CN111354746A - Optoelectronic integrated circuit - Google Patents
Optoelectronic integrated circuit Download PDFInfo
- Publication number
- CN111354746A CN111354746A CN201811563051.XA CN201811563051A CN111354746A CN 111354746 A CN111354746 A CN 111354746A CN 201811563051 A CN201811563051 A CN 201811563051A CN 111354746 A CN111354746 A CN 111354746A
- Authority
- CN
- China
- Prior art keywords
- layer
- waveguide
- integrated circuit
- optoelectronic integrated
- detection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005693 optoelectronics Effects 0.000 title claims description 32
- 238000001514 detection method Methods 0.000 claims abstract description 39
- 239000004065 semiconductor Substances 0.000 claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 19
- 239000010703 silicon Substances 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 229910005898 GeSn Inorganic materials 0.000 claims description 19
- 229910045601 alloy Inorganic materials 0.000 claims description 18
- 239000000956 alloy Substances 0.000 claims description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 238000002955 isolation Methods 0.000 claims description 13
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- 229910052681 coesite Inorganic materials 0.000 claims description 9
- 229910052906 cristobalite Inorganic materials 0.000 claims description 9
- 229910052682 stishovite Inorganic materials 0.000 claims description 9
- 229910052905 tridymite Inorganic materials 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims description 8
- 230000010354 integration Effects 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 6
- 238000000034 method Methods 0.000 description 38
- 230000008569 process Effects 0.000 description 34
- 229910052581 Si3N4 Inorganic materials 0.000 description 15
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 11
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 9
- 230000007704 transition Effects 0.000 description 9
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 229910000077 silane Inorganic materials 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 239000013307 optical fiber Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/103—Integrated devices the at least one element covered by H10F30/00 having potential barriers, e.g. integrated devices comprising photodiodes or phototransistors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12004—Combinations of two or more optical elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
技术领域technical field
本发明属于半导体技术领域,具体涉及一种光电集成电路。The invention belongs to the technical field of semiconductors, and particularly relates to an optoelectronic integrated circuit.
背景技术Background technique
光纤通信的发展极其迅速,至1991年底,全球已敷设光缆563万千米,到1995年已超过1100万千米。光纤通信在单位时间内能传输的信息量大。一对单模光纤可同时开通35000个电话,而且它还在飞速发展。光纤通信的建设费用正随着使用数量的增大而降低,同时它具有体积小,重量轻,使用金属少,抗电磁干扰、抗辐射性强,保密性好,频带宽,抗干扰性好,防窃听、价格便宜等优点。The development of optical fiber communication is extremely rapid. By the end of 1991, 5.63 million kilometers of optical cables had been laid in the world, and by 1995, it had exceeded 11 million kilometers. Optical fiber communication can transmit a large amount of information per unit time. A pair of single-mode fibers can open 35,000 calls simultaneously, and it's growing rapidly. The construction cost of optical fiber communication is decreasing with the increase of the number of use. At the same time, it has the advantages of small size, light weight, less metal used, strong anti-electromagnetic interference and radiation resistance, good confidentiality, wide frequency band, and good anti-interference performance. Anti-eavesdropping, cheap and other advantages.
光电集成电路(optoelectronic integrated circuit,简称OEIC),是指把光器件和电器件集成为有某种光电功能的模块或组件,其可以将光纤通信直接应用于芯片级,是推动光纤通信进一步发展的核心技术。一般而言,用分立器件的管心集成在一起的称为光电混合集成模块,在技术上已较为成熟,而用光和电的元器件集成在同一块半导体基片上的,称为单片集成模块,它是光电集成的发展方向。Optoelectronic integrated circuit (OEIC) refers to the integration of optical devices and electrical devices into modules or components with certain optoelectronic functions, which can directly apply optical fiber communication to the chip level and promote the further development of optical fiber communication. Core Technology. Generally speaking, the integration of the cores of discrete devices is called an optoelectronic hybrid integrated module, which is relatively mature in technology, while the integration of optical and electrical components on the same semiconductor substrate is called monolithic integration. Module, which is the development direction of optoelectronic integration.
然而,目前同一块半导体基片上的光电集成电路,由于探测器件、波导器件的能带调制问题使得光电集成存在很大难度。However, in the current optoelectronic integrated circuits on the same semiconductor substrate, the problem of energy band modulation of detection devices and waveguide devices makes optoelectronic integration very difficult.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的上述问题,本发明提供了一种光电集成电路。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides an optoelectronic integrated circuit. The technical problem to be solved by the present invention is realized by the following technical solutions:
本发明实施例提供了一种光电集成电路,包括光电转换区和半导体器件区;其中,An embodiment of the present invention provides an optoelectronic integrated circuit, including a photoelectric conversion region and a semiconductor device region; wherein,
所述光电转换区包括发光器件、波导器件及探测器件,所述发光器件、所述波导器件及所述探测器件制备于同一硅基衬底上,且所述发光器件、所述波导器件及所述探测器件依次相连;The photoelectric conversion region includes a light-emitting device, a waveguide device, and a detection device. The light-emitting device, the waveguide device, and the detection device are prepared on the same silicon-based substrate, and the light-emitting device, the waveguide device, and the detection device are fabricated. The detection devices are connected in sequence;
所述半导体器件区包括半导体器件,且所述半导体器件与所述探测器件相连。The semiconductor device region includes a semiconductor device, and the semiconductor device is connected to the detection device.
在本发明的一个实施例中,所述发光器件为PIN二极管,所述PIN二极管包括第一GeSn合金层、第一Ge层和第一Si层,所述第一GeSn合金层、所述第一Ge层和所述第一Si层依次层叠于所述硅基衬底上。In an embodiment of the present invention, the light-emitting device is a PIN diode, the PIN diode includes a first GeSn alloy layer, a first Ge layer and a first Si layer, the first GeSn alloy layer, the first A Ge layer and the first Si layer are sequentially stacked on the silicon-based substrate.
在本发明的一个实施例中,所述波导器件包括SiO2层、第二GeSn合金层、Si覆盖层及压应力层;其中,In an embodiment of the present invention, the waveguide device includes a SiO 2 layer, a second GeSn alloy layer, a Si cover layer and a compressive stress layer; wherein,
所述SiO2层位于所述波导器件的两侧,且与所述发光器件、所述探测器件相连以形成隔离;The SiO 2 layer is located on both sides of the waveguide device, and is connected with the light-emitting device and the detection device to form isolation;
所述第二GeSn合金层、所述Si覆盖层及所述压应力层依次层叠于所述硅基衬底上。The second GeSn alloy layer, the Si cover layer and the compressive stress layer are sequentially stacked on the silicon-based substrate.
在本发明的一个实施例中,所述压应力层为SiN膜,且厚度为10~20nm。In an embodiment of the present invention, the compressive stress layer is a SiN film and has a thickness of 10-20 nm.
在本发明的一个实施例中,所述波导器件为H型结构。In an embodiment of the present invention, the waveguide device is an H-type structure.
在本发明的一个实施例中,所述探测器件包括第三GeSn合金层、第二Ge层、第二Si层及张应力层,所述第三GeSn合金层、所述第二Ge层、所述第二Si层和所述张应力层依次层叠于所述硅基衬底上。In an embodiment of the present invention, the detection device includes a third GeSn alloy layer, a second Ge layer, a second Si layer and a tensile stress layer, the third GeSn alloy layer, the second Ge layer, the The second Si layer and the tensile stress layer are sequentially stacked on the silicon-based substrate.
在本发明的一个实施例中,所述压应力层为SiN膜,且厚度为10~20nm。In an embodiment of the present invention, the compressive stress layer is a SiN film and has a thickness of 10-20 nm.
在本发明的一个实施例中,所述半导体器件为CMOS器件。In one embodiment of the present invention, the semiconductor device is a CMOS device.
在本发明的一个实施例中,所述CMOS器件的NMOS与所述探测器件相连,且在所述NMOS表面设置有张应力层,所述张应力层厚度为10~20nm。In an embodiment of the present invention, the NMOS of the CMOS device is connected to the detection device, and a tensile stress layer is provided on the surface of the NMOS, and the thickness of the tensile stress layer is 10-20 nm.
在本发明的一个实施例中,所述CMOS器件的PMOS表面设置有压应力层,所述压应力层厚度为10~20nm。In an embodiment of the present invention, a compressive stress layer is provided on the PMOS surface of the CMOS device, and the thickness of the compressive stress layer is 10-20 nm.
与现有技术相比,本发明的有益效果:Compared with the prior art, the beneficial effects of the present invention:
1、通过将发光器件、波导器件和探测器件与半导体器件集成在同一硅基材料上,实现单片光电集成,完成芯片级的光信号传输;1. By integrating light-emitting devices, waveguide devices and detection devices with semiconductor devices on the same silicon-based material, monolithic optoelectronic integration is achieved, and chip-level optical signal transmission is completed;
2、在波导器件和探测器件表面设置应力膜,实现对波导器件和探测器件的应力调制,能够较为灵活地控制波导器件和探测器件的禁带宽度,提高光电转换效率;2. A stress film is arranged on the surface of the waveguide device and the detection device to realize the stress modulation of the waveguide device and the detection device, which can flexibly control the band gap of the waveguide device and the detection device, and improve the photoelectric conversion efficiency;
2、本发明的制备工艺与传统硅基工艺兼容,工艺简单且成本较低。2. The preparation process of the present invention is compatible with the traditional silicon-based process, the process is simple and the cost is low.
附图说明Description of drawings
图1(a)-图1(b)为本发明实施例提供的一种光电集成电路的结构示意图;1(a)-FIG. 1(b) are schematic structural diagrams of an optoelectronic integrated circuit provided by an embodiment of the present invention;
图2为本发明实施提供的SiO2层厚度对光信号的透射度的关系示意图;2 is a schematic diagram of the relationship between the thickness of the SiO 2 layer and the transmittance of the optical signal provided by the implementation of the present invention;
图3为本发明实施例提供的波导器件的俯视结构示意图;FIG. 3 is a schematic top-view structural diagram of a waveguide device provided by an embodiment of the present invention;
图4为本发明实施例提供的波导器件的过渡波导形状对光信号透射效果的影响示意图;FIG. 4 is a schematic diagram of the influence of the transition waveguide shape of the waveguide device provided by the embodiment of the present invention on the transmission effect of the optical signal;
图5为本发明实施例提供的一种波导器件在SiN膜下的应力受力示意图;FIG. 5 is a schematic diagram of stress and force of a waveguide device under SiN film provided by an embodiment of the present invention;
图6为本发明实施例提供的探测器件在SiN膜下的应力受力示意图;6 is a schematic diagram of the stress and force of the detection device provided by the embodiment of the present invention under the SiN film;
图7a~7u为本发明实施例提供的一种光电集成电路的制备方法的工艺示意图。7a-7u are schematic process diagrams of a method for fabricating an optoelectronic integrated circuit according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to specific embodiments, but the embodiments of the present invention are not limited thereto.
实施例一Example 1
本发明的光电集成电路可以包括有光电转换器件及与该光电转换器件相连的其他半导体器件。其中,光电转化器件主要包括发光器件、波导器件和探测器件,发光器件用于发出芯片级的光信号,波导器件用于为该光信号提供传输通道,而探测器件用于接收该光信号并将该光信号转化为电信号以整体实现光电转换。光电转换器件相连的半导体器件,可以是CMOS器件、TFT器件、FinFET器件等,可以根据实际电路需求进行设置,此处不做任何限制。The optoelectronic integrated circuit of the present invention may include a photoelectric conversion device and other semiconductor devices connected to the photoelectric conversion device. Among them, the photoelectric conversion device mainly includes a light-emitting device, a waveguide device and a detection device. The light-emitting device is used to emit a chip-level optical signal, the waveguide device is used to provide a transmission channel for the optical signal, and the detection device is used to receive the optical signal. The optical signal is converted into an electrical signal to realize photoelectric conversion as a whole. The semiconductor device connected to the photoelectric conversion device may be a CMOS device, a TFT device, a FinFET device, etc., and may be set according to actual circuit requirements, and no limitation is imposed here.
具体地,请参见图1,图1(a)-图1(b)为本发明实施例提供的一种光电集成电路的结构示意图,以半导体器件为CMOS器件为例进行说明。该光电集成电路包括光电转换区和半导体器件区;其中,光电转换区包括发光器件、波导器件及探测器件,发光器件、波导器件及探测器件制备于同一硅基衬底上,且发光器件、波导器件及探测器件依次相连;半导体器件区包括半导体器件,且半导体器件与探测器件相连。Specifically, please refer to FIG. 1 . FIGS. 1( a ) to 1 ( b ) are schematic structural diagrams of an optoelectronic integrated circuit provided by an embodiment of the present invention, and the semiconductor device is a CMOS device as an example for description. The optoelectronic integrated circuit includes a photoelectric conversion region and a semiconductor device region; wherein, the photoelectric conversion region includes a light-emitting device, a waveguide device and a detection device, the light-emitting device, the waveguide device and the detection device are prepared on the same silicon-based substrate, and the light-emitting device, the waveguide The device and the detection device are connected in sequence; the semiconductor device region includes the semiconductor device, and the semiconductor device is connected with the detection device.
发光器件为PIN二极管,PIN二极管包括层叠于所述硅基衬底上的GeSn合金层010、Ge层011和Si层012。其中,硅基衬底可以包括Si衬底001和p型Si外延层002。The light-emitting device is a PIN diode, and the PIN diode includes a
波导器件包括SiO2层014、GeSn合金层010、Si覆盖层015及压应力层018。GeSn合金层010、Si覆盖层015及压应力层018依次层叠于硅基衬底上。其中,SiO2层014位于波导器件的两侧,且与发光器件、探测器件相连以形成隔离。这层隔离对有源器件与无源器件进行了隔离,而且起电隔离作用,防止两端光电器件器件产生寄生效应。需要重点强调的是,SiO2隔离层在不同厚度下的透射度见图2所示,图2为本发明实施提供的SiO2层厚度对光信号的透射度的关系示意图,由图2中可以看出,波长越长受界面的影响越小;20nm厚的SiO2隔离层对光传输的影响基本与没有隔离层时一致,当SiO2隔离层逐渐加厚时,透射率逐渐减小,而且增加相同的越厚透射率却减小的更多。也就是说,隔离层的厚度与透射度之间并不是线性关系,而是随着厚度的增加,透射度减小的更多。上述结论是因为随着厚度的增加,SiO2的散射损耗和反射都越来越大导致耦合损耗增大。波长在1.75μm左右时,无SiO2层和20nm厚SiO2层的器件与波导之间的耦合效率基本为84%~85%,而SiO2厚度为50nm厚的耦合效率基本为81%~82%。The waveguide device includes a SiO 2 layer 014 , a
另外,Si覆盖层015为α-Si材料,添加覆盖层能够减小耦合损耗,这与光纤与器件耦合的情况基本一致,相对侧墙设计更能够减小损耗。In addition, the
进一步地,波导器件为H型结构。这里需要重点描述的是,如图3所示,图3为本发明实施例提供的波导器件的俯视结构示意图,与发光器件连接的波导器件锥形过渡波导的形状和长度中,不同侧面的过渡波导,可以为凹型、凸型。从图4的仿真结果中看到,凹型过渡波导增大传输损耗,凸型过渡波导在定过渡长度传输中有优势,在实际应用允许的情况下,尽量选取较长的过渡波长。另外,锥形过渡波导长度(L)越长,其在传播方向的变化尺寸越小,但是并不是线性增加,随着长度的增加,损耗减小就越来越少,因此对光的传输损耗影响也就越小。其中,锥形过渡波导长度L分别选取5μm~15μm,优选选择10μm。Further, the waveguide device has an H-type structure. What needs to be emphasized here is that, as shown in FIG. 3 , which is a schematic top-view structure of a waveguide device provided by an embodiment of the present invention, in the shape and length of the tapered transition waveguide of the waveguide device connected to the light-emitting device, the transitions on different sides The waveguide can be concave or convex. It can be seen from the simulation results in Fig. 4 that the concave transition waveguide increases the transmission loss, and the convex transition waveguide has advantages in transmission with a fixed transition length. When practical applications allow, try to select a longer transition wavelength. In addition, the longer the length (L) of the tapered transition waveguide, the smaller the change size in the propagation direction, but it does not increase linearly. As the length increases, the loss decreases less and less, so the light transmission loss The impact is also smaller. Among them, the length L of the tapered transition waveguide is selected from 5 μm to 15 μm, preferably 10 μm.
探测器件包括GeSn合金层010、Ge层011、Si层012及张应力层019,GeSn合金层010、Ge层011、Si层012及张应力层019依次层叠于所述硅基衬底上。其中,压应力层为SiN膜,且厚度可以为10~20nm。The detection device includes a
对压应力膜和张应力膜进行重点描述如下:The compressive stress film and the tensile stress film are mainly described as follows:
请参见图5,图5为本发明实施例提供的一种波导器件在SiN膜下的应力受力示意图。波导包裹在SiN膜018内,在SiN膜018的作用下波导两侧受到压应力,禁带宽度增大;其中,压应力与禁带宽度的关系如下:Please refer to FIG. 5. FIG. 5 is a schematic diagram of stress and force of a waveguide device under a SiN film according to an embodiment of the present invention. The waveguide is wrapped in the
Fwg=0.6+0.03×Eg-0.02×Eg2 F wg =0.6+0.03×Eg-0.02×Eg 2
其中,Fw#为波导在SiN膜018的作用下受到的压应力,Eg为波导的禁带宽度。Among them, F w# is the compressive stress received by the waveguide under the action of the
在其他工艺条件不变的情况下,反应温度越高,形成氮化硅薄膜压应力越大,且呈一定的线性关系。在其他工艺条件不变的情况下,反应压强越高,形成氮化硅薄膜压应力越小。在其他工艺条件不变的情况下,低频功率越大,形成氮化硅薄膜压应力越大。Under the condition that other process conditions remain unchanged, the higher the reaction temperature is, the greater the compressive stress of the silicon nitride film is formed, and there is a certain linear relationship. Under the condition that other process conditions remain unchanged, the higher the reaction pressure is, the smaller the compressive stress of the silicon nitride film is formed. Under the condition that other process conditions remain unchanged, the greater the low frequency power, the greater the compressive stress of the silicon nitride film formed.
其中,设Fwg为氮化硅压应力膜使所述波导结构中产生的压应力大小,则Fwg和温度T2的关系满足:Wherein, let Fwg be the size of the compressive stress generated in the waveguide structure caused by the silicon nitride compressive stress film, then the relationship between Fwg and temperature T 2 satisfies:
Fwg=-1.0×Twg-463.6F wg = -1.0×T wg -463.6
其中,Fwg的单位为Pa,Twg的单位为摄氏度。Wherein, the unit of F wg is Pa, and the unit of T wg is Celsius.
优选地,温度的取值范围为340℃~360℃。Preferably, the temperature ranges from 340°C to 360°C.
具体地,在其他工艺条件不变的情况下,压强越高,SiN膜018使所述波导结构中产生的压应力越小。Specifically, under the condition that other process conditions remain unchanged, the higher the pressure, the smaller the compressive stress generated in the waveguide structure caused by the
其中,压应力Fwg大小和压强Pwg的关系满足:Among them, the relationship between the compressive stress F wg and the pressure P wg satisfies:
Fwg=1.03×Pwg-1365.5F wg =1.03×P wg -1365.5
其中,Pwg的单位为mTorr。The unit of P wg is mTorr.
优选地,压强的取值为500mTorr。Preferably, the value of the pressure is 500 mTorr.
具体地,功率为低频功率,在其他工艺条件不变的情况下,功率越大,SiN膜018使所述波导结构中产生的压应力越大。Specifically, the power is low-frequency power. Under the condition that other process conditions remain unchanged, the greater the power, the greater the compressive stress generated in the waveguide structure caused by the
其中,压应力Fwg大小和第一功率Rwg的关系满足:Among them, the relationship between the compressive stress F wg and the first power R wg satisfies:
Fwg=0.7×Rwg-813.4F wg =0.7×R wg -813.4
其中,Rwg的单位为W。Wherein, the unit of R wg is W.
优选地,第一功率Rwg的大小为150W。Preferably, the magnitude of the first power R wg is 150W.
具体地,在其他工艺条件不变的情况下,硅烷(SiH4)和氨气(NH3)的气体流量比X与压应力的关系如下:Specifically, under the condition that other process conditions remain unchanged, the relationship between the gas flow ratio X of silane (SiH 4 ) and ammonia (NH 3 ) and the compressive stress is as follows:
Fwg=265.4×Xwg 2-168×Xwg-560F wg =265.4×X wg 2 -168×X wg -560
优选地,Xwg为2。Preferably, X wg is 2.
请参见图6,图6为本发明实施例提供的探测器件在SiN膜下的应力受力示意图。SiN膜019为张应力膜,探测器包裹在SiN膜019,在张应力膜的作用下,探测器两侧收到张应力,禁带宽度减小。Referring to FIG. 6 , FIG. 6 is a schematic diagram of stress and force under the SiN film of the detection device provided by the embodiment of the present invention. The
其中,张应力与禁带宽度的关系如下:Among them, the relationship between tensile stress and forbidden band width is as follows:
Fts=0.6-0.1×EgF ts =0.6-0.1×Eg
其中,Fts为探测器在张应力膜的作用下受到的张应力,Eg为探测器的禁带宽度。Among them, F ts is the tensile stress received by the detector under the action of the tensile stress film, and Eg is the forbidden band width of the detector.
具体地,其他工艺条件不变的情况下,反应温度越高,形成张应力膜使所述探测器结构中产生的张应力越大,且呈一定的线性关系。Specifically, under the condition that other process conditions remain unchanged, the higher the reaction temperature, the greater the tensile stress generated in the detector structure due to the formation of the tensile stress film, and has a certain linear relationship.
其中,设Fts为氮化硅张应力膜使所述探测器结构中产生的张应力大小,则Fts和温度Tts的关系满足:Wherein, let F ts be the tensile stress generated by the silicon nitride tensile stress film in the detector structure, then the relationship between F ts and temperature T ts satisfies:
Fts=1.2×Tts-34.1F ts =1.2×T ts -34.1
其中,Fts的单位为Pa,Tts的单位为摄氏度。Among them, the unit of F ts is Pa, and the unit of T ts is Celsius.
优选地,温度的取值范围为240℃~280℃。Preferably, the temperature ranges from 240°C to 280°C.
具体地,在其他工艺条件不变的情况下,压强越高,氮化硅张应力膜使所述探测器结构中产生的张应力越大。Specifically, under the condition that other process conditions remain unchanged, the higher the pressure, the greater the tensile stress generated in the detector structure by the silicon nitride tensile stress film.
其中,张应力Fts大小和压强Pts的关系满足:Among them, the relationship between the tensile stress F ts and the pressure P ts satisfies:
Fts=0.3×Pts-28.5F ts =0.3×P ts -28.5
其中,Pts的单位为mTorr。Among them, the unit of P ts is mTorr.
优选地,压强的取值为500mTorr。Preferably, the value of the pressure is 500 mTorr.
具体地,功率为射频功率,在其他工艺条件不变的情况下,功率越大,氮化硅张应力膜使所述探测器结构中产生的张应力越大。Specifically, the power is radio frequency power. Under the condition that other process conditions remain unchanged, the greater the power, the greater the tensile stress generated in the detector structure by the silicon nitride tensile stress film.
其中,张应力Fts大小和功率Rts的关系满足:Among them, the relationship between the tensile stress F ts and the power R ts satisfies:
Fts=0.7×Rts-813.4F ts =0.7×R ts -813.4
其中,Rts的单位为W。Among them, the unit of R ts is W.
优选地,功率Rts的大小为200W。Preferably, the magnitude of the power R ts is 200W.
具体地,硅烷(SiH4)和氨气(NH3)的气体流量比为0.75。Specifically, the gas flow ratio of silane (SiH 4 ) and ammonia gas (NH 3 ) was 0.75.
本实施例,通过将压应变材料设置于PMOS表面和所述波导器件表面,张应变材料设置于NMOS表面和所述探测器件表面,通过应变调制波导器件和探测器件的禁带宽度,实现同层单片光电集成,并简化工艺,实现与现有硅基工艺兼容且工艺简单的光电集成电路的制程。In this embodiment, the compressive strain material is arranged on the surface of the PMOS and the surface of the waveguide device, and the tensile strain material is arranged on the surface of the NMOS and the detection device, and the band gap width of the waveguide device and the detection device is modulated by strain to realize the same layer Monolithic optoelectronic integration, simplifying the process, and realizing the manufacturing process of the optoelectronic integrated circuit which is compatible with the existing silicon-based process and has a simple process.
实施例二Embodiment 2
请参见图7a~图7u,图7a~7u为本发明实施例提供的一种光电集成电路的制备方法的工艺示意图。本实施在上述实施例的基础上,对该制备方法进行详细描述。Please refer to FIG. 7a to FIG. 7u. FIGS. 7a to 7u are schematic process diagrams of a method for fabricating an optoelectronic integrated circuit according to an embodiment of the present invention. In this implementation, the preparation method is described in detail on the basis of the above-mentioned embodiment.
S101、如图7a,选取Si衬底001,生长p型Si外延层002,掺杂浓度为1016cm-3量级。S101 , as shown in FIG. 7 a , a
S102、如图7b,利用干法刻蚀工艺刻槽,并在低温等离子体增强化学气相淀积(LPCVD)的条件下淀积10~20nm的SiO2层003,沟槽隔离光电集成区域以及CMOS器件区域。S102, as shown in Figure 7b, a dry etching process is used to etch a groove, and a 10-20 nm SiO2 layer 003 is deposited under the condition of low temperature plasma enhanced chemical vapor deposition (LPCVD), and the trench isolates the optoelectronic integration region and the CMOS device area.
S103、如图7c,用光刻胶004层遮挡光电集成区域以及NMOS区域。S103 , as shown in FIG. 7 c , a
S104、如图7d,低温(200-300℃)下进行P离子注入掺杂形成CMOS中浓度为1016cm-3量级的N阱区005,厚度为400nm。S104 , as shown in FIG. 7d , perform P ion implantation and doping at a low temperature (200-300° C.) to form an N-
S105、如图2e,涂覆光刻胶,曝光PMOS源漏区域。S105, as shown in FIG. 2e, coating photoresist, and exposing the source and drain regions of the PMOS.
S106、如图7f,在200-300℃下,两次B离子注入,形成浓度1020cm-3量级的PMOS源漏区006。S106 , as shown in FIG. 7 f , at 200-300° C., B ions are implanted twice to form PMOS source and drain
S107、如图7g,曝光NMOS源漏区域,在200~300℃下,两次P离子注入,形成浓度1020cm-3的NMOS源漏区007,然后将注入后的硅片在快速退火(RTP)装置中,对NMOS和PMOS源漏区同时进行高温退火。快速退火装置能够迅速达到1000℃左右的高温并在设定温度保持数秒。这种状态对于阻止结构的扩展以及控制源漏区杂质的扩散都极其重要。S107. As shown in Figure 7g, the NMOS source and drain regions are exposed, and at 200-300 °C, P ions are implanted twice to form NMOS source and drain
S108、如图7h,干法刻蚀光电集成区域,留下厚度300nm的p+Si层008。S108, as shown in Figure 7h, dry etching the photoelectric integration region, leaving a p+
S109、如图7i,330℃下,在Si层008上利用化学气相沉积外延生长厚度为50nm的p++掺杂Ge层009,掺杂浓度为1020cm-3量级;S109, as shown in Figure 7i, at 330°C, a p++ doped
S110、如图7j,在350℃温度下,在上述材料表面利用减压CVD工艺生长250nm的本征GeSn合金层010,考虑到实际工艺因素以及Sn在Ge中的固溶度,控制Sn组份为3%~5%。S110, as shown in Figure 7j, at a temperature of 350 °C, a 250 nm intrinsic
S111、如图7k,在160℃下在GeSn层上利用化学气相沉积外延生长厚度为100nm的n+掺杂Ge层011,掺杂浓度为3×1019cm-3量级。S111, as shown in Figure 7k, an n+ doped
S112、如图7l,在275℃~325℃下在外延层上利用化学气相沉积外延生长厚度为100nm的n++掺杂Si层012,掺杂浓度为1020cm-3量级。S112, as shown in FIG. 71, the n++ doped
S113、如图7m,利用低温等离子体增强化学气相淀积(LPCVD)的方法在表面淀积10nm的SiO2层013。S113 , as shown in FIG. 7m , a 10 nm SiO 2 layer 013 is deposited on the surface by using a low temperature plasma enhanced chemical vapor deposition (LPCVD) method.
S114、如图7n(a)和图7n(b),首先利用干法刻蚀工艺通入HF刻蚀SiO2氧化层和n++掺杂Si层;其次采用1:2.5:10的HF:HNO3:CH3COOH刻蚀n+掺杂Ge层。其中,图7n(a)为截面图,图7n(b)为俯视图。S114, as shown in Figure 7n(a) and Figure 7n(b), first use dry etching process to etch the SiO 2 oxide layer and the n++ doped Si layer; secondly, use 1:2.5:10 HF: HNO3 : CH3COOH etching of n+ doped Ge layer. 7n(a) is a cross-sectional view, and FIG. 7n(b) is a plan view.
S115、如图7o(a)和图7o(b),通入SiH4和O2淀积20nm厚的SiO2隔离层014,然后利用干法刻蚀工艺刻蚀成图中所示,这层SiO2隔离层对有源器件与无源器件进行了隔离,而且起到一定的电隔离作用,防止两端光电器件器件产生寄生效应。其中,图7o(a)为截面图,图7o(b)为俯视图。S115, as shown in Figure 7o(a) and Figure 7o(b), pass SiH 4 and O 2 to deposit a 20nm thick SiO 2 isolation layer 014, and then use a dry etching process to etch to form as shown in the figure, this layer The SiO 2 isolation layer isolates the active device and the passive device, and plays a certain electrical isolation function to prevent the parasitic effect of the optoelectronic devices at both ends. 7o(a) is a cross-sectional view, and FIG. 7o(b) is a top view.
S116、如图7p(a)和图7p(b),在上述波导的基础上添加α-Si覆盖层015,添加覆盖层能够减小耦合损耗,这与光纤与器件耦合的情况基本一致,而且相对侧墙设计更能够减小损耗,因此需要添加覆盖层。其中,图7p(a)为截面图,图7p(b)为俯视图。S116, as shown in Figure 7p(a) and Figure 7p(b), add α-
S117、如图7q(a)和图7q(b),多晶硅淀积并光刻出栅区016。将硅片转入低压化学气相淀积设备,在温度为575℃~650℃,压强为0.2~1.0Torr的条件下,向该设备的工艺腔中通入纯硅烷或者含量为20%~30%的硅烷和氮气的混合气体,通过硅烷分解,在硅片表面淀积多晶硅栅,淀积的多晶硅栅厚度为50~60nm。其中,图7q(a)为截面图,图7q(b)为俯视图。S117, as shown in FIG. 7q(a) and FIG. 7q(b), polysilicon is deposited and the
需要说明的是,该S117也可以在S107之后完成,此处不做任何限制。It should be noted that this S117 can also be completed after S107, and no limitation is imposed here.
S118、如图7r(a)和图7r(b),利用电子束蒸发淀积70~80nm厚的铝(Al)017,形成源漏区欧姆接触;利用刻蚀工艺刻选择性蚀掉指定区域的金属Al,形成电极。图7r(a)为截面图,图7r(b)为俯视图。S118, as shown in Figure 7r(a) and Figure 7r(b), use electron beam evaporation to deposit aluminum (Al) 017 with a thickness of 70-80 nm to form ohmic contacts in the source and drain regions; use an etching process to selectively etch away designated areas metal Al to form electrodes. Fig. 7r(a) is a cross-sectional view, and Fig. 7r(b) is a plan view.
S119、如图7s(a)和图7s(b),光波导区、PMOS区淀积压应力SiN膜018,在340℃~360℃温度下,采用等离子体增强型化学汽相淀积(PECVD),工艺条件为500mTorr的压强,施加一个低频功率源,150W的低频功率,反应气体硅烷(SiH4)/氨气(NH3)流量比为2,淀积10~20nm厚的SiN膜018,利用低频功率源引入高能粒子轰击,导致原子/离子结合或重新分布,即使得SiN膜变得具有压缩性,发生伸张/膨胀,从而在SiN膜中产生本征压应力,利用刻蚀工艺刻选择性蚀掉指定区域的SiN膜,氮化硅膜包裹着波导;在其他工艺条件不变的情况下,反应温度越高,形成氮化硅薄膜压应力越大,且呈一定的线性关系。在其他工艺条件不变的情况下,反应压强越高,形成氮化硅薄膜压应力越小。在其他工艺条件不变的情况下,低频功率越大,形成氮化硅薄膜压应力越大。其中,图7s(a)为截面图,图7s(b)为俯视图。S119, as shown in Fig. 7s(a) and Fig. 7s(b), the compressive
S120、如图7t(a)和图7t(b),光探测区、NMOS区淀积张应力SiN膜019,工艺条件为1500mTorr的压强,200W的射频功率,240℃~280℃下,利用等离子体增强型化学汽相淀积(PECVD),反应气体硅烷(SiH4)/氨气(NH3)流量比为0.75;探测器部分包裹一层10~20nm厚的张应力SiN膜019,使该膜具有很好的一致性,利用刻蚀工艺刻选择性蚀掉指定区域的SiN膜,氮化硅膜包裹着探测器部分;在其他工艺条件不变的情况下,反应温度越高,形成氮化硅薄膜张应力越大,且呈一定的线性关系。在其他工艺条件不变的情况下,反应压强越高,形成氮化硅薄膜张应力越大,且呈一定的线性关系。在其他工艺条件不变的情况下,射频功率越大,形成氮化硅薄膜张应力越大。其中,图7t(a)为截面图,图7t(b)为俯视图。S120, as shown in Figure 7t(a) and Figure 7t(b), a tensile
S121、如图7u(a)和图7u(b),利用电子束蒸发淀积10~20nm厚的铝(Al)020,形成金属接触;利用刻蚀工艺刻选择性蚀掉指定区域的金属Al,形成电极。其中,图7u(a)为截面图,图7u(b)为俯视图。S121, as shown in Figure 7u(a) and Figure 7u(b), use electron beam evaporation to deposit aluminum (Al) 020 with a thickness of 10-20 nm to form a metal contact; use an etching process to selectively etch away the metal Al in the designated area , forming electrodes. 7u(a) is a cross-sectional view, and FIG. 7u(b) is a top view.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deductions or substitutions can be made, which should be regarded as belonging to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811563051.XA CN111354746A (en) | 2018-12-20 | 2018-12-20 | Optoelectronic integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811563051.XA CN111354746A (en) | 2018-12-20 | 2018-12-20 | Optoelectronic integrated circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111354746A true CN111354746A (en) | 2020-06-30 |
Family
ID=71196891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811563051.XA Withdrawn CN111354746A (en) | 2018-12-20 | 2018-12-20 | Optoelectronic integrated circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111354746A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4425581A1 (en) * | 2023-03-02 | 2024-09-04 | AIT Austrian Institute of Technology GmbH | Optoelectronic emitting device, receiving device and switching circuit |
-
2018
- 2018-12-20 CN CN201811563051.XA patent/CN111354746A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4425581A1 (en) * | 2023-03-02 | 2024-09-04 | AIT Austrian Institute of Technology GmbH | Optoelectronic emitting device, receiving device and switching circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6048578B2 (en) | Semiconductor light receiving element and manufacturing method thereof | |
JP5917978B2 (en) | Semiconductor device and manufacturing method thereof | |
US9653639B2 (en) | Laser using locally strained germanium on silicon for opto-electronic applications | |
JP6091273B2 (en) | Semiconductor device and manufacturing method thereof | |
TW202114240A (en) | Photodetector | |
US11251326B2 (en) | Method of fabrication of a photonic chip comprising an SACM-APD photodiode optically coupled to an integrated waveguide | |
US11378750B2 (en) | Germanium photodetector embedded in a multi-mode interferometer | |
JP2015046429A (en) | Light receiving element and method for manufacturing the same | |
CN111354746A (en) | Optoelectronic integrated circuit | |
JP2014183194A (en) | Semiconductor device manufacturing method | |
CN111430499A (en) | Photoelectric integrated device and preparation method thereof | |
CN111354829A (en) | Photoelectric integrated circuit and preparation method thereof | |
CN111430399A (en) | Optical integrated device based on strain and preparation method thereof | |
CN111430398A (en) | Optical integrated device structure based on strain | |
CN115836398A (en) | Manufacturing of solar cells | |
JPH04230033A (en) | Manufacturing and passivation method of semiconductor device | |
CN115803894A (en) | Manufacture of solar cells | |
CN111354823A (en) | Optoelectronic integrated semiconductor devices and chips | |
CN111354749A (en) | Optical integrated device and preparation method thereof | |
CN111354819A (en) | Photoelectric integrated device and preparation method thereof | |
CN111354826A (en) | Si-based modified Ge single-chip same-layer photoelectric integrated device | |
CN111352185A (en) | Silicon-based optical interconnect system | |
CN111354748A (en) | Silicon-based optical interconnection system and preparation method thereof | |
CN111354824A (en) | Monolithic same-layer optoelectronic structure and preparation method thereof | |
CN210325799U (en) | Optical integrated device structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200630 |
|
WW01 | Invention patent application withdrawn after publication |