CN111357055A - 针对血管分叉估计流量以用于模拟血液动力学 - Google Patents

针对血管分叉估计流量以用于模拟血液动力学 Download PDF

Info

Publication number
CN111357055A
CN111357055A CN201880074371.0A CN201880074371A CN111357055A CN 111357055 A CN111357055 A CN 111357055A CN 201880074371 A CN201880074371 A CN 201880074371A CN 111357055 A CN111357055 A CN 111357055A
Authority
CN
China
Prior art keywords
vessel
interest
model
geometric
geometric parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880074371.0A
Other languages
English (en)
Inventor
C·哈泽
H·施米特
M·格拉斯
A·范德霍斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of CN111357055A publication Critical patent/CN111357055A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • Algebra (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

提供了用于评估患者的脉管系统的装置和对应的方法,其中,基于感兴趣血管的至少一个几何参数值的局部变化来识别感兴趣血管中的分叉,并且调节感兴趣血管内部的流体动力学以考虑所述分叉。

Description

针对血管分叉估计流量以用于模拟血液动力学
技术领域
本发明涉及用于评估患者的脉管系统的装置、对应的方法以及相应的计算机程序。特别地,本发明涉及使用从一幅或多幅诊断图像导出的生理模型对患者的脉管系统中的感兴趣血管进行改进的评估,以更准确地识别从感兴趣血管延伸的小血管分支。
背景技术
冠状动脉的功能性狭窄通常是通过考虑通过冠状脉管系统的感兴趣血管的血液动力学(特别是血液流速)来评价的。因此,对狭窄的分级可以具体使用血流储备分数(FFR)或瞬时无波比(iFR)来执行。FFR和iFR都是针对受狭窄影响的血管中的剩余最大流动能力的指示物。在FFR/iFR测量中,将狭窄远侧压力(Pd)与主动脉中的压力(Pa)的比率用作针对相应的流量测量的替代指示物。据此,假定Q狭窄/Q健康≈Pd/Pa
必须在最大血流量期间(即,在充血情况下)执行FFR测量,这可能会导致患者不适。相比之下,iFR测量是在舒张期的特定时段期间在静息时执行的,从而避免了在患者体内引发充血的必要性。通过消除这种充血的必要性,极大地改善了患者的舒适度。
为了确定FFR和/或iFR,通常可以执行对通过可能怀疑有狭窄的患者血管的压力导丝的拉回,并且可以确定针对沿着所述血管的多个血管内位置的压力。
基于这些FFR/iFR测量,可以考虑潜在的处置选择,并且可以根据这些选择中的一个或多个来处置患者。确定最佳处置选择的另一个重要指标是所谓的冠状动脉血流储备(CFR),它定义了通过脉管系统的超过正常静息容量的最大血流量增加。CFR通常可以通过血管内导丝来测量,该血管内导丝经由其端部处的多普勒传感器来测量血流速度。然而,对该传感器的定位具有挑战性,这会导致执行不准确测量而产生的高风险。而且,可以使用正电子发射断层摄影(PET)或多普勒超声心动描记。
因此,对血液动力学指标(例如,FFR/iFR和CFR)的测量通常是有创的。为了减少对患者的有创流程的数量,近年来,已经努力使用所谓的“虚拟”方法来确定血液动力学指标。在这样的虚拟方法中,基于从患者的冠状脉管系统(或其部分)的诊断图像数据导出的生理模型对血液动力学指标进行模拟。作为这样的诊断图像数据的示例,提到了冠状动脉血管造影数据。
借助于生理建模,可以估计FFR/iFR/CFR值,并且可以确定哪些处置选择可用于患者。为了获得令人满意的处置指导,必须尽可能准确地确定虚拟FFR/iFR/CFR值。
在这方面,WO 2016/001017公开了用于基于患者的冠状动脉系统的表示以及从针对患者获得的投影数据导出的相应的患者特定的边界条件来提高FFR值的无创确定的准确度的装置和方法。
发明内容
迄今为止,提高对血液动力学指标的建模的准确度的方法已经集中在使用例如根据诊断图像数据直接导出的患者特定的边界条件。通过使用这些患者特定的边界条件,可以模拟针对感兴趣血管的流体动力学,并且可以基于这些模拟来计算相应的血液动力学指标。
这些方法通常会忽略血液从感兴趣血管向小血管分支的流出。造成这种情况的一个原因是:在许多诊断图像中,这些血管分支可能不可见并且/或者它们与感兴趣血管的连接可能无法被清晰识别。在因血管重叠和不合适的角度而仅使用单个2D诊断图像的情况下,尤其如此。结果,这些分支所承载的血液的体积数量可能都无法确定。
然而,血液从血管分支流出可能会对通过感兴趣血管的流体动力学产生重大影响,因为体积(血液)流速是流体动力学模拟中的重要因素。因此,为了更精确地估计流体动力学,对沿着感兴趣血管流向小血管分支的流出速率的准确评估非常重要。
因此,本发明的目的是提供用于评估患者的脉管系统的改进的装置和对应的方法。
本发明的另外的目的是提供用于以高准确度评估患者的脉管系统的装置,该装置允许可靠地识别从所述脉管系统的主血管延伸的小血管分支。更具体地,本发明的目的是提供用于基于一幅或多幅诊断图像对冠状动脉生理情况进行评估和建模的装置,利用该装置可以以高准确度确定重要的血液动力学指标,例如,FFR、iFR或CFR。
因此,提供了一种用于评估患者的脉管系统的装置。所述装置包括:输入单元,其被配置为接收所述脉管系统的至少一幅诊断图像;建模单元,其被配置为基于所述至少一幅诊断图像来生成生理模型,所述生理模型包括所述脉管系统中的感兴趣血管的几何模型;以及提取单元,其被配置为基于所述几何模型来提取在沿着所述感兴趣血管的纵轴的多个位置处的、针对所述感兴趣血管的几何参数的多个几何参数值。所述装置还包括评价单元,所述评价单元被配置为:根据所述多个位置处的所述多个几何参数值来确定至少一个候选位置处的至少一个几何参数值的局部变化;以及预测在所述至少一个候选位置处的所述感兴趣血管的至少一个血管分支的存在。
因此,该装置允许基于描述血管的几何形状的几何参数的值的局部变化来在诊断图像数据中检测血管分支。更具体地,该装置被配置为预测在候选位置处的血管分支的存在,在该候选位置处,针对所述几何参数导出的值呈现局部变化,在一些具体示例中为局部减小。
在该背景中,术语诊断图像可以特别是指表示患者的冠状脉管系统的图像。更具体地,诊断图像可以表示包括感兴趣血管的冠状脉管系统。在该背景中,术语脉管系统可以指血管树或单个血管。术语脉管系统可以特别是指要对其执行建模的感兴趣血管的血管节段。
在一些实施例中,可以通过(无创)诊断成像模态(例如,计算机断层摄影(CT)或磁共振成像)来获得诊断图像。在特定实施例中,可以获得单幅诊断2D X射线血管造影图像。
因此,诊断成像模态可以被特别地门控。门控的诊断成像模态通常可以采用门控重建,在门控重建中,平行执行对诊断图像的采集和对提供心动周期上的信息的数据(例如,心电图(ECG)数据或光体积描记(PPG)数据)的采集。因此,该数据可以用于借助于心动周期的相应选择的相位点来门控图像采集和重建。
在一些实施例中,可以从至少一幅诊断图像导出包括感兴趣血管的几何模型的生理模型,以对患者的脉管系统进行建模。
在该背景中,术语生理模型可以特别是指所述患者的冠状脉管系统的任何种类的模型。为此,提供了建模单元,该建模单元根据诊断图像来生成生理模型。为了做到这一点,建模单元可以将感兴趣血管分段成多个节段。基于该分段,可以生成感兴趣血管或其节段的生理模型,该生理模型包括感兴趣血管的几何模型,即,感兴趣血管的几何表示。该几何模型可以是二维模型或三维模型。
在一些实施例中,对包括几何模型的生理模型的生成可以仅是指对感兴趣血管的横截面面积和/或血管直径的推导。
在一些实施例中,对生理模型的生成还可以涵盖对通过感兴趣血管的流体动力学的确定。在这些实施例中,生理模型可以特别包括表示通过感兴趣血管的血流的流体动力学模型。
通过执行对模拟血液与血管壁(即,血液流经的血管的内表面)的相互作用的计算来生成流体动力学模型。因此,这些相互作用是由考虑了血管性质(例如,血管壁组成、血管壁弹性和血管阻抗、血管中的分叉以及血液性质(例如,血液粘度))的一些边界条件来定义的。
当生成流体动力学模型时,通常可以使用广义边界条件。在该背景中,广义的术语可以指用于所有患者的相同边界条件或用于特定患者群体的边界条件(按年龄、性别、生理状况等区分)。
在一些实施例中,流体动力学模型可以与几何模型集成,只要它表示几何模型的每个点处的血液的流体动力学即可。
应当理解,根据诊断图像数据生成的生理模型不包括从感兴趣血管延伸出的血管分支,因为,如上文所指示的,这些血管分支可能无法从至少一幅诊断图像中被清楚识别。在这方面,用于评估患者的脉管系统的改进的装置允许将这些血管分支添加到生理模型中,即,添加到感兴趣血管的几何模型以及描述通过感兴趣血管的流体动力学的模型中。
为了实现这一点,生理模型中包括的几何模型可以特别用于提取在沿着感兴趣血管的纵轴的多个位置处的多个几何参数值。
在该背景中,术语几何参数可以指表示感兴趣血管的几何形状的任何参数。在一些实施例中,几何参数可以特别是指血管直径、血管的横截面形状、血管的横截面面积或类似的几何度量。术语几何参数值可以特别是指在感兴趣血管的特定位置处的所述几何参数的值。
为此,还应当理解,沿着血管的纵轴的多个位置是指由几何模型表示的多个位置,即,使用几何模型在所述几何模型的与由所述模型表示的感兴趣血管中的相应位置相对应的位置处对这些几何参数值中的每个几何参数值进行建模。
另外,确定至少一个几何参数值的局部变化(即,局部的变化)应被理解为将多个几何参数值作为血管长度(或血管节段的长度)的函数的评价单元。也就是说,这些几何参数值中的每个几何参数值被认为在其沿着感兴趣血管的纵轴的相应位置处。
因此,确定几何参数值与其余的几何参数值相比在哪些位置处显示出局部变化。也就是说,考虑将几何参数值表示为血管长度的函数的过程,并且将局部的增加和/或减少和/或局部的最小值或局部最大值视为对在该位置处可以找到候选位置的指示。为此,术语候选位置可以特别是指血管分支可以位于的位置。
在一些示例性实施例中,局部改变可以特别是指在该特定位置处的几何参数值的局部的减小。因此,该减小可以对应于几何参数值的局部最小值和/或对应于几何参数值的明显减小。
对感兴趣血管中的候选位置处的血管分支的这种预测允许将位于这些位置处的血管分支添加到生理模型中。也就是说,对血管分支的预测允许调整几何模型以包括从感兴趣血管延伸的血管分支的几何表示。另外,该预测允许调整流体动力学模型以将从感兴趣血管的流体流出包括到对通过所述感兴趣血管的流体动力学的计算中。因此,通过预测候选位置处的血管分支,可以实现关于几何形状以及血液动力学参数的对脉管系统的更准确的评估。
根据实施例,所述至少一幅诊断图像是使用X射线血管造影术获得的。X射线血管造影术是一种诊断成像技术,它特别适合于对(人)身体内的血管进行可视化。X射线血管造影术通常是通过以下操作执行的:将造影剂注入血管中,然后利用X射线辐射辐照具有填充有造影剂的血管的身体部分,以获得二维(2D)诊断图像,在2D诊断图像中,填充有造影剂的血管清晰可见。
诊断图像因此可以特别是包括至少一个感兴趣血管的患者的冠状动脉的X射线血管造影图像。更具体地,根据其生成生理模型的至少一幅诊断图像可以是感兴趣血管的单幅2D X射线血管造影图像。在这种情况下,生理模型可以特别是二维模型,在该二维模型中,例如假定血管为圆形来近似三维模型。
为了获得足够好的分辨率的生理模型,X射线血管造影图像应当具有足够的造影剂填充。此外,X射线血管造影图像中的缩短和重叠程度应当足够低。这提高了图像的质量并简化了生理模型的生成。
根据又一实施例,所述生理模型还包括集总参数流体动力学模型,并且所述建模单元被配置为基于对在所述至少一个候选位置处的所述至少一个血管分支的所述预测来调整所述集总参数流体动力学模型。
在一些实施例中,生理模型可以包括集总参数流体动力学模型,以模拟通过脉管系统的流体动力学。更具体地,集总参数流体动力学模型可以用于模拟通过感兴趣血管或其节段的流体动力学。
集总参数流体动力学模型在此是指其中通过离散实体的拓扑来近似脉管系统的流体动力学的模型。更具体地,在集总参数流体动力学模型中,通过一系列电阻器Ri来近似血管中的流体动力学阻抗,同时可以通过后接表示接地的元件的表示出口边界条件的电阻器RO来近似血管或血管节段的终端。
与诸如Navier-Stokes之类的其他方法相比,这些集总参数流体动力学模型减少了维度的数量。因此,使用集总参数流体动力学模型允许简化对血管内部的流体动力学的计算,并且最终可以减少处理时间。
在一些实施例中,建模单元可以被配置为调整集总参数流体动力学模型以考虑预测的血管分支,即,一部分流体通过其流出感兴趣血管的血管出口。在该背景中,术语调整可以指对生理模型中包括的流体动力学模型的调节。更具体地,术语调整可以是指为了包括血管分支对感兴趣血管中的流体动力学的影响而进行的调节。
也就是说,对集总参数模型的调整可以涵盖对从感兴趣血管流出到这些血管分支的流体的包括。换句话说,集总参数流体动力学模型允许调节流体动力学,以便考虑在分支血管的情况下在感兴趣血管中发生的分叉。
在集总参数流体动力学模型中,可以通过相应的电阻器ROi对流向这样的血管分支的流出进行建模,每个电阻器具有相应的出口阻抗。因此,对集总参数流体动力学模型的调整可以特别通过包括表示在候选位置i处的出口阻抗的电阻器ROi来执行。因此,如果正确估计了相应的血管分支的相应的阻抗,则电阻器ROi能够只对通过相应的血管分支的流体动力学进行准确建模。
为此,在位置i处的电阻器ROi的出口阻抗可以特别地由流体从感兴趣血管的局部流出速率来定义。在一些实施例中,该局部流出速率可以根据体积流速来确定,该体积流速可以基于由遵循默里定律描述的函数原理的形式来计算:
Q=k*D3
这里,Q对应于体积流速,D是血管直径,并且k是比例常数。应当理解,虽然在示例性实施例中使用默里定律来确定体积流速,但是还可以使用不同的相关关系Q(D)。更具体地,对于脉管系统的其他部分,可以使用其他相关关系Q(D)来描述体积流速与血管直径之间的关系。
在当前示例中,根据几何模型导出的几何参数值可以特别包括针对虚拟地消除了疾病对血管直径的影响的血管直径、局部的平均的血管直径或估计的健康血管直径的值。因此,可以假定因流向血管分支的流出而减小了体积流速。
因此,可以假定局部流出速率由血管中第一位置(靠近血管分支)处的体积流速与第二位置(远离血管分支)处的体积流速之差来表示。由于已经预测了针对血管分支的候选位置i,因此能够假定局部流出速率可以被确定为第一候选位置i处的体积流速与第二候选位置i+1处的体积流速之差:
ΔQ(i,i+1)=Qi-Qi+1
为了确定候选位置i处的体积流速,必须基于默里定律进行计算:
Figure BDA0002494393960000081
这给出了局部流出速率ΔQ(i,i+1):
Figure BDA0002494393960000082
由此确定的局部流出速率可以用于根据下式来近似在位置i处的电阻器的ROi的出口阻抗:
Figure BDA0002494393960000083
其中,C是描述健康患者的入口压力的对应边界条件。
因此,建模单元可以被配置为:基于在预测的候选位置处的预测的血管分支来导出表示在感兴趣血管中的相应的候选位置i处的流出的一个或多个电阻器ROi的出口阻抗,并且将电阻器ROi包括到集总参数流体动力学模型中。由于考虑了流向血管分支的流出,因此允许对感兴趣血管内部的流体动力学进行更准确的建模。
另外,建模单元还可以使用计算出的局部流出速率的幅值和/或一个或多个电阻器ROi的出口阻抗的幅值来估计特定血管分支的大小。更具体地,建模单元可以估计到:局部流出速率越高(并且相应地,相应的出口阻抗越低),血管分支就越大。这是特别正确的,因为仅在血管分支足够大以提供这样的流出速率的情况下,才会发生高局部流出速率。因此,建模单元还被配置为根据集总参数模型来导出关于要在几何模型中包括的脉管系统的几何形状的更多信息。
在又一实施例中,生成包括所述几何模型的所述生理模型还包括将所述感兴趣血管分段成一个或多个节段。所述提取单元因此还被配置针对每个节段确定至少一个分段的几何参数值。另外,所述评价单元还被配置为:对所述至少一个分段的几何参数值应用回归模型,以针对每个节段计算平均的几何参数值;以及通过基于每个节段的所述平均的几何参数值预测在所述至少一个候选位置处的至少一个血液动力学参数来预测所述至少一个血管分支。替代地或额外地,可以应用回归模型以针对每个节段计算表示处于健康状态而不受疾病影响的患者的脉管系统的估计的几何参数值。在这种情况下,可以基于每个节段的估计的几何参数值来执行对至少一个血液动力学参数的预测。在又一实施例中,预测所述至少一个血液动力学参数包括预测流体流出速率。
在一些实施例中,由建模单元生成生理模型可以包括对被成像的感兴趣血管的分段。在该背景中,对感兴趣血管的诊断图像进行分段对应于将在诊断图像中表示的感兴趣血管分段成相应的血管节段。基于该分段,可以生成包括几何模型的生理模型,该生理模型表示感兴趣血管的一个或多个血管节段。
然后,提取单元可以针对感兴趣血管的每个节段提取在相应的血管节段中的一个或多个位置处的一个或多个分段的几何参数值。该分段的几何参数值是基于生理模型中包括的几何模型的估计结果。如上所述,几何模型的生成又会受到感兴趣血管中的流体动力学的影响。另外,几何模型也可能会受到患者的健康状况的影响。更具体地,由于在感兴趣血管中的特定位置处的损伤,血管在这些位置处可能表现出不同的几何形状。
举例来说,分段的几何参数可以是分段的血管直径。可以基于根据诊断图像数据生成的几何模型来确定针对感兴趣血管的节段的该分段的血管直径。因此,可以导出在沿着分段的感兴趣血管的纵轴的多个位置处的、针对分段的血管直径的值,该值取决于感兴趣血管的几何形状,即,感兴趣血管在其长度上的一些部分可能更窄,而其他部分可能更宽。另外,分段的血管直径还受到通过感兴趣血管的流体动力学的影响。更具体地,在血管分叉处,可以确定血管直径变化(特别是减小)。此外,在感兴趣血管中例如因狭窄引起的局部变窄也会引起血管直径减小。这些因素均会影响根据几何模型导出的血管直径。因此,应当对血管直径以及同样的其他几何参数值进行平均化并且/或者确定与在健康状态下的血管直径相对应的估计的血管直径。
为了实现该目的,对分段的血管直径应用回归模型以预测针对多个位置中的每个位置的平均的血管直径和/或估计的血管直径。在该背景中,回归模型特别是指可以藉此估计变量之间的关系的回归分析。在特定示例中,使用回归模型来估计在某个血管位置处的体积流速之间的关系。
因此,回归模型可以特别用于预测平均的血管直径和/或估计的血管直径,即,如果患者是健康的,则将给出在每个血管位置处的血管直径。因此,回归模型将平均的和/或估计的血管直径描述为沿着感兴趣血管的纵轴的位置的函数。如上所述,根据针对沿着血管的每个位置的血管直径,可以预测针对每个位置的体积流速。
在一些实施例中,对回归模型的应用特别是指执行线性回归分析与保序回归分析的组合。在一些实施例中,回归分析还包括对患病节段的抑制,这也可能引起血管直径的局部减小。也就是说,回归分析不考虑(例如可以根据诊断图像数据导出的)患病节段。
借助于回归模型,可以针对每个血管节段确定对应于健康状态的平均的几何参数值或估计的几何参数值。在一些特定实施例中,可以确定针对沿着每个血管节段的纵轴的相应的多个位置的多个平均的几何参数值。在一个特定示例中,确定针对每个血管节段中的多个位置的平均的血管直径。在其他实施例中,可以确定针对沿着每个血管节段的纵轴的相应的多个位置的、与健康状态相对应的多个估计的几何参数值。
在一些实施例中,评价单元可以特别地确定平均的几何参数值的局部变化。也就是说,评价单元将平均的几何参数值视为血管长度(或血管节段的长度)的函数,并且确定平均的几何参数值显示出局部变化的候选位置i。
评价单元还可以基于在相应的候选位置i处确定的平均的几何参数值来预测至少一个血液动力学参数值。
根据一个示例,平均的几何参数值可以包括平均的血管直径。特别地,如上所述,评价单元可以基于候选位置i处的平均的血管直径Di来预测该特定位置处的体积流速Qi。在一些实施例中,评价单元可以特别使用预测的体积流速来根据上述关系确定在两个候选位置之间的从感兴趣血管的流出:
Figure BDA0002494393960000101
通过使用该预测的局部流出速率,评价单元可以识别预计具有高流出速率的血管节段的部分。评价单元然后可以将该信息提供给建模单元。
然后,建模单元可以相应地调整生理模型。在一些实施例中,建模单元可以使用血管节段的如此识别的部分来调整生理模型以包括血管分支。更具体地,建模单元可以使用关于预计具有高流出速率的血管节段的信息,以根据诊断图像数据来确定可以在高流出速率的位置处提供哪些血管分支。
建模单元可以调整生理模型以模拟感兴趣血管中的血管分支的几何形状和/或对应的分叉的流体动力学。也就是说,生理模型可以被调整以包括流体流出到所识别的血管分支所产生的影响。
因此,借助于这种虚拟流出方法,可以在对血液动力学参数(例如,血压、血流量、血液粘度等)的模拟方面提高生理模型的准确度。
根据又一实施例,所述评价单元被配置为:基于所述至少一个候选位置来在所述至少一幅诊断图像中定义感兴趣区域;以及输出对所述感兴趣区域的指示。在又一实施例中,所述评价单元将对所述感兴趣区域的所述指示输出到所述建模单元,并且所述建模单元被配置为使用对所述感兴趣区域的所述指示来调整所述生理模型。
在一些实施例中,评价单元还可以基于预测的候选位置来导出针对至少一幅诊断图像的相应的感兴趣区域,在所述感兴趣区域中,可以找到血管分支。在一些实施例中,评价单元可以因此基于对特定候选位置处的局部流出速率的建模来导出这些感兴趣区域。因此,评价单元可以预测到:针对在特定候选位置处的高局部流出速率,可以存在相应的血管分支。然后,评价单元可以基于该信息来定义感兴趣区域。在一些实施例中,评价单元可以因此考虑局部流出速率的幅值以估计血管分支的大小,并且可以相应地调整感兴趣区域。在其他实施例中,感兴趣区域可以被定义为围绕相应的候选位置的预定义大小的区。
评价单元然后可以将对感兴趣区域的指示输出到显示单元和/或建模单元。在一些实施例中,该指示包括关于诊断图像内部的感兴趣区域的位置的信息。另外,该指示可以包括关于感兴趣区域的大小和/或形状的信息。
在一些实施例中,建模单元从评价单元接收指示,并且基于该指示在至少一幅诊断图像中识别感兴趣区域。因此,建模单元获得关于建模单元应当在诊断图像中检查潜在血管分支的位置的信息。通过使用该信息,建模单元可以根据诊断图像来识别这些血管分支。然后,建模单元可以使用关于可以根据诊断图像数据导出的血管分支的相应信息作为针对生理模型的输入。针对这样的信息的示例可以是血管分支的直径和/或长度和/或血管分支的走向等。如上所述,建模单元然后可以相应地调整生理模型。
根据另外的实施例,所述装置包括显示单元。所述评价单元因此将对所述感兴趣区域的所述指示输出到所述显示单元。所述显示单元被配置为:生成所述至少一幅诊断图像的第一图形表示和对诊断图像数据中的所述感兴趣区域的所述指示的第二图形表示;以及联合显示所述第一图形表示和所述第二图形表示。
显示单元可以是能够显示数据的图形表示的任何单元,例如,计算机屏幕、电视屏幕等。显示单元还可以包括处理单元,以生成至少一幅诊断图像的图形表示以及对感兴趣区域的指示的图形表示。更具体地,显示单元可以被配置为生成联合图形表示,其中,对至少一个感兴趣区域的指示被表示为至少一幅诊断图像的元素。为此,该指示可以由能够准确指示感兴趣区域的指示符来表示。在这方面,该指示可以特别被表示为包围感兴趣区域或阴影区的圆周线,覆盖感兴趣区域等。替代地或额外地,该指示还可以由指示感兴趣区域的箭头来表示,例如以箭头结合该区域的彩色突出显示来表示。
第一图形表示和第二图形表示的生成可以特别包括至少一幅诊断图像的第一图形表示的生成、指示的第二图形表示的生成以及第二图形表示到第一图形的后续集成,第一图形表示的位置与诊断图像中的感兴趣区域的位置相对应。
在又一实施例中,所述输入单元还被配置为接收血管内测量数据,并且所述评价单元还被配置为基于所述生理模型和所述血管内测量数据来预测沿着所述感兴趣血管的所述纵轴的所述多个位置处的一个或多个血液动力学指标值。在一个实施例中,所述血管内测量数据包括针对所述感兴趣血管在原位采集的至少一个压力梯度。根据又一实施例,预测的在沿着所述感兴趣血管的所述纵轴的所述多个位置处的所述一个或多个血液动力学指标值包括体积流速和/或血流速度中的至少一个。
因此,术语血管内测量数据特别是指在原位采集的数据,即,从患者的脉管系统中的感兴趣血管内部采集的数据。更具体地,术语血管内测量数据可以指对感兴趣血管内部的一个或多个血液动力学参数的血管内测量结果。这些测量通常可以通过以下操作来执行:将包括测量设备的导管引入感兴趣血管中,并且使用该测量设备来收集针对要考虑的相应的血液动力学参数的一个或多个血液动力学参数值。
血管内测量数据可以由输入单元来接收,然后被提供给评价单元。在一些实施例中,输入单元特别接收在血管内图像数据中包括的至少一个测量的血液动力学参数值,并且将该至少一个测量的血液动力学参数值提供给评价单元。然后,评价单元将至少一个测量的血液动力学参数值用作针对生理模型的另外的输入,以导出一个或多个血液动力学指标值。
在该背景中,术语血液动力学指标值可以特别是指用于导出诊断指标的血液动力学参数值,例如,血流储备分数(FFR)、瞬时无波比(iFR)和/或冠状动脉血流储备(CFR)。因此,血液动力学指标值可以特别涉及体积流速、血流速度、血压等值。
根据一个说明性示例,血管内测量数据涉及对压力梯度的测量,该压力梯度的测量是使用被引入到感兴趣血管中的相应的压力导丝来执行的。因此,在该示例中,至少一个血液动力学参数值涉及感兴趣血管中的压力梯度Δp=po-pa。另外,已经使用生理模型来确定在感兴趣血管中的多个候选位置i处的体积流速Qi。也就是说,已经针对每个候选位置i确定了特定的体积流速Qi,由此在该确定中已经考虑了通过相应的血管分支的流出。
因此,由于在计算Qi时已经考虑了通过沿着血管(或血管节段)的长度的特定血管分支的发生的从感兴趣血管的流出,因此对于沿着血管的长度的不同位置,Qi将是不同的。因此,与现有技术的方法相反,沿着血管的长度的体积流速不再是恒定的,而是根据从感兴趣血管的流出而变化。
考虑到因通过小血管分支的流出而引起的体积流速的变化,允许基于(与位置相关的)体积流速Qi和压力梯度Δp来准确确定准确鉴别诊断患者所需的血液动力学指标。
在另外的说明性实施例中,要确定的血液动力学指标与冠状动脉血流储备(CFR)有关。CFR被定义为在充血情况下的体积流速与在静息状态下的体积流速的比率:
CFR=Q充血/Q静息
由此可以针对沿着感兴趣血管的各种位置确定CFR值。因此,由于考虑了通过小血管分支的局部流出,因此每个位置处的体积流速可能不同,因此,结果得到的CFR值可能会随位置而变化。这是对现有技术方法的重大改进,在现有技术方法中,假定沿着感兴趣血管的体积流速是恒定的,从而导致假定沿着感兴趣血管的CFR值也是恒定的,这在临床上是不现实的结果。
在一些实施例中,生理模型包括集总参数流体动力学模型,以计算通过感兴趣血管的流体动力学。在使用虚拟流出方法识别出血管分支后,可以如上文所述地调整包括集总参数流体动力学模型的生理模型。然后,经调整的生理模型可以用于计算沿着感兴趣血管的纵轴的多个CFR值。
更具体地,包括集总参数流体动力学模型的生理模型接收压力梯度Δp,作为用于模拟CFR的另外的输入。通过使用经调整的生理模型和以有创方式获得的压力梯度,可以使用下式来计算通过感兴趣血管的流速:
Figure BDA0002494393960000141
其中,Δp是压力梯度,Qi是在候选位置i处的流速,Ri是在候选位置i处的线性阻抗,并且Vi是在该位置处的二次方阻抗。
藉此,在候选位置i处的Qi和pi被定义为:
Qi=Qi-1-pi/ROi,并且
Figure BDA0002494393960000142
基于这些关系,可以针对多个候选位置i计算多个CFR值。
由于在集总参数流体动力学模型中对体积流速的模拟考虑了流向小血管分支的流出,因此体积流速Qi的值会沿着位置i变化。体积流速的这种变化对应于对感兴趣血管中的实际流动动力学的更准确的模拟。此外,它允许计算位置相关的CFR值。因此,该方法允许根据基于生理模型的模拟来获得针对CFR值的临床实际结果。
这避免了将另外的导管引入到感兴趣血管中以借助于血管内流量测量来确定CFR值的必要性。因此,借助于这种虚拟流出方法,可以使对血液动力学指标的模拟更加准确。
在一些实施例中,血管内测量数据可以替代地或额外地包括在感兴趣血管内部的特定血管内位置处有创获得的体积流速和/或至少一个血管直径。在一个特定实施例中,确定体积流速和血管直径两者。在这种情况下,关系Q(D)可以用作患者特定的输入,以根据下式来计算比例常数k:
k=Q/D3
这样的比例常数k的校准可以进一步提高建模预测的准确度。
在另外的实施例中,还可以通过当在流量测量侧的远端堵塞感兴趣血管时获得基于流量的测量值来使用血管内流量测量改善流向小血管分支的流出。在远侧位置处堵塞感兴趣血管意味着在堵塞点附近测量的感兴趣血管内部的整个血流都流入血管分支。因此,这允许专门针对每个患者更准确地确定流向血管分支的不同流出速率。这还可以提高建模预测的准确度。
根据另外的方面,提供了一种用于评估患者的脉管系统的方法。所述方法包括以下步骤:接收所述脉管系统的至少一幅诊断图像;基于所述至少一幅诊断图像来生成生理模型,所述生理模型包括所述脉管系统中的感兴趣血管的几何模型;以及基于所述几何模型来提取在沿着所述感兴趣血管的纵轴的多个位置处的、针对所述感兴趣血管的几何参数的多个几何参数值。另外,所述方法还包括以下步骤:根据在所述多个位置处的所述多个几何参数值来确定在至少一个候选位置处的至少一个几何参数值的局部减小;并且预测在所述至少一个候选位置处的、所述感兴趣血管的至少一个血管分支。
在一些实施例中,所述方法还包括以下步骤:将所述感兴趣血管分段成一个或多个节段;以及针对每个节段确定至少一个分段的几何参数值。所述方法还包括以下步骤:对所述至少一个分段的几何参数值应用回归模型,以针对每个节段计算平均的几何参数值;以及通过基于每个节段的所述平均的几何参数值预测在所述至少一个候选位置处的至少一个血液动力学参数来预测所述至少一个血管分支。
在另外的方面中,提供了一种用于控制根据本发明的装置的计算机程序,所述计算机程序在由处理单元运行时适于执行根据本发明的方法的步骤。在又一方面中,提供了一种计算机可读介质,其上存储有上述计算机程序。
应当理解,根据权利要求1所述的装置、根据权利要求12所述的方法、根据权利要求14所述的计算机程序以及根据权利要求15所述的计算机可读介质具有相似和/或相同的优选实施例,特别是如从属权利要求中所定义的优选实施例。
应当理解,本发明的优选实施例也能够是从属权利要求或上述实施例与相应的独立权利要求的任意组合。
参考下文描述的实施例,本发明的这些方面和其他方面将变得显而易见并且得到阐明。
附图说明
在以下附图中:
图1示意性地图示了根据实施例的用于评估患者的脉管系统的装置。
图2A表示根据实施例的分段的和平均的血管大小以及作为血管长度的函数的计算出的出口阻抗的标绘图。
图2B示意性地图示了根据实施例的对流出到集总参数流体动力学模型中流体的整合。
图3表示根据实施例的用于评估患者的脉管系统的方法的流程图。
具体实施方式
附图中的图示是示意性的。在不同的附图中,相似或相同的元件被提供有相同的附图标记。
图1示意性地呈现了用于评估患者的脉管系统的装置2的示例性实施例。装置2包括输入单元100、建模单元200、提取单元300、评价单元400以及显示单元500。
X射线系统1(例如可以是C臂系统)用于采集包括一幅或多幅诊断图像的X射线血管造影投影数据。因此,在根据图1的示例性实施例中,至少一幅诊断图像10是单幅二维(2D)X射线血管造影图像。
装置2的输入单元100被配置为从X射线系统1接收单幅X射线血管造影图像10。另外,输入单元100被配置为从血管内测量模态接收血管内测量数据20。在根据图1的示例性实施例中,通过将压力导丝引入患者的脉管系统中的感兴趣血管中并测量感兴趣血管内部的相应的压力梯度Δp来获得血管内测量数据20。
输入单元100将X射线血管造影图像10提供给建模单元200。建模单元200被配置为:接收X射线血管造影图像10;并且在X射线血管造影图像10中对被成像的脉管系统中的感兴趣血管执行血管分段,以生成包括感兴趣血管的几何模型的生理模型。
在根据图1的示例性实施例中,基于X射线血管造影图像10生成包括几何模型的生理模型特别包括对针对沿着所述血管的(模拟的)纵轴(即,沿着血管长度)的多个位置的感兴趣血管的血管直径进行建模。也就是说,针对分段的血管的每个节段,导出至少一个血管直径。然后,建模单元200将至少包括至少一个血管直径的生理模型提供给提取单元300。
提取单元300被配置为使用生理模型中包括的几何模型来提取针对感兴趣血管的多个几何参数值。在根据图1的示例性实施例中,提取单元300提取在多个位置处的、针对感兴趣血管的血管直径的多个值。由于感兴趣血管已经被分段,因此这涵盖对针对血管的节段中的每个节段的血管直径的多个值的提取。因此,在示例性实施例中,提取单元300提取多个分段的血管直径值。
然后,提取单元300将所提取的值连同所提取的值所针对的相应位置一起提供给评价单元400。
评价单元400接收X射线血管造影图像10和提取值以及它们的相应位置。然后,评价单元400针对位置中的每个位置根据所提取的值来计算局部平均的血管直径。在该示例性实施例中,评价单元400将线性回归与保序回归的组合应用于所提取的值,以计算针对每个位置i的局部平均的血管直径Di。因此,提取单元400任选地使用单调减少作为针对计算的额外条件。
然后,评价单元400将由此计算出的局部平均的血管直径Di视为其相应位置i的函数,并且识别在其处平均的血管直径Di显示出局部减小的候选位置i。然后,评价单元400基于该局部减小来预测在候选位置i中的每个候选位置处的至少一个血液动力学参数。在根据图1的特定实施例中,评价单元特别针对候选位置i中的每个候选位置预测流体流出速率。
在图1的示例性实施例中,评价单元400然后考虑在候选位置i中的每个候选位置处的预测的流体流出速率,并且针对在其处预测的流体流出速率高(即,高于预定义阈值)的候选位置i的子集确定小血管分支可能正在该特定候选位置i处从感兴趣血管产生分支。
为此,评价单元400使用预测的流体流出速率来针对X射线血管造影图像10确定在X射线血管造影图像10中的与感兴趣血管中的特定候选位置i相对应的位置附近的感兴趣区域。也就是说,评价单元400确定X射线血管造影图像10中的可能包括血管分支的感兴趣区域。
根据图1的示例,评价单元400然后将针对X射线血管造影图像10中的至少一个感兴趣区域的指示符输出到建模单元200和显示单元500。另外,评价单元400将关于在候选位置i中的每个候选位置处的预测的流体流出速率的信息提供给建模单元200。
然后,建模单元200调整生理模型以包括在其处预测的流体流出速率已经很高的候选位置i处的潜在的血管分支。更具体地,建模单元200使用X射线血管造影图像和关于对至少一个感兴趣区域的指示来通过在相应的感兴趣区域中确定对应的血管分支而识别X射线血管造影图像中的血管分支。基于该识别,建模单元200然后调整感兴趣血管的几何模型以包括这些血管分支。
因此,建模单元200考虑到候选位置i中的每个候选位置处的预测的流体流出速率的幅值,以更准确地估计血管分支中的每个血管分支的大小。也就是说,建模单元200估计:较高的流出速率指示较大的血管分支,而较低的流出速率指示较小的血管分支。
另外,建模单元200调整通过感兴趣血管的流体动力学,以便包括在候选位置i中的每个候选位置处的分叉,即,考虑在候选位置i处从感兴趣血管的流体流出。
在根据图1的示例性实施例中,建模单元200随后将经调整的生理模型提供给评价单元400。评价单元400然后使用经调整的生理模型和从输入单元100接收的血管内测量数据来预测针对感兴趣血管中的多个位置的多个血液动力学指标值。
在根据图1的特定实施例中,可以针对沿着血管的长度的多个位置估计冠状动脉血流储备(CFR=Q充血/Q静息),而没有必要引入能够测量进入血管的血流量的另外的血管内测量设备。任选地,评价单元400将关于沿着感兴趣血管的纵轴的CFR值的信息提供给显示单元500。
显示单元500从输入单元100接收X射线血管造影图像10。另外,显示单元500接收针对X射线血管造影图像10中的至少一个感兴趣区域的指示,并且任选地还接收关于针对沿着感兴趣血管的纵轴的多个位置导出的CFR值的信息。
然后,显示单元500生成X射线血管造影图像10的第一图形表示。另外,显示单元500生成对感兴趣区域的指示的第二图形表示。任选地,显示单元还可以生成CFR值的第三图形表示。然后,显示单元500联合显示第一图形表示和第二图形表示,并且任选地还一起显示第三图形表示。
在根据图1的示例性实施例中,显示单元500特别生成相应的圆周线作为针对每个感兴趣区域的图形表示,并且在图像中的感兴趣区域的相应的位置处将相应的圆周线插入到X射线血管造影图像10的图形表示中。也就是说,圆周线表示相应的感兴趣区域的边界。
任选地,显示单元500还可以生成沿着感兴趣血管的长度的多个CFR值的图形表示。因此,该图形表示可以特别包括CFR值的值和指示已经针对其预测出该值的位置的相应的箭头。
然后,显示单元500可以显示图形表示。这允许用户(特别是医生)更全面地了解患者的脉管系统并同时将评估所需的有创流程的量降至最低。
在这方面,图2A分别示意性地图示了所提取的血管直径的标绘图30和作为感兴趣血管的长度(L以毫米为单位)的函数的平均的血管直径Di(D以任意单位)的标绘图31。基于根据图2A的示例性实施例,可以根据标绘图30和31导出的信息可以用于调整用于预测血液动力学指标值的生理模型。
在根据图2A的实施例中,假定生理模型包括集总参数流体动力学模型,以模拟通过患者的脉管系统的流体动力学。图2B示出了这样的集总参数流体动力学模型的示例性实施例,其中,通过电阻器E1、E2、E3和E4对感兴趣血管的节段进行建模。通过电阻器RO1和RO4对血管分支(即,从感兴趣血管发生流体流出的位置)进行建模。另外,电阻器RO用于定义在感兴趣血管的节段的端部处的出口边界条件。为了调整集总参数流体动力学模型以对从感兴趣血管的流体流出进行正确建模,必须确定电阻器RO1至RO4的出口阻抗。因此,特别地,可以对所提取的血管直径使用回归模型来确定针对血管分支的流出速率,从而确定血管节段的位置处的平均的血管直径,并且根据默里定律来定义流速与(平均的)血管直径之间的关系。
更具体地,通过对所提取的血管直径应用回归模型,可以针对每个候选位置i确定平均的血管直径Di。接下来,可以将两个候选位置i之间的局部流出速率确定为候选位置i处的体积流速Qi与紧随其后的候选位置i+1处的体积流速Qi+1之差:
Figure BDA0002494393960000201
如上所述,建模单元200可以使用由该局部流出速率给出的幅值来确定血管分支的大小。
另外,根据以下公式,局部流出速率可以用于近似电阻器ROi的出口阻抗:
Figure BDA0002494393960000202
其中,C是描述健康患者的入口压力的对应的边界条件。
在这方面,图2A示出了针对沿着血管的长度的多个位置确定的出口阻抗的标绘图32。根据图2A中的标绘图31可以意识到,平均的血管直径Di在位置31’处显著减小。因此,流出速率相当高,并且位置32’处的对应的出口阻抗很低。由于低的出口阻抗对应于高的流出速率,因此低的出口阻抗通常可以用于表示较大的血管分支。
因此,如上所述,可以通过根据计算出的流出速率选择电阻器ROi的阻抗来调整集总参数流体动力学模型。随后,经如此调整的包括集总参数流体动力学模型的生理模型可以用于确定多个血液动力学指标值。
为此,包括集总参数流体动力学模型的生理模型接收血管内测量数据作为另外的输入。在本文描述的示例性实施例中,血管内测量数据包括从感兴趣血管原位获得的压力梯度Δp=po-pa的测量结果。通过使用经调整的生理模型和有创获得的压力梯度,可以使用下式来计算通过感兴趣血管的流速:
Figure BDA0002494393960000203
其中,Δp是压力梯度,Qi是在候选位置i处的流速,Ri是在候选位置i处的线性阻抗,并且Vi是在该位置处的体积。藉此,在候选位置i处的Qi和pi被定义为:
Qi=Qi-1-pi/ROi,并且
Figure BDA0002494393960000211
使用上述关系,可以根据基于血管内压力的测量结果来计算针对与血流有关的血液动力学指标(例如,CFR)的值。这避免了引入另外的导管以用于进行基于流量的测量的必要性,从而极大地提高了患者的舒适度。
图3示意性地呈现了根据实施例的用于评估患者的脉管系统的方法的流程图。在步骤S101中,输入单元100从X射线系统1接收单幅2D X射线血管造影图像10,并且从血管内测量模态接收血管内测量数据20。在步骤S102中,输入单元100将X射线血管造影图像10提供给建模单元200和显示单元500。另外,输入单元100将血管内测量数据提供给评价单元400。
在步骤S201中,建模单元200接收X射线血管造影图像10。在步骤S202中,建模单元200对被成像的感兴趣血管进行分段,并且基于该分段来生成包括感兴趣血管的几何模型的生理模型。然后,建模单元200将生理模型提供给提取单元300。
在步骤S301中,提取单元300接收生理模型,并且基于所述生理模型中的几何模型来提取针对感兴趣血管的多个几何参数值。在根据图3的示例性实施例中,提取单元300提取多个分段的血管直径值作为几何参数值,并且将所提取的分段的值以及对其进行提取操作的相应位置提供给评价单元400。
在步骤S401中,评价单元400从提取单元300接收X射线血管造影图像10和所提取的值以及它们相应位置。另外,评价单元400从输入单元100接收血管内测量数据。
在步骤S402中,评价单元400根据所提取的值来计算针对位置中的每个位置的局部平均的血管直径。根据图3的示例,该计算特别是通过将线性回归与保序回归的组合应用于分段的直径值以计算针对每个候选位置i的局部平均的血管直径Di来执行的。任选地,提取单元400可以在计算期间使用单调减少的额外条件。
在步骤S403中,评价单元400然后识别如上文所述的在其处平均的血管直径Di显示出局部减小的候选位置i,并且基于该局部减小来预测候选位置i中的每个候选位置处的至少一个血液动力学参数。在图3的示例性实施例中,该血液动力学参数可以特别包括针对候选位置i中的每个候选位置的流出速率。
在步骤S404中,评价单元400然后基于预测的流出速率来确定在其处预测的流出率高的候选位置i的子集。基于此,评价单元预测在候选位置i处可以找到感兴趣血管的血管分支,并且使用该预测来针对X射线血管造影图像10定义在图像中的与感兴趣血管中的特定候选位置i相对应的位置周围的感兴趣区域。
在步骤S405中,将针对X射线血管造影图像10中的至少一个感兴趣区域的指示符输出到建模单元200和显示单元500。另外,评价单元400将关于在候选位置i中的每个候选位置处的预测的流出速率的信息提供给建模单元200。
在步骤S203中,建模单元200在几何形状和流体动力学方面调整生理模型调整以包括在候选位置处i的血管分支。因此,建模单元200使用X射线血管造影图像和关于至少一个感兴趣区域的指示来识别X射线血管造影图像中的血管分支,并且调整生理模型以包括这些血管分支。因此,建模单元200假定:当所确定的流出速率较高时,血管分支的大小较大;而当相应的流出速率较低时,血管分支的大小较小。随后,在步骤S204中,建模单元200将经调整的生理模型提供回到评价单元400。
然后,在步骤S406中,评价单元400使用经调整的生理模型和血管内测量数据来预测针对感兴趣血管中的多个位置的多个血液动力学指标值。在根据图3的示例性实施例中,评价单元400特别确定针对沿着感兴趣血管的相应的多个位置的多个CFR值,并且将关于沿着感兴趣血管的纵轴的CFR值的信息提供给显示单位500。
在步骤S501中,显示单元500从输入单元100接收X射线血管造影图像10。另外,显示单元500接收针对在X射线血管造影图像10中的至少一个感兴趣区域的指示。在根据图3的示例性实施例中,显示单元500还接收关于针对沿着感兴趣血管的纵轴的多个位置导出的CFR值的信息。
在步骤S502中,显示单元500生成X射线血管造影图像10的第一图形表示和对感兴趣区域的指示的第二图形表示。在该示例性实施例中,显示单元500还生成CFR值的第三图形表示。在步骤S503中,显示单元联合显示第一图形表示、第二图形表示和第三图形表示。因此,第一图形表示、第二图形表示和第三图形表示可以如关于图1所描述的那样具体体现。
虽然在上述实施例中,已经使用X射线血管造影术获得了诊断图像,但是应当理解,在其他实施例中,也可以取回通过其他成像方法(例如,螺旋式计算机断层摄影或序列式计算机断层摄影、磁共振成像、超声成像等)获得的诊断图像。
另外,虽然在上述实施例中,已经对冠状动脉生理情况执行了建模,但是在其他实施例中,同样也可以对人体的其他自图像导出的生理情况进行建模。举例来说,该方法可以应用于对人体中的外周动脉的建模。
还应当理解,虽然在上述实施例中,已经使用横截面血管腔和相应的血管直径来作为根据几何模型确定的几何参数,但是同样也可以导出其他几何参数。
虽然在上述实施例中,基于生理模型中的流体动力学模型以及血管内测量数据导出的血液动力学参数与血流量有关,但是应当理解,同样也可以导出其他血液动力学参数,例如,血压、血液粘度、血管壁摩擦力等。
另外,应当理解,在上述实施例中,也已经对通过相应的血管分支从感兴趣血管的流体流出进行了评估和建模,并且上述原理同样也可以用于对流入感兴趣血管的流体流入进行评估和建模。
本领域技术人员通过研究附图、公开内容以及权利要求,在实践请求保护的发明时能够理解并实现对所公开的实施例的其他变型。
在权利要求中,“包括”一词不排除其他元件或步骤,并且词语“一”或“一个”不排除多个。
单个单元或设备可以实现在权利要求中记载的若干项的功能。虽然某些措施被记载在互不相同的从属权利要求中,但是这并不指示不能有利地使用这些措施的组合。
由一个或多个单元或设备执行的接收至少一幅诊断图像,生成生理模型,提取几何参数值,确定几何参数值的局部减小,预测血管分支等流程也能够由任何其他数量的单元或设备来执行。因此,根据本发明的这些流程能够被实施为计算机程序的程序代码单元并且/或者被实施为专用硬件。
计算机程序可以被存储/分布在合适的介质上,例如与其他硬件一起或作为其他硬件的部分供应的光学存储介质或固态介质,但是也可以被以其他形式分布,例如经由互联网或其他有线或无线的电信系统来分布。
权利要求中的任何附图标记都不应被解释为对范围的限制。
本发明涉及一种用于评估患者的脉管系统的装置,包括:输入单元,其被配置为接收所述脉管系统的至少一幅诊断图像;建模单元,其被配置为基于所述至少一幅诊断图像来生成生理模型,所述生理模型包括所述脉管系统中的感兴趣血管的几何模型;提取单元,其被配置为基于所述几何模型来提取在沿着所述感兴趣血管的纵轴的多个位置处的、针对所述感兴趣血管的几何参数的多个几何参数值;以及评价单元,其被配置为:根据所述多个位置处的所述多个几何参数值来确定至少一个候选位置处的至少一个几何参数值的局部减少;以及预测在所述至少一个候选位置处的所述感兴趣血管的至少一个血管分支。
借助于这种装置,使得能够考虑到从每个感兴趣血管中的分叉发生的流体流出的影响,从而能够更好地评估患者的脉管系统。

Claims (15)

1.一种用于评估患者的脉管系统的装置,包括:
输入单元,其被配置为接收所述脉管系统的至少一幅诊断图像;
建模单元,其被配置为基于所述至少一幅诊断图像来生成生理模型,所述生理模型包括所述脉管系统中的感兴趣血管的几何模型;
提取单元,其被配置为基于所述几何模型来提取在沿着所述感兴趣血管的纵轴的多个位置处的、针对所述感兴趣血管的几何参数的多个几何参数值;以及
评价单元,其被配置为:
根据所述多个位置处的所述多个几何参数值来确定至少一个候选位置处的至少一个几何参数值的局部变化;以及
预测在所述至少一个候选位置处的所述感兴趣血管的至少一个血管分支的存在。
2.根据权利要求1所述的装置,其中,
所述至少一幅诊断图像是使用X射线血管造影术获得的。
3.根据权利要求1所述的装置,其中,
所述生理模型还包括集总参数流体动力学模型;并且
所述建模单元被配置为基于对在所述至少一个候选位置处的所述至少一个血管分支的所述预测来调整所述集总参数流体动力学模型。
4.根据权利要求1所述的装置,其中,
生成包括所述几何模型的所述生理模型还包括将所述感兴趣血管分段成一个或多个节段;
所述提取单元还被配置针对每个节段确定至少一个分段的几何参数值;并且
所述评价单元还被配置为:
对所述至少一个分段的几何参数值应用回归模型,以针对每个节段计算平均的几何参数值;以及
通过基于每个节段的所述平均的几何参数值预测在所述至少一个候选位置处的至少一个血液动力学参数来预测所述至少一个血管分支。
5.根据权利要求4所述的装置,其中,
预测所述至少一个血液动力学参数包括预测流体流出速率。
6.根据权利要求1所述的装置,其中,
所述评价单元还被配置为:
基于所述至少一个候选位置来在所述至少一幅诊断图像中定义感兴趣区域;以及
输出对所述感兴趣区域的指示。
7.根据权利要求6所述的装置,其中,
所述评价单元将对所述感兴趣区域的所述指示输出到所述建模单元;并且
所述建模单元还被配置为使用对所述感兴趣区域的所述指示来调整所述生理模型。
8.根据权利要求6所述的装置,还包括:
显示单元,其中,所述评价单元将对所述感兴趣区域的所述指示输出到所述显示单元;并且
所述显示单元被配置为:
生成所述至少一幅诊断图像的第一图形表示和对诊断图像数据中的所述感兴趣区域的所述指示的第二图形表示;以及
联合显示所述第一图形表示和所述第二图形表示。
9.根据权利要求1所述的装置,其中,
所述输入单元还被配置为接收血管内测量数据;并且
所述评价单元还被配置为基于所述生理模型和所述血管内测量数据来预测沿着所述感兴趣血管的所述纵轴的所述多个位置处的一个或多个血液动力学指标值。
10.根据权利要求9所述的装置,其中,
所述血管内测量数据包括针对所述感兴趣血管在原位采集的至少一个压力梯度。
11.根据权利要求9所述的装置,其中,
预测的在沿着所述感兴趣血管的所述纵轴的所述多个位置处的所述一个或多个血液动力学指标值包括体积流速和/或血流速度中的至少一个。
12.一种用于评估患者的脉管系统的方法,所述方法包括以下步骤:
接收所述脉管系统的至少一幅诊断图像;
基于所述至少一幅诊断图像来生成生理模型,所述生理模型包括所述脉管系统中的感兴趣血管的几何模型;
基于所述几何模型来提取在沿着所述感兴趣血管的纵轴的多个位置处的、针对所述感兴趣血管的几何参数的多个几何参数值;以及
根据所述多个位置处的所述多个几何参数值来确定至少一个候选位置处的至少一个几何参数值的局部变化;以及
预测在所述至少一个候选位置处的所述感兴趣血管的至少一个血管分支的存在。
13.根据权利要求12所述的方法,还包括以下步骤:
将所述感兴趣血管分段成一个或多个节段;
针对每个节段确定至少一个分段的几何参数值;
对所述至少一个分段的几何参数值应用回归模型,以针对每个节段计算平均的几何参数值;以及
通过基于每个节段的所述平均的几何参数值预测在所述至少一个候选位置处的至少一个血液动力学参数来预测所述至少一个血管分支。
14.一种用于控制根据权利要求1至11中的任一项所述的装置的计算机程序,所述计算机程序当由处理单元运行时适于执行根据权利要求12或13中的任一项所述的方法。
15.一种计算机可读介质,其上存储有根据权利要求14所述的计算机程序。
CN201880074371.0A 2017-09-18 2018-09-12 针对血管分叉估计流量以用于模拟血液动力学 Pending CN111357055A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17191608.3 2017-09-18
EP17191608.3A EP3457404A1 (en) 2017-09-18 2017-09-18 Estimating flow to vessel bifurcations for simulated hemodynamics
PCT/EP2018/074533 WO2019053030A1 (en) 2017-09-18 2018-09-12 ESTIMATION OF FLOW TO SHIP BIFURCATIONS FOR SIMULATED HEMODYNAMICS

Publications (1)

Publication Number Publication Date
CN111357055A true CN111357055A (zh) 2020-06-30

Family

ID=59923252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880074371.0A Pending CN111357055A (zh) 2017-09-18 2018-09-12 针对血管分叉估计流量以用于模拟血液动力学

Country Status (5)

Country Link
US (1) US11664128B2 (zh)
EP (2) EP3457404A1 (zh)
JP (1) JP2020534058A (zh)
CN (1) CN111357055A (zh)
WO (1) WO2019053030A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204622A1 (ko) * 2022-04-21 2023-10-26 한양대학교 산학협력단 스마트 혈류 역학 지표를 이용한 진단 보조 장치 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284587A1 (en) * 2009-04-17 2010-11-11 Malek Adel M Aneurysm detection
US20130253895A1 (en) * 2012-03-20 2013-09-26 Isis Innovation Ltd. Quantification of blood volume flow rates from dynamic angiography data
US20140003687A1 (en) * 2011-01-14 2014-01-02 Baylor College Of Medicine Method and system for evaluating hemodynamics of a blood vessel
US20150038860A1 (en) * 2013-07-30 2015-02-05 Heartflow, Inc. Method and system for modeling blood flow with boundary conditions for optimized diagnostic performance
CN104854592A (zh) * 2012-09-12 2015-08-19 哈特弗罗公司 用于根据血管几何形状和生理学估计血流特性的系统和方法
CN105078440A (zh) * 2014-05-09 2015-11-25 西门子公司 无创计算冠状动脉狭窄的血液动力学指标的方法和系统
CN105518684A (zh) * 2013-08-27 2016-04-20 哈特弗罗公司 用于预测冠状动脉病变的位置、开始、和/或变化的系统和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6647287B1 (en) * 2000-04-14 2003-11-11 Southwest Research Institute Dynamic cardiovascular monitor
JP4421203B2 (ja) * 2003-03-20 2010-02-24 株式会社東芝 管腔状構造体の解析処理装置
JP2007202957A (ja) 2006-02-06 2007-08-16 Toshiba Corp 壁運動測定装置及び医用画像診断装置
US20090012382A1 (en) * 2007-07-02 2009-01-08 General Electric Company Method and system for detection of obstructions in vasculature
JP5436125B2 (ja) * 2009-09-30 2014-03-05 富士フイルム株式会社 診断支援装置およびその作動方法並びに診断支援プログラム
US9471989B2 (en) 2013-06-03 2016-10-18 University Of Florida Research Foundation, Inc. Vascular anatomy modeling derived from 3-dimensional medical image processing
US10258303B2 (en) 2014-06-30 2019-04-16 Koninklijke Philips N.V. Apparatus for determining a fractional flow reserve value

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284587A1 (en) * 2009-04-17 2010-11-11 Malek Adel M Aneurysm detection
US20140003687A1 (en) * 2011-01-14 2014-01-02 Baylor College Of Medicine Method and system for evaluating hemodynamics of a blood vessel
US20130253895A1 (en) * 2012-03-20 2013-09-26 Isis Innovation Ltd. Quantification of blood volume flow rates from dynamic angiography data
CN104854592A (zh) * 2012-09-12 2015-08-19 哈特弗罗公司 用于根据血管几何形状和生理学估计血流特性的系统和方法
US20150038860A1 (en) * 2013-07-30 2015-02-05 Heartflow, Inc. Method and system for modeling blood flow with boundary conditions for optimized diagnostic performance
CN105518684A (zh) * 2013-08-27 2016-04-20 哈特弗罗公司 用于预测冠状动脉病变的位置、开始、和/或变化的系统和方法
CN105078440A (zh) * 2014-05-09 2015-11-25 西门子公司 无创计算冠状动脉狭窄的血液动力学指标的方法和系统

Also Published As

Publication number Publication date
WO2019053030A1 (en) 2019-03-21
JP2020534058A (ja) 2020-11-26
EP3457404A1 (en) 2019-03-20
EP3685389A1 (en) 2020-07-29
US11664128B2 (en) 2023-05-30
US20200265958A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
EP3160335B1 (en) Apparatus for determining a fractional flow reserve value
US10134129B2 (en) Method and system for hemodynamic computation in coronary arteries
US11083377B2 (en) Method and apparatus for quantitative hemodynamic flow analysis
EP3169237B1 (en) Stenosis assessment
US11690518B2 (en) Apparatus for determining a functional index for stenosis assessment
US20190076196A1 (en) Vessel geometry and additional boundary conditions for hemodynamic ffr/ifr simulations from intravascular imaging
US10552958B2 (en) Fractional flow reserve determination
US11839457B2 (en) Measurement guidance for coronary flow estimation from Bernoulli's Principle
CN112673433A (zh) 基于心肌呈色特性计算用于虚拟FFR和iFR计算的边界条件
US11664128B2 (en) Estimating flow to vessel bifurcations for simulated hemodynamics
US20230252628A1 (en) Estimating flow to vessel bifurcations for simulated hemodynamics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination