行包络,构建碰撞模型,这样机械臂自碰撞问题(左臂-右臂、左臂-基座、右臂-基座)就转化为基本几何体之间的碰撞,最后通过空间解析几何知识进行求解。当执行双臂任务规划时,考虑不同应用要求,基于包围盒的方法,会因扩大实际模型的体积而缩小左、右臂协同区域的工作空间,就可能触发碰撞检测而无法完成任务。例如双臂协同完成某个工件轴孔装配或组装等,此时就需要确定当前包络模型发生碰撞前提下,实际模型是否触发了碰撞检测,如果是,则减速或者停止,并重新规划任务;否则,继续执行任务并继续对实际模型进行碰撞检测。
发明内容
本发明的目的在于提供一种碰撞检测更加优化更加准确的双臂自碰撞检测方法和计算机可读存储介质。为实现本发明的目的,本发明的技术方案如下。
一种双臂自碰撞检测方法,包括:
构建碰撞模型;
更新空间位置点信息;
执行碰撞检测;
其中,所述碰撞模型包括:外层包围盒和内层实际模型;所述碰撞检测包括外层包围盒碰撞检测和内层实际模型碰撞检测;
优选的,外层包围盒碰撞检测优先于内层实际模型碰撞检测,并且仅在外层包围盒碰撞时才执行内层实际模型碰撞检测。
优选的,所述构建外层包围盒包括:
设左臂、右臂的基坐标系分别为:
设左臂、右臂各关节初始关节角分别为:
设包围盒八个顶点的坐标分别为:(x1,y1,z1),(x2,y2,z2),…,(x8,y8,z8),则根据空间向量法获得膨胀后的包围盒;其中,根据空间向量法获得膨胀后的包围盒包括:设V0为膨胀前的顶点,V0沿x方向单位向量nx为:
其中,Kx=[x1 y1 z1]-[x2 y2 z2];
V0沿y方向单位向量ny为:
Ky=[x1 y1 z1]-[x5 y5 z5];
V0顶点沿z方向单位向量nz为:
Kz=[x1 y1 z1]-[x4 y4 z4];
4.根据权利要求3所述的双臂自碰撞检测方法,其特征在于,更新模型空间位置点信息包括:
采用下式计算臂本体坐标系与双臂基坐标系位置关系的齐次矩阵:
其中,Pos2Mat()为将笛卡尔空间位姿转化为对应齐次矩阵的函数;为左臂本体坐标系到双臂基坐标系的位姿,为经过Pos2Mat()函数计算后得到的左臂本体坐标系与双臂基坐标系的齐次变换矩阵;为右臂本体坐标系到双臂基坐标系的位姿,为经过Pos2Mat()函数计算后得到的右臂本体坐标系与双臂基坐标系的齐次变换矩阵;
采用下式计算各关节在臂坐标系下位置关系的齐次矩阵:
其中,fk()为由初始关节角求得各关节处的齐次坐标变换矩阵的函数,k为关节号,k∈[1,m+1],k’∈[1,n+1];Ql、Qr分别为左臂、右臂各关节初始关节角;分别为臂、右臂各关节中心点相对于臂本体的位姿关系;
采用下式,利用已求得的臂与双臂基坐标系齐次矩阵、关节与臂坐标系齐次矩阵,计算关节与双臂基坐标系齐次矩阵:
采用下式实时更新左臂、右臂包围盒空间位置;
优选的,执行碰撞检测包括:
生成碰撞检测矩阵;
遍历碰撞检测矩阵;
判断是否发生碰撞。
优选的,碰撞检测矩阵为
优选的,遍历碰撞检测矩阵包括:
采用AABB层次包围盒结构,在碰撞检测过程中,首先进行父节点的碰撞检测,
如果父节点不相交,即不发生碰撞,此时无需对子节点做检测,以减小计算资源消耗;
如果父节点相交,即发生碰撞,此时需切换为对子节点做检测,即实际模型的精碰撞检测,此时不再对父节点做碰撞检测;
若检测到发生碰撞,则触发碰撞信号,双臂减速或停止运行;
若检测到未发生碰撞,则忽略,双臂继续工作,但限制允许的最大速度,子节点继续做检测;
若子节点检测中发现实际模型最小距离值呈放大趋势且大于父节点碰撞阈值,则切换为对父节点检测,并且不再限制最大速度。
优选的,父节点的碰撞检测包括:
设两对称几何体A,B,其中心点分别为CA,CB,投影区间的半径分别为rA,rB,
如果rA+rB<d,则A与B分离,即不发生碰撞;反之A与B相交,即碰撞。
优选的,子节点碰撞检测包括:
构建左臂、右臂碰撞几何模型:
更新左臂、右臂碰撞几何模型:
进行碰撞检测:
若result为true,则左臂第j个杆件、右臂第i个杆件发生碰撞;反之,则左臂第j个杆件、右臂第i个杆件不发生碰撞;
其中,addSubModel()、CollisionObjectf()、collide()为开源碰撞检测库的接口函数,left_vertices、right_vertices为目为标杆件顶点,left_triangles,right_vertices为三角面的空间坐标。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述方法。
相对于现有技术,本发明的有益技术效果在于:本发明利用包围盒做粗碰撞检测再利用网格做精碰撞检测;对某应用场景下的双臂协作机器人,给定任务级运动规划,需实时检测双臂在运动规划过程中,左臂与右臂、左臂或者右臂与本体之间碰撞情况,机器人控制器根据碰撞反馈信号及时做出响应,如重新规划或者减速、停止运行等措施,确保机器人安全完成任务。本发明具有碰撞检测更加优化更加准确的有益技术效果。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为碰撞检测流程示意图。
图2为双臂碰撞模型示意图;
图3为碰撞判断示意图;
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
如图1所示,本实施例提供了一种双臂自碰撞检测方法,该方法利用包围盒做粗碰撞检测再利用网格做精碰撞检测;对某应用场景下的双臂协作机器人,给定任务级运动规划,需实时检测双臂在运动规划过程中,左臂与右臂、左臂或者右臂与本体之间碰撞情况,机器人控制器根据碰撞反馈信号及时做出响应,如重新规划或者减速、停止运行等措施,确保机器人安全完成任务。
本实例的碰撞模型主要包括两层:外层是基于包围盒的思想,用基本几何模型包络实际模型,内层是实际模型,由CAD模型文件通过优化处理后,由三角形网格构成。
碰撞模型构建过程如下:
已知条件:
1)由CAD模型,易知双臂模型尺寸数据,包括:
本体:三维尺寸So(长、宽、高)、半径Ro、三角面网格数据Do;
2)左臂、右臂在本体安装处的基坐标系分别设为:
3)左、右臂各关节初始关节角:
构建过程:
由双臂模型尺寸,用基本几何体包络实际模型,本发明左、右臂采用的碰撞模型是方向包围盒(OBB),本体一般采用轴向包围盒(AABB)包络。
左、右臂构建过程一样,具体地,以左臂包围盒构建为例说明:
左臂某关节-连杆任意膨胀半径(碰撞精度)参数的OBB包围盒构建,已知OBB包围盒八个顶点的坐标,不妨设为(x1,y1,z1),(x2,y2,z2),…(x8,y8,z8),则根据空间向量法获得膨胀后的包围盒;以下是某一个顶点Vi(i=0,…7)计算方法,V0沿x方向单位向量nx为
Kx=[x1 y1 z1]-[x2 y2 z2],
V0沿y方向单位向量ny为
Ky=[x1 y1 z1]-[x5 y5 z5],
V0顶点沿z方向单位向量nz为
Kz=[x1 y1 z1]-[x4 y4 z4],
最后构建的碰撞模型层次结构,
外层:基于几何模型构建的包围盒;
内层:由三角网格数据构成的实际模型;
其中,Pos2Mat()功能是将笛卡尔空间位姿转化为对应齐次矩阵,fk()是机械臂正运动学,由初始关节角求得各关节处的齐次坐标变换矩阵,
k∈[1,m+1],k’∈[1,n+1];
包围盒更新。双臂运动过程中,其左、右臂各包围盒空间位置随左、右臂各关节运动实时更新,为了减小计算消耗及碰撞检测实时性,需实时更新外层包围盒空间位置,只有当碰撞模型的外层相互间发生碰撞,此时才更新实际模型。
左臂,右臂更新过程一样,本体无需更新:
1)左-右臂间的碰撞检测采用的是基于“分离轴定理”算法,给定分离轴L,假设两对称几何体A,B,给定某一分离轴L,其中心点分别为CA,CB,投影区间的半径分别为rA,rB,两中心点CACB连线在L上的投影长度d;
如果rA+rB<d,,则A与B分离,即不发生碰撞;反之A与B相交,即碰撞。
如图3所示,针对某一分离轴L,两OBB的投影半径和小于投影中心间的距离,则两者分离
遍历机制
针对碰撞模型,自动或手动生成碰撞检测矩阵,即剔除双臂运动过程中无需检测的连杆对,双臂模型的碰撞检测矩阵如下。
示例性的,双臂碰撞检测矩阵可如表1所示,
表1
其中:0表示此对模型无需检测,1表示此对模型需要检测。
设计平衡二叉树的层次包围盒树形结构,存储碰撞模型数据,降低检测的时间复杂度。
采用此结构,在碰撞检测过程中,首先进行粗碰撞检测,即父节点的碰撞检测,对应于碰撞模型的外层包围盒的碰撞检测,
1)如果父节点不相交,即不发生碰撞,此时无需对子节点做检测,以减小计算资源消耗;
2)如果父节点相交,即发生碰撞,此时需切换为对子节点做检测,即实际模型的精碰撞检测,此时不再对父节点做碰撞检测,以减小计算资源消耗。
i)若检测到发生碰撞,则触发碰撞信号,双臂减速或停止运行;
ii)若检测到未发生碰撞,则忽略,双臂继续工作,但限制允许的最大速度,子节点继续做检测。
iii)若子节点检测中发现实际模型最小距离值呈放大趋势且大于父节点碰撞阈值,则切换为对父节点检测,并且不再限制最大速度。
子节点碰撞检测包括利用开源碰撞检测库接口函数对实际模型做精碰撞检测,具体如下:
精碰撞几何模型构建:
首先,从左臂:和右臂:的实际模型网格存储数据中分别提取目标杆件所有顶点left_vertices,right_vertices、三角面left_triangles,right_vertices(三个顶点构成)的空间坐标值;
其次,利用开源碰撞检测库(fcl)的接口函数,构建碰撞几何模型;
模型更新:
碰撞检测:
若result为true,则左臂第j个杆件、右臂第i个杆件发生碰撞;反之,则左臂第j个杆件、右臂第i个杆件不发生碰撞;
其中addSubModel()、CollisionObjectf()、collide()为fcl库接口函数。
实施例二
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现实施例一所述方法。
本申请实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请提供的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,RandomAccessMemory)、磁碟或者光盘等各种可以存储程序代码的介质。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释,此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围。都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (8)
1.一种双臂自碰撞检测方法,其特征在于,包括:
构建碰撞模型;
更新空间位置点信息;
执行碰撞检测;
其中,所述碰撞模型包括:外层包围盒和内层实际模型;所述碰撞检测包括外层包围盒碰撞检测和内层实际模型碰撞检测;
外层包围盒碰撞检测优先于内层实际模型碰撞检测,并且仅在外层包围盒碰撞时才执行内层实际模型碰撞检测;
外层包围盒碰撞检测包括:
设左臂、右臂的基坐标分别为:
设左臂、右臂各关节初始关节角分别为:
2.根据权利要求1所述的双臂自碰撞检测方法,其特征在于,更新模型空间位置点信息包括:
采用下式计算臂本体坐标系与双臂基坐标系位置关系的齐次矩阵:
其中,Pos2Mat()为将笛卡尔空间位姿转化为对应齐次矩阵的函数;为左臂本体坐标系到双臂基坐标系的位姿,为经过Pos2Mat()函数计算后得到的左臂本体坐标系与双臂基坐标系的齐次变换矩阵;为右臂本体坐标系到双臂基坐标系的位姿,为经过Pos2Mat()函数计算后得到的右臂本体坐标系与双臂基坐标系的齐次变换矩阵;
采用下式计算各关节在臂坐标系下位置关系的齐次矩阵:
其中,fk()为由初始关节角求得各关节处的齐次坐标变换矩阵的函数,k为关节号,k∈[1,m+1],k’∈[1,n+1];、分别为左臂、右臂各关节初始关节角;分别为左臂、右臂各关节中心点相对于臂本体的位姿关系;
采用下式,利用已求得的臂与双臂基坐标系齐次矩阵、关节与臂坐标系齐次矩阵,计算关节与双臂基坐标系齐次矩阵:
采用下式实时更新左臂、右臂包围盒空间位置;
3.根据权利要求1或2所述的双臂自碰撞检测方法,其特征在于,执行碰撞检测包括:
生成碰撞检测矩阵;
遍历碰撞检测矩阵;
判断是否发生碰撞。
5.根据权利要求4所述的双臂自碰撞检测方法,其特征在于,遍历碰撞检测矩阵包括:
采用AABB层次包围盒结构,在碰撞检测过程中,首先进行父节点的碰撞检测,
如果父节点不相交,即不发生碰撞,此时无需对子节点做检测,以减小计算资源消耗;
如果父节点相交,即发生碰撞,此时需切换为对子节点做检测,即实际模型的精碰撞检测,此时不再对父节点做碰撞检测;
若检测到发生碰撞,则触发碰撞信号,双臂减速或停止运行;
若检测到未发生碰撞,则忽略,双臂继续工作,但限制允许的最大速度,子节点继续做检测;
若子节点检测中发现实际模型最小距离值呈放大趋势且大于父节点碰撞阈值,则切换为对父节点检测,并且不再限制最大速度。
7.根据权利要求6所述的双臂自碰撞检测方法,其特征在于,子节点碰撞检测包括:
构建左臂、右臂碰撞几何模型:
更新左臂、右臂碰撞几何模型:
进行碰撞检测:
若result 为true,则左臂第j个杆件、右臂第i个杆件发生碰撞;反之,则左臂第j个杆件、右臂第i个杆件不发生碰撞;
其中,addSubModel()、CollisionObjectf()、collide()为开源碰撞检测库的接口函数,left_vertices、right_vertices为目为标杆件的顶点坐标,left_triangles,right_triangles为三角面的空间坐标。
8.一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-7任一所述方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010123225.1A CN111360824B (zh) | 2020-02-27 | 2020-02-27 | 一种双臂自碰撞检测方法和计算机可读存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010123225.1A CN111360824B (zh) | 2020-02-27 | 2020-02-27 | 一种双臂自碰撞检测方法和计算机可读存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111360824A CN111360824A (zh) | 2020-07-03 |
CN111360824B true CN111360824B (zh) | 2021-04-30 |
Family
ID=71201408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010123225.1A Active CN111360824B (zh) | 2020-02-27 | 2020-02-27 | 一种双臂自碰撞检测方法和计算机可读存储介质 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111360824B (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112060087B (zh) * | 2020-08-28 | 2021-08-03 | 佛山隆深机器人有限公司 | 一种用于机器人抓取场景的点云碰撞检测方法 |
CN111745692A (zh) * | 2020-08-31 | 2020-10-09 | 佛山隆深机器人有限公司 | 一种机器人夹具与机械臂干涉检测方法 |
CN112264991B (zh) * | 2020-09-09 | 2022-06-03 | 北京控制工程研究所 | 一种适用于空间机械臂的分层次快速在轨碰撞检测方法 |
CN112549025B (zh) * | 2020-11-27 | 2022-06-21 | 北京工业大学 | 一种基于融合人体运动学约束的协调图双臂协作控制方法 |
CN112549037B (zh) * | 2021-02-24 | 2021-06-01 | 佛山隆深机器人有限公司 | 一种双臂机器人的无碰运动控制方法及计算机存储介质 |
CN113510746B (zh) * | 2021-04-27 | 2022-03-29 | 中铁工程装备集团有限公司 | 一种多机械臂协同的快速自碰撞检测方法 |
CN113244622B (zh) * | 2021-06-22 | 2022-11-08 | 腾讯科技(深圳)有限公司 | 碰撞数据处理方法和装置、存储介质及电子设备 |
CN113664832A (zh) * | 2021-09-01 | 2021-11-19 | 上海节卡机器人科技有限公司 | 一种机器人碰撞预测方法、计算机存储介质及电子设备 |
CN113799142B (zh) * | 2021-10-29 | 2023-02-21 | 遨博(北京)智能科技有限公司 | 对机械臂的碰撞防护方法、控制柜以及机械臂系统 |
CN114211498B (zh) * | 2021-12-30 | 2023-09-08 | 中国煤炭科工集团太原研究院有限公司 | 基于方向包围盒的锚杆支护机器人碰撞检测方法及系统 |
CN114536342B (zh) * | 2022-03-23 | 2024-07-09 | 宁波睿达医疗器械有限公司 | 一种多臂系统及其臂间防撞控制方法 |
CN114872043B (zh) * | 2022-05-09 | 2023-11-17 | 苏州艾利特机器人有限公司 | 一种机器人碰撞检测方法、存储介质及电子设备 |
CN115716265B (zh) * | 2022-10-31 | 2023-11-10 | 中国电器科学研究院股份有限公司 | 一种机器人双臂碰撞神经反射控制方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102368280A (zh) * | 2011-10-21 | 2012-03-07 | 北京航空航天大学 | 一种面向虚拟装配的基于aabb-obb混合包围盒的碰撞检测方法 |
CN108052703A (zh) * | 2017-11-22 | 2018-05-18 | 南京航空航天大学 | 基于混合层次包围盒的快速碰撞检测方法 |
WO2018190936A1 (en) * | 2017-04-13 | 2018-10-18 | Battelle Memorial Institute | Teach mode collision avoidance system and method for industrial robotic manipulators |
CN109773785A (zh) * | 2018-12-29 | 2019-05-21 | 南京埃斯顿机器人工程有限公司 | 一种工业机器人防碰撞方法 |
-
2020
- 2020-02-27 CN CN202010123225.1A patent/CN111360824B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102368280A (zh) * | 2011-10-21 | 2012-03-07 | 北京航空航天大学 | 一种面向虚拟装配的基于aabb-obb混合包围盒的碰撞检测方法 |
WO2018190936A1 (en) * | 2017-04-13 | 2018-10-18 | Battelle Memorial Institute | Teach mode collision avoidance system and method for industrial robotic manipulators |
CN108052703A (zh) * | 2017-11-22 | 2018-05-18 | 南京航空航天大学 | 基于混合层次包围盒的快速碰撞检测方法 |
CN109773785A (zh) * | 2018-12-29 | 2019-05-21 | 南京埃斯顿机器人工程有限公司 | 一种工业机器人防碰撞方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111360824A (zh) | 2020-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111360824B (zh) | 一种双臂自碰撞检测方法和计算机可读存储介质 | |
JP6716178B2 (ja) | ロボットの障害物回避制御システム、方法、ロボット及びプログラム | |
CN108908331B (zh) | 超冗余柔性机器人的避障方法及系统、计算机存储介质 | |
US5056031A (en) | Apparatus for detecting the collision of moving objects | |
US9827675B2 (en) | Collision avoidance method, control device, and program | |
CN103236079B (zh) | 一种基于三维模型体素化的内部球改进构造方法 | |
CN110553600B (zh) | 一种用于工件检测的结构光传感器仿真激光线的生成方法 | |
CN113211495B (zh) | 一种机械臂碰撞检测方法、系统、存储介质和机械臂 | |
CN112669434A (zh) | 一种基于网格与包围盒的碰撞检测方法 | |
CN113203420B (zh) | 一种基于变密度搜索空间的工业机器人动态路径规划方法 | |
CN108213757B (zh) | 一种用于焊接机器人的碰撞检测方法 | |
CN112264991B (zh) | 一种适用于空间机械臂的分层次快速在轨碰撞检测方法 | |
CN113618742A (zh) | 一种机器人避障方法、装置和机器人 | |
CN114012726B (zh) | 一种航天机械臂碰撞检测方法 | |
Wang et al. | Path planning for the gantry welding robot system based on improved RRT | |
GB2227106A (en) | Detecting collision | |
CN109807933B (zh) | 一种能力图点云更新方法、装置、设备及存储介质 | |
CN111251335B (zh) | 基于包围盒算法的高精度机械臂碰撞检测方法 | |
Fan et al. | Fast global collision detection method based on feature-point-set for robotic machining of large complex components | |
CN115008475B (zh) | 一种基于混合几何表征的双机械臂协同避障运动规划优化方法 | |
JP6848761B2 (ja) | 物体間距離評価方法及び相対的に移動する物体間の干渉評価方法 | |
JP2017131990A (ja) | 干渉回避方法 | |
JPH085028B2 (ja) | 移動体の衝突判定方法並びに衝突判定装置 | |
Qu et al. | Dynamic Viewpoint-Based Obstacle Avoidance of Robotic Arms in Complex Environments | |
JP2019086876A (ja) | 画像処理装置、画像処理方法およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |